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Abstract: Hydrogels are composed of a three-dimensional network of cross-linked hydrophilic
polymer chains and large amounts of water. The physicochemical properties of the polymer-water
interface in hydrogels draw our attention. Due to the complex structure of hydrogel systems, it is still
a challenge to investigate the interfacial layer properties of hydrogels through experiments. In this
work, we investigate the properties of the covalently bonded chitosan-based ice-hydrogels interfacial
layer by dielectric relaxation spectroscopy (DRS) techniques in the presence of avoided electrode
polarization. The DRS data exhibit that the polymer-water interfacial layer has a strong dielectric
signal response, which indicates that a large number of polar electric dipoles or polar molecules
may be contained in the interfacial layer. The variable temperature dielectric relaxation behavior
of a series of chitosan-base ice-hydrogels showed that the value of dielectric activation energy for
different water contents is about 180 kJ/mol, which is much larger than that of the polymer and
ice phases, suggesting a strong coupling of polar electric dipoles within the interfacial layer. This
work demonstrates the important role of the polymer-water interface in covalently bonded hydrogels,
which will provide assistance in the design and application of covalently bonded hydrogels.

Keywords: chitosan; ice-hydrogels; dielectric relaxation behavior; activation energy; interface

1. Introduction

Hydrogels are composite materials consisting of hydrophilic three-dimensional poly-
mer networks and lots of water [1]. These polymer networks are crosslinked through
covalent chemical bonds and/or physical interactions. Due to the inherent softness, de-
formability, biocompatibility, and reversible stimulus response to external stimuli, hydro-
gels are considered to be the most compatible materials with natural extracellular matrices
in terms of physical, chemical, and biological properties [2,3]. There is no doubt that
hydrogels have been widely used in areas including drug delivery, cell culture, and tissue
engineering [4,5].

Among the hydrogel family, natural polymer hydrogels have received a lot of atten-
tion due to the rich source of natural polymers, low cost, excellent biocompatibility, and
biodegradability, etc. [6]. As the only natural cationic polymer [7], chitosan (CS) not only
has the physicochemical properties possessed by natural polymers, but also has abundant
amine groups (–NH2) and hydroxyl groups (-OH) along the chain, which can easily in-
teract with related substances to form chitosan (CS)-based hydrogels [8,9]. The CS-based
hydrogels allow responses to various environmental stimuli, such as pH responses [10],
temperature responses [11], ionic responses [12], and electric field responses [13]. There-
fore, CS-based smart hydrogels are not only limited to a wide range of applications in the
biomedical field [8] but have been deeply explored in the area of flexible electronics [14,15].
Undoubtedly, a comprehensive knowledge of these functions of hydrogels is of great
significance, both in terms of the design and application.
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It is worth mentioning that the physical and chemical properties of CS-based hydrogels,
as well as the origin of the microstructure, have been extensively studied for decades. One
approach addresses the issue from the composition of the CS-based hydrogels combined
with the microstructure. The mainstream in this discipline seems to be related to the
water phase and polymer network as two separate or independent components of the
microstructure, although the hydrophilic or hydrophobic nature of the polymer phase can
be an issue under consideration. Thus, the physical and chemical properties are more or less
relevant with the optimization and modulation of the polymer network from a chemical
and functional viewpoint, while the water phase plays a role basically as a filler. What
we are addressing here is the polymer-water interfacial coupling that has been relatively
less understood but could be non-negligible or even very important in many cases. In
particular, for covalent bond-dominant hydrogels, the interfacial coupling should be strong
enough to influence the properties of the hydrogel system. Among the covalent CS-based
hydrogels, semi-interpenetrating network hydrogels have become a hot topic of research
with issues such as porosity, elasticity, degree of swelling, and response to stimuli. Here, we
take chitosan/polyacrylic acid (CS/PAA) hydrogels as an example since they are one of the
most studied semi-interpenetrating network hydrogels. A schematic diagram in Figure 1A
shows the structure of semi-interpenetrating network CS-based hydrogels, featuring the
polymeric network as micro pores and water filling these pores. Along this line, at least
several issues should be highlighted.

Figure 1. (A) Schematic diagram of the structure of chitosan-based hydrogel network. (B) High water
content hydrogels network with water channels filled with free water. (C) In the low water content
hydrogels network, the narrow water channels are filled with very little free water.

First, the spatial structure of hydrogels depends remarkably on the water content,
and thus the as-generated functionalities may vary considerably, too. This also applies to
the CS-based hydrogels. It is believed that the fill water can be divided into free water
and bound water [16]. The free water phase exists in the micro pores of hydrogels, while
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the bound water molecules are chemically bound with chemical groups of the polymer,
e.g., –COOH, –NH2, and –OH etc., as shown in Figure 1. Here, for convenience in Figure 1A,
only –COOH groups bounded with water molecules through the hydrogen bonding are
drawn for illustrating the bound water phase. Therefore, a comprehensive understanding
of the bound water phase becomes urgently required, in particular the interfacial properties
between the binding groups and bound water molecules.

Second, one looks at the possible mechanical behavior of hydrogels. For one thing,
water plays an important role in hydrogels by supporting their integrity, solubility, and
diffusion of substances. For another thing, the water-wetness and softness of the CS-based
polymer allow its sensitive response to external force. Consequently, the polymer network
deformation is accompanied by the water droplet shape and size. This deformation as a
core property for hydrogel applications depends on not only the water content and polymer
network structure, but also the polymer-water interfacial coupling, while this coupling
would be a major source for the formation of bound water phase. For instance, when the
water content is high, the polymeric network will be swollen, and then the water channels
will be wide and filled mainly with free water phase, as shown in Figure 1B. On the contrary,
what is demonstrated in Figure 1C is that at low water content, the polymeric network
will be partially collapsed, leading to the water channel shrinking. It is believed that the
water channels would be filled mainly with the bound water phase, making the mechanical
behaviors greatly different.

Ending with the two-aspect discussion, it is clear that the polymer-water interface
should be an emergent object for subsequent investigation. In fact, the study of the
polymer-water interface of hydrogels is involved from the basic mechanical properties of
hydrogels to the applications. On the one hand, as we know, polyampholyte (PA) hydrogels
are designed with strong bonds as permanent cross-linking points and weak bonds as
reversible sacrificial bonds, resulting in excellent mechanical strength and toughness of
these hydrogels [17]. Xing et al. introduced a thermodynamic approach to understand the
unique mechano-chemo-electrotaxis coupling and interfacial dynamics in PA hydrogels to
explain the excellent mechanical properties of the hydrogels [18]. It was concluded that
the interfacial bonding strength is the key factor affecting the mechanical strength and
reversibility of reconstruction of the PA hydrogel system. On the other hand, in order to
develop potential applications of hydrogels including stretchable conductors [19], ionic
cables [20], and neuro-prostheses [21], in-depth understanding and systematic research of
the thermal transport mechanism in hydrogels are required for researchers. By building a
theoretical model, Xu et al. calculated when the water fraction of hydrogels is under 85%,
the thermal conductivity can be even higher than the thermal conductivities of both pure
polymer networks and pure water due to the influence of the interface between polymer
networks and water [22]. The theoretical results agree well with the results simulated by
treating the hydrogel as a three-phase (polymer phase, water phase, and interface phase)
composite model.

The existence of the polymer-water interface in hydrogels was demonstrated through
theoretical modeling and plays an important role in the mechanical properties and func-
tional applications. Although there are many challenges to study the interfacial properties
of hydrogels by experimental means, we have successfully investigated the interface of
predominantly non-covalent polyacrylonitrile (PAN)-based ice-hydrogels using dielectric
relaxation spectroscopy (DRS) techniques [23]. In the interfacial studies of hydrogels,
electron polarization (EP) effect is the challenge that must be faced because the EP effect
produces a huge dielectric constant that can overwhelm the inherent signal of the hydrogels.
The EP effect was avoided by measuring ice-hydrogels instead of water-hydrogels in the
research. The main results of PAN-based hydrogels are shown in two aspects. On the
one hand, the ice-hydrogels exhibit a significant contribution in dielectric relaxation from
the interfacial layer. On the other hand, the dielectric activation energy is estimated to be
50–60 kJ/mol, which is similar to that of ice, indicating that the electric dipole coupling of
the interfacial layer is weak.
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We study the properties of the interface of covalent hydrogels along the lines of non-
covalent hydrogels. For covalently bonded CS-based hydrogels, the chemical composition
and structure are completely different from non-covalent PAN-based hydrogels. In this
work, we shall measure the dielectric response of the polymer-ice interfacial layer of
covalent CS-based ice-hydrogels, focusing on the electro-relevant dynamics for the polymer-
water interfacial coupling, as characterized by the activation energy (Ea) for the polarizable
molecules in the interfacial layer, which can be evaluated upon different water contents.
Meanwhile, we compared the covalent hydrogels and non-covalent hydrogels data and
found significant differences, which is mainly reflected in two aspects. For one thing,
the dielectric relaxation strength (dielectric value) of the interfacial layer of the covalent
CS-based ice-hydrogels should be smaller than that of the non-covalent PAN-based ice-
hydrogels, implying the electric dipole density in the interfacial layer of the covalent bond
is lower. For another, the activation energy of the covalent bond should be larger than that
of the non-covalent bond, which indicates that the electric dipole coupling of the interfacial
layer is stronger. The present work thus represents a substantial step forward towards deep
understanding of the electrostatic behavior of the polymer-water interfacial layer, a subject
less touched so far.

2. Results and Discussions
2.1. Structures and Bonding

The materials and reaction principles used in the hydrogel synthesis are first intro-
duced, as shown in Figure 2. In our experiments, the raw materials were used in the
synthesis of CS-based hydrogels which include the chitosan (CS), acrylic acid (AA), Ammo-
nium persulfate (APS), and N, N’-Methylenebis (acrylamide) (MBA). The AA, polyacrylic
acid (PAA), MBA, and CS of chemical configurations are schematically drawn in Figure 2A.

Figure 2. (A) Structural formulas of acrylic acid (AA), polyacrylic acid (PAA), chitosan (CS), and N,
N′-Methylenebis(acrylamide) (MBA). (B) Schematic diagram of the one-pot method for the synthesis
of CS-based hydrogels.

The CS-based hydrogels were synthesized via a one-pot method and a simple sketch
of the synthesis is shown in Figure 2B. As can be seen from the schematic diagram, in
the presence of the cross-linking agent MBA and the initiator APS, and under heating
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conditions, the covalently cross-linked CS-based hydrogels were synthesized by the reaction
of monomer CS and AA. During the hydrogel synthesis, the reaction of the –NH2 group
in CS with the –COOH group in AA will form the –CO–NH– group, which indicates the
successful synthesis of chitosan-based (CS/PAA) hydrogels.

From a macroscopic point of view, the as-prepared cylindrical hydrogel sample is
shown in Figure 3A, where the shape of the hydrogel is slightly changed due to the
dissolution equilibrium in water. The as-prepared hydrogels are colorless and transparent
with the water content of fw ~ 0.73. To understand the microstructure of hydrogels, wet-
hydrogels and dry-hydrogels were investigated separately. The microstructure of the
wet-hydrogels observed by optical microscopy is shown in Figure 3B, which demonstrates
several channels surrounded by the polymer that should be filled with a specific amount of
water. The size of the channels is relatively uniform with the average size of 100 µm. The
microstructure of the wet-hydrogels is good and consistent with the schematic diagram of
the hydrogels depicted in Figure 1. The ESEM was employed to observe the microstructure
of dry-hydrogels exhibited in Figure 3C, which displayed many micro pores and uniform
size with the average dimension of about 5 µm. According to Figure 3B,C, we can get a
more three-dimensional understanding of the microstructure of the CS-based hydrogels,
which will help us to carry out the next work.

Figure 3. (A) Photos of the wet-hydrogels (fw ~ 0.73). (B) Optical photograph of the wet-hydrogels
microstructure. (C) ESEM image of the dried hydrogels morphology. (D) FTIR spectra of chitosan
(CS) powder, acrylic (AA) liquid, and dry chitosan-based hydrogels samples. (E) XRD patterns of
chitosan (CS) powder and dried chitosan-based hydrogels samples. (F) DSC curves of chitosan-based
hydrogels samples measured in cooling-heating cycles with cooling/heating rates of 10 K/min,
15 K/min, 20 K/min, 25 K/min, and 30 K/min, respectively.
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For the chemical bonding of CS-based hydrogels, the FTIR data is exhibited in Figure 3D,
where CS and AA of data is inserted for comparison. The FTIR data for CS mainly includes
two vibrational modes, where the C=O group at 1660 cm−1, the C–N group at 1379 cm−1,
and the C–O–C group at 1074 cm−1 are tensile vibrational modes, while the N–H group at
1579 cm−1 is a bending vibrational mode [24]. The characteristic peak of AA is the –COOH
group coming from 1720 cm−1, which is the stretching vibrational mode. However, from the
FTIR data of CS/PAA hydrogels, it is observed that the pattern of N–H groups at 1597 cm−1

disappears and the patterns of C=O and C–O–C groups at 1660 cm−1 and 1074 cm−1 are
severely suppressed [25]. Instead, additional stretching vibrational modes from the COO–
group at 1540 cm−1 and 1410 cm−1 were detected, in addition to the –COOH group at
1720 cm−1, which was derived from AA. These features suggest that AA has been successfully
grafted onto CS chains to synthesize our designed CS/PAA hydrogels.

The crystallization of the as-synthesized CS/PAA hydrogels was examined by XRD,
the result of which is shown in Figure 3E. The XRD pattern of CS powder was first discussed,
from which two distinct diffraction peaks at 11.7◦ and 19.9◦ were observed, indicating
that CS powder has good crystallinity [26]. For the CS/PAA hydrogel, it can be observed
from the XRD spectrum that the diffraction peak of CS powder at 11.7◦ is difficult to
observe due to the weak crystallinity, while the position of the diffraction peak at 19.9◦

moves to 20.8◦, accompanied by the increase of diffraction peak area and the decrease of
diffraction intensity, and an amorphous diffraction peak appears at 38.3◦. The successful
synthesis of CS/PAA hydrogels was also indirectly demonstrated from the XRD spectra.
These characteristics indicate that the strong hydrogen bonds between the CS molecules
and the regular arrangement of the chains are disrupted, leading to the reduction in
the crystallization ability due to cross-linking between the polymer chains limiting the
mobility [27]. Although the crystallinity of the synthesized hydrogels is reduced, the CS
chains are still dominant in the hydrogels, which is consistent with the interfacial coupling
theme of CS-based hydrogels.

Although the polymer phase is dominated by the amorphous state, the DSC data
can demonstrate the existence of crystalline ice phase in as-prepared ice-hydrogels, even
though the water phase is separated into small-sized droplets by the polymer network. The
DSC data with five different cooling/heating rates (10, 15, 20, 25, and 30 K/min) are shown
in Figure 3F. Although the ice-hydrogels melting temperatures at different rates display
broad peaks at approximately the same location, the exothermic peak during solidification
of the hydrogels presents differently. It is mainly manifested in two aspects: firstly, the
slower the cooling rate, the sharper the exothermic peak, and the wider the width of the
peak shape as the cooling rate increases; secondly, as the cooling rate increases, the peak
moves to the low temperature side, which is typical of the liquid water crystallization
and solidification process. This indicates that the ice phase crystallizes well despite the
amorphous nature of the hydrogels due to polymer network limitations.

2.2. Significant Interfacial Layer Contribution

Having understood the microstructure of CS-based hydrogels, we now provide clear
experimental evidence that the interfacial contribution can be studied by DRS, so that the
interfacial phase between the polymer phase and the water phase should also be considered
when studying the properties of hydrogels. The microstructures of hydrogels are shown in
Figure 3B,C, and the hydrogels can be regarded as composite materials consisting of the
polymer phase and the water phase. The Maxwell–Garnett equations can represent the
dielectric constant εr of the two-phase structure [28]:

εr = εp

(
1 +

d fwβ

1− fwβ

)
, β =

εw − εp

εw + (d− 1)εp
, (1)

where the εp is the real dielectric part of the polymer, εw is the real dielectric part of the ice
phase, fw represents the volume fraction occupied by the ice in the ice-hydrogel, and d (d = 3)
refers to the space dimensionalities of the material structure.
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The dielectric constants (εr) of pure ice and dried CS-based hydrogels were measured,
where a set of data with T = 250 K and the frequency range of 100 Hz to 1.0 MHz is
plotted in Figure 4A. According to the frequency, their dielectric data can be divided into
three regions for discussion. Firstly, the values of pure ice and dry hydrogel are εw ~ 60
and εp ~ 30 in the low frequency range, respectively; secondly, pure ice exhibits a strong
frequency dispersion in the medium frequency range, while dry hydrogels indicate a
weak frequency dependence; finally, pure ice and dry hydrogels show very weak frequency
dependence in the high frequency range with the values of εw ~ 4.0 and εp ~ 8.0, respectively.
Combining the data, we calculate the dielectric constant εr(f ) under different water content
fw according to the Maxwell–Garnett equation. Selected data for several hydrogels are
shown in Figure 4B–D corresponding to fw = 0.383, 0.448, and 0.633, where the symbol
∆ represents the difference between the theoretical and measured data in the low and
mid-frequency range.

Figure 4. Dielectric constant εr(f ) vs. frequency (f ) curves for all hydrogels at T = 250 K. (A) εr(f )
curves of pure ice and dry chitosan-hydrogels. (B–D) Measured permittivity εr(f ) (black open squares)
and theoretical permittivity εr(f ) (red open circles) for the hydrogels with fw of 0.383, 0.448, and 0.633,
where the symbols ∆ represent the difference between the measured and theoretical permittivity εr(f )
in the low and mid frequency range.

If the hydrogels are regarded as the composites of polymer phase and ice phase, the
measured data (black open square curves) should be very similar to the theoretical data
(red open circle curves) from Equation (2). However, by comparing the experimental and
theoretical data of all samples, it is found that there are big differences for all the hydrogels
of different fw. First, the results for all samples show that the measured dielectric data are
much larger than those derived from theoretical calculations. In particular, the dielectric
constant at low and medium frequencies may be an order of magnitude larger than the
predicted value. This great difference is due to the dielectric relaxation within the interfacial



Gels 2022, 8, 409 8 of 13

layer, which can be attributed to the high density of polar molecules. Second, it can be seen
that the dielectric constant at intermediate frequencies increases with increasing fw.

These dielectric features exhibited by covalent CS-based hydrogels are similar to those
of our previous non-covalent polyacrylonitrile (PAN)-based hydrogels [23]. However, there
is still a big difference, which is mainly manifested in the stronger frequency dispersion of
the PAN-based hydrogels in the low and mid-low frequency range. Meanwhile, the dielectric
relaxation strength (dielectric value) of the interfacial layer of the covalent CS-based ice-
hydrogels is about an order of magnitude smaller than that of the non-covalent PAN-based
ice-hydrogel, at least in the mid-frequency range [23]. The huge differences in the dielectric
data of the two types of hydrogels are mainly due to their different compositions. The CS-
based hydrogels are covalently cross-linked, and the density of polarizable electric dipoles in
the interfacial layer is comparatively low, while PAN-based hydrogels are predominately by
non-covalent interactions including dipole-dipole and hydrogen bonding, and the density of
polarizable electric dipoles within the interfacial layer is relatively high [23]. Therefore, it is
very necessary to study the interface of covalently bonded hydrogels because it complements
and completes the knowledge of the hydrogel interface.

In our non-covalent PAN-based hydrogels research, we used the method of measuring
ice-hydrogels to well exclude the EP effect to obtain dielectric data from the interface [23].
In this work, we followed this line, demonstrating that these dielectric data come mainly
from polar molecules or polar electric dipoles in the interfacial layer of the polymer and ice
phases presented in Figure 4.

2.3. Overall Dielectric Relaxation

The dielectric relaxation spectra of ice-hydrogels with different samples were mea-
sured, and we used these data to analyze the dielectric relaxation behavior of electric
dipoles or polarized molecules in the interface layer. The DRS measurement results of the
CS-based ice-hydrogel with fw = 0.448 are shown in Figure 5A–C. The measured dielectric
real part ε’(T) and imaginary part ε”(T) of the hydrogel during heating as a function of T
are presented in Figure 5A,B, respectively, where several values of frequency f are chosen.
There are several main features that should be emphasized. Firstly, the dielectric data
is divided into two parts including the water-hydrogels and ice-hydrogels, based on the
melting point (Tm ~ 0 ◦C) of ice. Secondly, when T > Tm, the ice-hydrogels melt into the
water-hydrogels. Since the influence of the EP effect from the dielectric signals of the
hydrogels themselves are completely submerged, this is not the issue for our study. Thirdly,
we are concerned with the dielectric real part (ε’(T)) at T < Tm. On the one hand, the ε’(T)
shows an increasing trend with temperature, which is the thermal effect of the dipole inside
the dielectric layer. On the other hand, the ε’(T) reveals strong scattering with frequency at
low frequencies and weak realizations at high frequencies.

The dielectric loss (tanδ) is also an important parameter in response to dielectric
relaxation. The tanδ (T) as a function of temperature (T) is presented in Figure 5C, which
clearly shows the single-peak dependence of temperature on the peak position of the
tanδ (T). There is a clear shift in the loss peak with increasing frequency in the mid- and
low-frequency regions, which is evidenced by the strong dielectric frequency dispersion.
In the high frequency range, as the temperature is close to Tm, the dielectric response
signals are submerged by the EP effect. To better investigate the relaxation characteristics,
the dielectric real part (ε’(T) and loss (tanδ (T)) data are presented in Figure 5D. The ε’(T)
increases sharply with increasing temperature, and tanδ (T) shows a wide envelope peak.
The linear ln(f ) ~ 1/Tmax relation is shown in Figure 5E. This relationship can be described
by the Arrhenius equation [29]:

f = f0 · exp(−Ea/kBTmax), (2)

where Tmax is the peak position of the tanδ (T), f 0 represents the Arrhenius constant, Ea is
the dielectric activation energy, and kB is the Boltzmann constant. The best result by fitting is
Ea ~ 177.4 kJ/mol, which is the dielectric activation energy associated with the interfacial layer.
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Figure 5. (A–C) Measured the real part of permittivity ε’, imaginary part of permittivity ε”, and loss
tanδ as a function of temperature T at several frequencies, respectively, which are the hydrogels
(fw = 0.448) data measured from the heating program starting at 200 K. For more clarity, the measured
ε’(T) and tanδ (T) data at f = 40 Hz are shown in (D). (E) Calculated the activation energy Ea by the
Arrhenius equation and evaluated the relationship between Tmax and f.

We further show the DRS data for hydrogels with fw = 0.519 and fw = 0.694 presented
in Supplementary Figure S1. The dielectric relaxation behavior exhibited by these ice-
hydrogels samples is similar to that of the ice-hydrogels with fw = 0.448. According to the
Arrhenius equation, the activation energies of the ice-hydrogels with fw = 0.519 and the
ice-hydrogels with fw = 0.694 are Ea ~ 184.6 kJ/mol and Ea ~ 190 kJ/mol, respectively. It is
not difficult to find that the activation energy values of ice-hydrogels with different fw are
very close, which may indicate that the activation energy value is independent of fw.

2.4. Activation Energy and Discussion

We measured the activation energy (Ea) of CS-based ice-hydrogels with different fw
plotted in Figure 6, which shows that the Ea ~ 180 kJ/mol, essentially independent of the
fw of the hydrogels. With such a large dielectric activation energy, considering that the
hydrogels are a covalent bond structure, this result is physically reasonable. The activation
energy Ea,p ~ 48 kJ/mol of CS polymer at low temperature [30] and the activation energy
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value of pure ice phase Ea,w ~ 58 kJ/mol [31] are marked in Figure 6, respectively. The
activation energy value of the CS-based ice- hydrogels is much larger than that of the CS
polymer and pure ice phase, which indicates a strong coupling effect of the dipole at the
interfacial layer. The large activation energy values of covalently bonded hydrogels are as
predicted in our previous work.

Figure 6. Activation energy (Ea) as a function of water contents (fw) for covalent chitosan (CS)-based
ice-hydrogels and non-covalent polyacrylonitrile (PAN)-based ice-hydrogels.

We also plot the activation energies of non-covalent polyacrylonitrile (PAN)-based
ice-hydrogels with different fw in Figure 6, which is compared with the data for covalent
hydrogels. The activation energy of non-covalent ice-hydrogels has been reported to be
roughly 50–60 kJ/mol. It is not difficult to find that there is a large difference between the
activation energy values of the covalent CS-based ice-hydrogels and the non-covalent PAN-
based ice-hydrogels. This is mainly related to the chemical composition of the hydrogels.
CS-based hydrogels are covalently cross-linked and have high dielectric activation energy,
which suggests a strong coupling effect of the dipole at the interfacial layer. In contrast,
PAN-based hydrogels are non-covalently cross-linked and have low dielectric activation
energy, manifesting as weak coupling effect of dipoles at the interfacial layer.

3. Materials and Methods
3.1. Sample Preparation

The synthesis of CS-based hydrogels has been described in previous reports, and
we only briefly describe it here. The synthetic reaction diagram of hydrogels is shown in
Figure 2, which is consistent with the information provided in [25].

For the synthesis of CS-based hydrogels, the 1% acetic acid solution was first pre-
pared so that the CS can quickly be dissolved in the solution. Then, 1.0 g CS powder
(Aladdin, Shanghai, China) was added to the solution of acetic acid (Aladdin, Shanghai,
China) and continuously stirred until it was completely dissolved, forming the CS solution
that was stirred at 60 ◦C. Subsequently, 2 mL 0.1 g/mL Ammonium persulfate (APS) (Al-
addin, Shanghai, China) aqueous solution was put into the CS solution. After stirring for
30 min, 14.4 g acrylic acid (AA) (Aladdin, Shanghai, China) and 0.2 g N,N’-Methylenebis
(acrylamide) (MBA) (Aladdin, Shanghai, China) were added to the CS solution.

After sufficiently stirring the solution, which was static at 60 ◦C for four hours so that
the synthesis process could be fully carried out, the hydrogel precursor was successfully
composed and cooled naturally to room temperature. The hydrogels were immersed in a
large amount of pure water. Subsequently, the immersed water was replaced every 24 h
and this process was repeated six to seven times to eliminate those non-reacted monomers
in the hydrogels. Ultimately, the hydrogels were placed in a container filled with water
for preservation.
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3.2. Structural Characterizations

It is well known that the water content of the hydrogels affects their properties and
functions. In general, the equilibrium water content is used to represent the water content of
the hydrogels. Typically, estimation of equilibrium water content in hydrogels is measured
by the insoluble fraction in dried samples. However, our previous interfacial work on
hydrogels has demonstrated that employing volume percentage to represent the equilib-
rium water content seemed to be more reasonable [23]. Therefore, in this work, we will
continue to apply the equilibrium water content in volume percent with the corresponding
parameter fw:

f w =
mw/ρw

mw/ρw + mp/ρp
, (3)

where, mw is the mass of water in the hydrogel, mp is the mass of dry hydrogels, ρw
represents the density of ice, and ρp denotes the dry hydrogel’ density, i.e., ρp = 1.085 g/cm.

Direct imaging of the morphological structure of CS-based wet-hydrogels was com-
pleted using an optical camera. The microstructure of the wet-hydrogel samples was
imaged using the Zeiss optical microscope (SEM, Imager. M1m, Carl Zeiss AG, Jena, Ger-
many), while the microstructure of freeze-dried hydrogels was photographed by environ-
mental scanning electron microscopy (ESEM) with Quanta 200 instrument manufactured
by FEI (Hillsboro, OR, USA) in the United States. To obtain the microstructure of the
wet-hydrogels, we needed to immerse the wet-hydrogels in liquid nitrogen for one hour,
then rapidly transfer them to the freeze dryer to stay them for 3–4 days, and eventually
transfer them to the ESEM sample stage for observation. For more detailed operation
procedures, please refer to Ref. [23].

To measure the chemical bonding of CS powder, AA liquid and dried CS-based
hydrogels were used. We employed the NEXUS 870 infrared spectrometer instrument
made by NICOLET (Madison, WI, USA) in the United States. Here, the FTIR data for
CS and AA respectively are taken as reference. Before the FTIR measurement, the wet-
hydrogels were dried in an oven at 70 ◦C, and then the samples were placed in a mortar to
grind into powder to press into a transparent sheet with a table press for Fourier transform
infrared (FTIR) measurement. This operation is suitable for CS powder, but not for AA
because it is liquid. Typically, liquid samples are prepared by placing one or two drops on
a glass plate to form liquid films. The covered wavelength range for the FTIR testing is
from 4000 to 400 cm−1 with a detecting resolution of 2.0 cm−1.

The crystalline state of the as-prepared hydrogels was measured employing a D8
Advance XRD instrument of Cu Kα radiation (λ = 0.15418 Å) made by Bruker in Germany.
The instrument parameters were set to voltage 40 kV, current 40 mA, step size 0.02◦,
and testing time per step 0.8 s. CS powder and dried CS/PAA hydrogels were tested in
coupled Two Theta/Theta mode of XRD ranging from 5 to 60◦. The sample stage remained
stationary during the test.

In addition, a DSC-200F3 instrument was used to analyze CS-based hydrogels, which
was made by Netzsch-Gerätebau GmbH in Selb, Germany. Five identical hydrogel samples
were characterized by selecting heating and cooling rates of 10 K/min, 15 K/min, 20 K/min,
25 K/min, and 30 K/min, respectively, and the temperature T range of −80 ◦C to 25 ◦C.

3.3. Electrical Measurements

In this work, the most important experiment was the DRS measurements. For the
dielectric measurements, the wet-hydrogels and pure ice were cut into thin plates of
4.0 mm × 4.0 mm × 1.0 mm in dimensions. The gold foils serve as electrodes for parallel
plate capacitors, whose size is 4.0 mm × 4.0 mm × 0.1 mm. The CS-based hydrogels were
frozen to the ice-hydrogel state for DRS measurements.

The hydrogels contain a large amount of water, and the ice phase of ice-hydrogel will
gradually evaporate during long DRS measurements at low temperatures, thus affecting the
measurement results. To avoid evaporation, the hydrogels capacitors were sealed in plastic
during the operation of the cooling/heating procedure, also making sure that the contact
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between the samples and the temperature console was good and that the cooling/heating
rate was kept slow enough (0.5 K/min).

The DRS measurements of ice-hydrogels were performed utilizing the HP 4294A
impedance analyzer (Agilent, Santa Clara, CA, USA) with the frequency range of 40 Hz–
1.0 MHz, and the AC voltage of 0.5 V. Notably, all DRS measurements were performed in
order of heating from 200 to 300 K. In this case, the sealed hydrogels were slowly cooled
down to 200 K at a rate of 0.5 K/min without any electrical bias.

4. Conclusions

CS-based ice-hydrogels with covalent bonding structures were investigated by mi-
crostructural and chemical bonding characterization. We focused on the dielectric relaxation
spectra (DRS) of ice-hydrogels with different water contents (fw), avoiding the severe EP ef-
fect in the water-hydrogels state. The results of DRS measurements of ice-hydrogels permit
us to fully investigate the polymer-water interfacial layer and the role it may play in the
properties already exhibited by the hydrogels. The polymer-water interfacial layer in this
series of CS-based ice-hydrogels with dielectric relaxation behavior exhibits a significant
contribution, suggesting that the dielectric response was mainly from the interfacial layer
rather than the polymer phase and the ice phase. Meanwhile, the measured DRS data
revealed similar activation energies (Ea ~ 180 kJ/mol) for the dielectric relaxation in ice-
hydrogels with different fw. This value is much larger than that of the polymer phase and
the ice phase alone, indicating a strong coupling of electric dipoles at the interfacial layer
of covalently bonded hydrogels. We have studied the interface of covalent ice-hydrogels
in this work, which enables the reader to reconnect with the importance of the hydrogels
interface. Nowadays, hydrogels are in full swing as stretchable electronic devices and
soft machines, etc., in which the interface of hydrogels plays an important role in these
functional devices. Our research on the interface of covalent ice-hydrogels will provide
help for researchers in device design and device operation failures.
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