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Abstract: Cancer is the second leading cause of death globally, but conventional anticancer drugs
have side effects, mainly due to their non-specific distribution in the body in both cancerous and
healthy cells. To address this relevant issue and improve the efficiency of anticancer drugs, increasing
attention is being devoted to hydrogel drug-delivery systems for different kinds of cancer treatment
due to their high biocompatibility and stability, low side effects, and ease of modifications. To improve
the therapeutic efficiency and provide multi-functionality, different types of nanoparticles (NPs)
can be incorporated within the hydrogels to form smart hydrogel nanocomposites, benefiting the
advantages of both counterparts and suitable for advanced anticancer applications. Despite many
papers on non-peptide hydrogel nanocomposites, there is limited knowledge about peptide-based
nanocomposites, specifically in anti-cancer drug delivery. The aim of this short but comprehensive
review is, therefore, to focus attention on the synergies resulting from the combination of NPs with
peptide-based hydrogels. This review, which includes a survey of recent advances in this kind of
material, does not aim to be an exhaustive review of hydrogel technology, but it instead highlights
recent noteworthy publications and discusses novel perspectives to provide valuable insights into
the promising synergic combination of peptide hydrogels and NPs for the design of novel anticancer
drug delivery systems.

Keywords: peptide; peptide-based hydrogels; nanoparticles; nanocomposite; cancer; drug delivery

1. Introduction

Traditional chemotherapy is limited by the unselective distribution of drugs in both
cancerous and healthy tissues, resulting in adverse and long-term side effects for the
patients [1,2]. In recent years, there have been admirable efforts to develop nano-based drug
delivery systems (DDSs) benefiting various controlled-release properties, including pH- and
thermo-sensitive, photo-induced, enzyme-responsive, and target-specific properties, which
result in an enhanced selectivity of the drugs towards cancer cells with lower dosages
required to achieve the pharmacological effects [3–10]. To date, more than 30 types of
different inorganic and organic nanoparticles (NPs) have been approved in the clinic. [11]
With the COVID-19 pandemic, FDA-approved lipid nano-carriers for mRNA vaccines
have shown the key role of nanomedicine in managing new global challenges [12]. In
fact, these lipid nano-carriers are considered the largest fraction of clinically approved
NPs parenterally administered. Inorganic NPs are the second biggest group of medical
nanomaterials due to their unique electronic structures. Inorganic NPs include several
important and unique materials such as porous silica [13], iron oxides [14–16], titania [17,18],
and silver and gold NPs [19–29]. These have been the subject of many studies, such as
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anticancer and antibacterial, thanks to the success of therapies that accurately combine
pharmaceuticals with NPs to achieve a synergic effect [30]. In drug delivery applications,
nanocarriers allow gradual and controlled drug release, extend drug circulation time, and
protect drugs against oxidation/degradation. Furthermore, nanocarriers can modify the
physicochemical properties of drugs (hydrophilicity/hydrophobicity) in order to enhance
their therapeutic index [6,31].

Hydrogels are three-dimensional (3D) polymeric networks that can adsorb and retain
large amounts of water inside their matrices; they can be used as stabilizers/scaffolds for
NPs to enhance their stability against aggregation and oxidation [32]. Three-dimensional
hydrogel matrices can be designed in order to contain suitable functional groups for
loading a variety of biomolecules and drugs. Of course, NPs may affect the mechanical
and swelling features of hydrogels. [33–35]. Hydrogel nanocomposites are a developed
class of inorganic–organic gel-type materials that may be used as drug delivery systems
(DDSs), combining the benefits of both nanomaterials and hydrogels in a single platform
with reinforced structures and multifunctional capabilities [36–40] (Figure 1). Hydrogel
nanocomposites should have some basic properties for being used as DDS with maximum
efficacy: (1) exhibit excellent mechanical strength and injectability to enhance in vivo drug
stability as well as in situ protection/retention of drugs [41–44]; (2) have strong drug-
carrier interactions to guarantee controlled and sustained drug release; (3) be structurally
tunable for providing different release profiles based on the type of drug; and (4) have
the capacity/ability to load several therapeutic components inside the hydrogel matrix to
imply a synergic efficacy and multifunctionality.
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The incorporation of NPs within hydrogels creates multifunctional systems to achieve
tunable delivery systems. Besides improving the mechanical properties of the hydrogels,
the presence of NPs modulates the response of the nanocomposites to different stimuli
(e.g., electric, magnetic, and light-responsive hydrogels), as shown in Table 1.

Table 1. Examples of nanocomposite hydrogels with properties that are triggered or enhanced by
nanoparticles for DDS applications. Reprinted with permission from [38]. Copyright 2015 American
Chemical Society.

Benefits Nanoparticles Ref.

Controlled drug release under electrical stimuli Carbon NPs [38,45]

Controlled drug release under magnetic stimuli Iron oxide magnetic NPs [38,46]

Controlled drug release under light stimuli Carbon NPs [38,47]

Based on the source and origin of the hydrogels, the obtained nanocomposites may
be classified as natural or synthetic systems. Peptide hydrogels are an interesting class
of materials made from amino acid precursors. They are generally biocompatible and
suitable for biological applications, including anticancer drug delivery [48,49]. Over the
past decades, considerable developments in the synthesis and technology of non-peptide
hydrogel nanocomposites have qualified them as promising candidates for designing
controlled-release drug delivery systems. Comparatively, there is little knowledge of
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peptide-based hydrogel nanocomposites [50], so this review aims to highlight recent ad-
vances in the use of peptide-based nanocomposites as anticancer drug delivery vehicles.
The inclusion/incorporation of nanoparticles in three-dimensional (3D) peptide hydrogels
is an innovative strategy for obtaining multifunctionality, adding synergistic benefits to the
new 3D structures, which are the main focus of this short but comprehensive review.

2. Drug Delivery Using Hydrogel Nanocomposites
2.1. Formulation Methods of Peptide-Hydrogel Nanocomposites

To fabricate advanced hydrogel nanocomposites and obtain the desired properties,
there are four main methods, including blending, grafting, in situ precipitation, and
swelling [49]. Among these methods, the swelling strategy is an in situ methodology
in which the hydrogel nanocomposites are synthesized in one step. On the other hand,
blending and grafting methods are considered ex situ strategies, and the nanocomposites
are prepared in multiple steps [51].

In the blending method, the nanoparticles are first synthesized and then mixed with
hydrogel precursors, followed by gel formation. Despite its simplicity, this method some-
times suffers from the interference of nanoparticles with gel formation, which negatively
affects the final structure of the nanocomposite. Also, the lack of uniform distribution of
the nanoparticles might result in their diffusion outside the hydrogel matrix upon swelling.

The grafting methods (grafting-through, grafting-from, and grafting-onto) consist
of the use of grafted/grafting nanoparticles having suitable functional groups to allow
the covalent bonding of nanoparticles with the peptide monomers during gel formation.
Despite this advantage, the long, high-cost, and complicated fabrication process limits its
use in nanocomposite preparation [51].

In the in situ precipitation method, nanoparticles are prepared in situ inside the
hydrogel network during gel formation. This strategy should be performed in mild condi-
tions (neutral pH, room temperature) and is, therefore, suitable for nanoparticles having
mild condition synthesis processes. In the swelling method, after hydrogel synthesis, the
nanocolloids are incubated with the gel network, which is useful for the development of
microgels [51].

The intermolecular interactions among peptides in hydrogel nanocomposites are
usually non-covalent (e.g., hydrogen bonds, electrostatic interactions, van der Waals, π-π
stacking) and different secondary structures (α-helix, β-sheet, β-hairpin) can be formed [32].

Considering the number of hydrophobic drugs used in the clinic and those currently
under development, hydrogels-DDSs for hydrophobic drugs could offer multiple advan-
tages to patients and clinicians.

To deliver hydrophobic drugs, these could be covalently incorporated within a hydro-
gel network. A similar effect can be obtained using hydrophobic crosslinkers, resulting in
amphiphilic hydrogels [52].

Regarding drug release from the nanocomposites, there are three main mechanisms:

1. Passively controlled drug release: Drug molecules in the hydrogel matrix are passively
released through swelling and diffusion.

2. Stimuli-responsive drug delivery: Smart hydrogels drastically change their volume in
response to environmental stimuli (e.g., pH, temperature, magnetic field, light, and
chemical signals), triggering the release of the loaded drug.

3. Site-specific drug delivery: Drug delivery primarily relies on the properties of the
hydrogel network comprising targeting components (e.g., antibodies, aptamer, folate,
peptides), which allow nanoparticle design to be only focused on tuning the drug
release. Such a hybrid strategy provides an opportunity to design highly specific
DDSs [53].

2.2. Peptide-Based Hydrogel Nanocomposites Containing Inorganic NPs

As a prevalent malignancy, lung cancer has been a leading cause of cancer-related
deaths in males globally [54], and non-small cell lung cancer (NSCLC) is the most com-



Gels 2023, 9, 953 4 of 23

mon type (85% of all lung cancers [55]. For NSCLC treatment, there have been different
strategies, such as targeted therapy, chemotherapy, surgical resection, radiotherapy, and
immunotherapy. However, the overall survival rates of NSCLC are low. Therefore, it is
vital to improve current methods [56,57], for instance, by the advancement of novel drugs
and combined methods to extend them to a broader range of patients and improve overall
outcomes in NSCLC.

Paclitaxel (PTX) is a well-known clinical anticancer agent [58], widely employed as a
radiosensitizer [59], capable of overcoming hypoxia-inducible factor-1α-induced radioresis-
tance of human lung adenocarcinoma cells [60]. For PTX-targeted delivery, YSAYPDSVP-
MMS (YSA) peptide was successfully tested to selectively target Ephrin type-A receptor 2
(EphA2) activation when anchored with liposomal docetaxel (a common clinical formula-
tion of PTX) in A549 lung cancer cell line [61]. Moreover, succinic anhydride (SA)-modified
NPs were previously evaluated as biodegradable and biocompatible DDSs (with no antico-
agulant activity) to deliver cisplatin to lung cancer cells in nude mice [62]. Regarding the
inorganic radiosensitizers for radiotherapy, gold NPs are well researched in this field owing
to their high X-ray absorption and unique physicochemical properties, inertness, easy syn-
thetic method, well-known chemistry, and more importantly, their potent anticancer effects
in lung cancer due to their ability to generate reactive oxygen species (ROS) in A549 cells
and subsequent cell apoptosis [63]. It has been shown that a combination of such therapeu-
tic NPs and hydrogel technology results in advanced and multifunctional nanocomposites
for achieving highly effective local drug delivery [53]. In such applications, the surface
of NPs should be precisely modified by suitable stabilizers. In this sense, dextran was
recently employed as both a stabilizing and reducing reagent for preparing biocompatible
gold NPs with high monodispersity [64]. In general, dextran-based radioconjugates can
enhance the therapeutic effect of radiotherapy, and dextran uptake further accompanies
the activation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling
pathway upon entry of viruses into cells [65,66], which can enhance the sensitivity of
NSCLC radiotherapy [67]. Based on the above considerations, in 2023, Zhang et al. evalu-
ated the effects of a nano-DDS composed of YSAYPDSVPMMS (YSA) peptide-modified
gold NPs-dextran-hydrogel loaded with paclitaxel-succinic anhydride (P-Y/G@NHs) on
NSCLC cell radiosensitivity. P-Y/G@NHs hydrogel nanocomposite was prepared using
the following three-step method: (1) combining SA and PTX to obtain PTX-SA; (2) chem-
ical conjugation of YSA-peptide to the PTX-SA by N-hydroxysuccinimide (NHS) and
dicyclohexylcarbodiimide (DCC) coupling reagents to prepare the drug (PTX-SA-YSA);
(3) self-assembly of polyethylene glycol-modified gold NPs, dextran, and PTX-SA-YSA
to form the resultant hydrogel drug delivery system. The therapeutic properties of the
P-Y/G@NHs in NSCLC cells were studied by monitoring the PI3K/AKT signaling pathway
and evaluating apoptosis, colony formation, and reactive oxygen species (ROS) generation
of A549 cells under 10Gy X-ray irradiation. The authors also successfully tested the in vivo
therapeutic effect of this nanocomposite on A549 tumor-bearing mice. The results showed
that P-Y/G@NHs can reduce the number of colonies of A549 cells by inducing both ROS
production and cell apoptosis under 10Gy X-ray irradiation. In fact, the radiosensitivity
of A549 cells was enhanced using P-Y/G@NHs by inhibiting the PI3K/AKT signaling
pathway. The in vivo fluorescence results confirmed effective targeting and accumulating
of P-Y/G@NHs at the tumor site in nude mice to enhance the radiosensitivity of target
tumors without significant side effects or immune toxicity, which highlighted the potential
application of P-Y/G@NHs in radiotherapy of NSCLC cells by repressing the PI3K/AKT
signaling pathway (Figure 2) [68].

Other reports on peptide-based hydrogels loaded with inorganic nanoparticles for
anticancer drug delivery, alongside their main advantages and disadvantages, are reported
in Table 2.
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Table 2. Summary of the DDS applications, advantages, and disadvantages associated with the
peptide-based hydrogels loaded with inorganic nanoparticles. The disadvantages can be transversal
to other composites [50].

Hydrogel-Inorganic
Nanoparticle Composite Advantages Disadvantages

Iron oxide magnetic NPs [69–71]

Synergy with magnetic
hyperthermia
Magnetoresponse
MRI contrast

Requires screening
functionalization to achieve
co-assembly

Gold/silver NPs [72]

Low-cost sensors
Synthesis in situ
Facile synthesis and tunability
Synergy with photothermia
/photodynamic therapy

Heterogeneous dispersion
Uncontrolled release
Challenging reproducibility
of in situ synthesis

2.3. Peptide-Based Hydrogel Nanocomposites Containing Organic NPs

One of the main drawbacks of conventional chemotherapy is the acquisition of multi-
ple drug resistance (MDR) and systematic toxicity towards currently used small therapeutic
molecules [73–79]. Combination cancer therapy, combining two or more drugs, enhances
the treatment efficacy compared to the mono-therapy approach because it provides syn-
ergistic or additional mechanisms to damage cancer cells. This approach also potentially
reduces drug resistance [80–82] because (1) different drugs exhibit varying pharmacoki-
netics and tissue distribution patterns; (2) each drug can have its own function through
varying downstream/upstream mechanisms intracellularly, thus demanding drug delivery
in chronological order. In fact, clinical studies on this controlled muti-drug delivery have
shown an improved response rate and extended survival of patients [83–85], so it is highly
desirable to develop DDSs that have the ability to differentially release multiple drugs.

In 2020, Wu et al. reported the synthesis of a new hydrogel nanocomposite as a DDS
(abbreviated as cisplatin/Pept-AlgNP/irinotecan) composed of alginate NPs (AlgNP) and
peptide-based hydrogels for delivering two clinically used anticancer drugs (irinotecan and
cisplatin), which were loaded separately in the two different domains of the nanocomposite
matrix. The authors specifically selected these two drugs based on previous clinical studies
demonstrating a low probability of side effects with a higher response rate when irinotecan
was administered after cisplatin [86] because the topoisomerase I inhibitory activity of
irinotecan can be improved by cisplatin [87,88]. The designed peptide hydrogel exhibited
biocompatibility and injectability thanks to its tunable amino acid sequence and peptide
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composition [89–94], in which the carboxyl residues of peptides form covalent bonds with
cisplatin and reinforce the supramolecular self-assembly of peptide conjugates [95–97].
Afterward, AlgNPs were incorporated into the hydrogel matrix to act as the inner domain,
to further enhance the mechanical strength of hydrogel by electrostatic interactions and
significantly facilitate the encapsulation of the second drug, irinotecan, to achieve differen-
tial release profiles (Figure 3). These covalent and non-covalent interactions increased the
storage capacity of the hydrogel nanocomposite up to 42-fold, compared with the native
peptide gel. This drug formulation guaranteed a fast release of cisplatin before a controlled
release of irinotecan, resulting in excelling synergism of the drugs in cell inhibition stud-
ies (compared to the simple mixture of the drugs), with efficacious antitumor potency
confirmed by the in vivo study against A549-xenografted tumor in mouse. These studies
pave the way towards the development of mechanically stable hydrogel nanocomposites
as DDSs for loading individual drugs in co-assembled structures/domains to temporally
control drug release and address clinical demands for combination therapy [98].
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Diphenylalanine (FF) is an aromatic dipeptide extracted from Alzheimer’s β-amyloid
polypeptide as a core recognition motif for molecular self-assembly [99]. Reches and
Gazit first reported the synthesis of diphenylalanine nanotubes hydrogels (FNTs), and ever
since, different advanced nanostructures, e.g., nanofibrils and spherical vesicles, have been
prepared from FNTs building blocks [100], by the self-assembly of FFs via π-π interactions
of the aromatic rings and backbone–backbone hydrogen bonds [101–104]. For drug delivery
purposes, these biocompatible peptide-based FNTs are superior to carbon nanotubes (CNT)
due to the potential toxicity of CNT in clinical studies [105].

To prepare smart DDSs, FF self-assembled structures can be conjugated with targeting
ligands to become highly selective to specific cancer cells [103,106,107], with potential
applications in theranostics, e.g., combined active-drug delivery with imaging tools [108].
As a well-studied targeting molecule, folic acid (FA) has a key role in the targeted delivery
of various pharmaceutics because of the overexpression of folate receptors (FR) by most
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advanced tumors [109,110], such as brain, lung, and breast cancers. Besides folate-based
drug delivery, this technology has been successfully used for other therapeutic applications,
e.g., selective fluorescence, MRI, and radio imaging of cancer cells [111,112].

Among the inorganic NPs mentioned in the introduction section, magnetic NPs
(MNPs) are considered a special class with high application potential in clinical stud-
ies due to their unique superparamagnetism, biocompatibility, well-known chemistry, and
low cost. MNPs are being extensively investigated as the next generation of MRI contrast
agents, magnetic-based DDSs, and hyperthermia agents [113–116].

FA conjugation to nanotubes and NPs has been investigated through both covalent
and non-covalent strategies. Covalent bonding is superior and preferable due to its several
advantages such as colloidal stability at different physiological conditions [117–119].

Surface coating/modification is one of the main strategies used to decrease the risks
of NPs and design safer nanotechnological devices. In fact, the coating material, if chosen
correctly, provides biocompatibility and affects the fate (e.g., accumulation, degradation,
excretion) and the behavior (e.g., colloidal stability) of NPs following their administration
in the complex environment of biological fluids. Since bioavailability and potential toxi-
cological effects of NPs are dependent on their dispersion state, an ideal coating material
provides high colloidal stability for the resultant NPs in salt- and protein-containing media,
such as buffer solutions or cell culture media, for their in vitro testing in biological cells
and in vivo testing in animal models [120].

Regarding iron oxide NPs, numerous formulations have been studied in both preclini-
cal and clinical settings, and some of them have already been introduced into the market.
Besides, there are several FDA (Food and Drug Administration)-approved iron oxide NPs
for clinical use, such as Feraheme® (for iron deficiency, Combidex® (U.S.), and Sinerem®

(Europe) as magnetic resonance imaging (MRI) agents, Nanotherm® (MagForce) for cancer
treatment and Lumirem® as an oral gastrointestinal tract imaging agent.

Feraheme® (ferumoxytol injectable solution) was also approved in Canada (2011) and
Europe (2012) and has been clinically used for treating iron-deficiency anemia (IDA). In
addition, ferumoxytol has shown great promise for many other biomedical applications,
including MRI, drug delivery, oral biofilm treatment, and anti-cancer and anti-inflammatory
therapies. For instance, ferumoxytol is being used as an MRI contrast agent in ongoing
clinical trials [121].

In 2017, Emtiazi et al. synthesized micro and nanotubes from the self-assembly of FNTs
conjugated with FA/MNPs and studied their potential applications for the delivery of the
well-known anticancer therapeutic 5-fluorouracil (5-FU). The conjugation was performed
by covalent linkage of the carboxylic groups on FA/MNPs with the amine groups on FNTs
(using the N-hydroxysuccinimide/carbodiimide (NHS/EDC) chemistry). 5-FU was loaded
in FNT hydrogels, exhibiting a controlled and slow release, specifically within the first 2 h.
This nanocomposite combined biocompatibility and biofunctionality in a single platform
with a high selectivity towards MCF-7 cancer cells [122].

Multi-drug resistance (MDR) is a critical contributor to over 90% of deaths of patients
in traditional cancer chemotherapy [123]. Cancer cells show MDR due to either acquired
defense behaviors or inherent mechanisms, including enhanced drug efflux and DNA
repair capacity, elevated xenobiotics metabolism, and even genetic factors (e.g., epigenetic
alterations and gene mutations) [124]. Based on these diverse modes of MDR development,
it is imperative to introduce novel methods to overcome MDR mechanisms and enhance
the survival rate.

In the past decade, RNA interference (RNAi) technology has been introduced as a
potential alternative to conventional chemotherapy because this kind of gene therapy can
inhibit almost every single protein expression of the target cancer cells [125], which can
eliminate the MDR phenotype in cancer cells. This unique technology has demonstrated a
high specificity towards the target cells, and therefore, it is able to reduce the most common
side effects of chemotherapy. For the clinical applications of small interfering RNA (siRNA),
however, there are some limitations, including the low transport efficiency of siRNA and
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their instability/high degradation rate [126]. Injectable hydrogels have been developed to
address these challenges, having minimal adverse effects and highly controlled delivery of
different cargos [127], which could also increase patient comfort with a single injection of
the drugs.

To achieve this aim, DNA has been commonly applied as a crosslinker in hydrogels,
having unique features such as structural rigidity/designability and excellent targeting
capability [128]. Moreover, DNA crosslinked hydrogels provide very high injectability
and thixotropic abilities due to their hydrogen bond formation with complementary DNA
sequences [129].

In 2023, Chen et al. synthesized an injectable hydrogel nanocomposite for the co-
delivery of the anticancer drug doxorubicin and MDR-targeted siRNAs for its potential
application for combined gene- and chemotherapy. Specifically, tetra-armed PEG served
as the backbone of the hydrogel nanostructure. The authors used tetra-armed PEGs to
prepare the hydrogel, and complementary DNA sequences were cross-linked into the
hydrogel matrix by hydrogen bonds between the DNA–base pairing. To enhance the
mechanical properties of this hybrid hydrogel, laponite nanoclay was incorporated into
the gel matrix by physical interaction. Moreover, both nanoclay and DNA sequences
improved the loading capacity of the nanocomposite for positively charged doxorubicin
by intercalating within the interlayer spaces of nanoclay and the DNA structure. Then,
MDR-targeted siRNAs, which were previously complexed with the membrane-permeable
peptides with stearyl-octaarginine (STR-R8), were incorporated within the hydrogels.
To control the degradation of this composite, MMP-2 cleavable peptide sequences were
also conjugated to DNA sequences and tetra-armed PEG. By the upregulated expression
of the MMP-2 tumor-associated enzyme, this hydrogel nanocomposite was degraded
and released dsDNA/doxorubicin, laponite/doxorubicin, TR-R8/siRNA, and complexes.
Doxorubicin released from the nanoclay complexes first damaged the target tumor (breast
cancer) without the MDR effect. Then, the cancer cells endocytosed STR-R8/siRNA,
followed by doxorubicin release from dsDNA/doxorubicin, to eliminate MDR cancer
cells. This composite was directly injected into the tumor site thanks to its in situ gelation
and degradability properties, which demonstrate its potential capacity in targeted cancer
therapy with low side effects. The authors suggested that this DDS nanocomposite can
deal with the MDR effect and potentially prevent tumor metastasis [130].

In chemotherapy, potent pharmaceutics are administrated in specific intervals at high
concentrations, which inevitably causes their unselective distribution in the whole body
and sometimes brings irreversible damage to healthy tissues [131–133]. Localized drug
delivery is an alternative methodology to ensure highly localized drug dosages at the
target sites, decreasing the unselective toxicity on non-cancerous organs [134–136]. This
aim is perfectly achievable using hydrogel and NP-DDSs [137,138], and poly(lactic-co-
glycolic acid) (PLGA) NPs have been extensively studied for this aim due to their high
biocompatibility and tunable degradability [139,140]. Their practical applications, however,
have been restricted due to their quick diffusion into the surrounding tissues, which can be
modified by the fabrication of hydrogel-PLGA nanocomposites.

As mentioned in the introduction section, the combination of NPs with peptide-based
hydrogels can reinforce the fragile structure of hydrogels and enhance their in vivo stability,
as well as tunable drug release [141–144]. Simultaneously, the peptide hydrogel serves
as a fixing scaffold for NPs at a local site to prevent their uncontrolled diffusion. So,
these nanocomposites benefit both nano- and gel-type materials by incorporating multiple
drugs having different pharmaceutical characters in the various domains of the hydrogel
nanocomposites for independent tuning of their release patterns [145,146].

In 2020, Wu et al. reported the synthesis of a novel and injectable peptide-based
hydrogel nanocomposite for the controlled co-delivery of cisplatin and irinotecan (cis-
platin/Peptide@NP/irinotecan), composed of an inner part of irinotecan-loaded PLGA
NPs and an outer section of cisplatin-loaded hydrogel to provide the differential release
of irinotecan and cisplatin. Due to the presence of PLGA, this nanocomposite exhib-
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ited superior mechanical properties than pristine hydrogel and cisplatin/peptide. As
mentioned above, cisplatin and irinotecan have shown synergistic anticancer effects on
various cancers, e.g., esophageal adenocarcinoma, glioma, and non-small cell lung cancer
(NSCLC) [87,147–149], especially when irinotecan was used after cisplatin [86] which re-
sults in higher therapeutic effects and lower side effects. This injectable nanocomposite
demonstrated a longer retention time in mice compared to the individual formulations
(when subcutaneously administered). The in vitro drug release profiles showed a sustained
release of irinotecan and a fast release of cisplatin before irinotecan, with a synergic anti-
cancer effect against NSCLC A549. Thus, this study provides a template technology for
hydrogel nanocomposites with tunable drug release, enhanced mechanical stability, and
improved anticancer efficacy through the synergism of multiple drugs [150].

As mentioned above, combination chemotherapy is generally much more effec-
tive than single-drug chemotherapy, which has been well-documented in clinical set-
tings [151–154]. Current combined chemotherapy is based on the sequential injections
of different drugs, requiring long-term patient hospitalization and precise monitoring by
trained specialists, which is highly uncomfortable for patients and increases medical costs.
It is predicted that next-generation chemotherapy will rely on smart DDSs, and in this
regard, hydrogels and nanomaterials (e.g., metal and metal oxide NPs, micelles, liposomes,
nanofibers, and polymeric NPs) are promising candidates possessing unique advantages,
such as drug capacity and control of release [155–161].

Graphene oxide (GO) nanocarriers have been introduced as suitable DDSs because
of their high specific surface area (up to 500 m2 g−1) [162], suitable for loading large
amounts of poorly bioavailable drugs, e.g., anthracyclines, taxanes, and camptothecan
analogs [163–169]. GO surfaces have numerous hydroxyl groups, epoxides, and carboxylic
acids that are suitable functional groups for conjugating other targeting and stabilizing
molecules to enhance therapeutic efficiency and prolong drug circulation time [170,171].

Regarding peptide-based hydrogels, “designer” peptides have been used to synthesize
hydrogel-based DDSs because of their inherent biocompatibility, tenability, biodegradabil-
ity, and fast gelation via hierarchal self-assembly [172]. As a commonly used designer
peptide, Max8 sequence (VKVKVKVKVDPPTKVEVKVKV-NH2, DP: d-proline) is a stimuli-
responsive peptide which shows stability at low ionic strength and self-assembles into
3.2 nm diameter β-hairpin nanofibers in physiological conditions [173]. Branco et al.
showed that Max8-hydrogel has little resistance to the transport of both large and small
molecules (e.g., fluorescein–dextran conjugates) at low gel fractions (0.5–2 w/w) [174]. In
combination chemotherapy, the limited control over the relative flux of multiple diffus-
ing drugs restricts their practical in vivo applications. Hydrogel nanocomposite systems
containing nanocarriers embedded in the peptide hydrogel have shown great promise for
precise delivery of multiple cargos [175–178].

In 2020, Schneible et al. developed a new nanocomposite comprising doxorubicin-
loaded modified-GO NPs embedded in a gemcitabine-loaded Max8 hydrogel. The synergis-
tic effect of doxorubicin and gemcitabine was extensively studied in terms of pharmacoki-
netic and molar ratio (gemcitabine/doxorubicin > 1) [179–182] with the optimal synergic
effect at 10:1 ratio when doxorubicin was being administered after gemcitabine [183]. The
authors studied the surface modification of GO NPs at different conditions to tune their
hydrophobicity and surface charge; then, doxorubicin loading and release at different
ionic strengths and pHs were investigated. Interestingly, surface modification with tris(2-
aminoethyl) amine (TREN) resulted in high drug loading (0.2–0.6 mg doxorubicin/mg
GO) and showed an initially fast release of 18.9% of the drug (within 72 h), followed by
a sustained release (31.4% over 4 weeks). Using molecular dynamics simulations, the
doxorubicin/TREN-GO interaction at different conditions to gain molecular-level insight
into the release/adsorption behavior of the drug in the TREN-GO system was also studied.
Afterward, DOX–TREN-GO NPs were embedded in a gemcitabine/Max8 hydrogel and
successfully tested on a triple-negative breast cancer cell line (MDA-MB-231). The compos-
ite DDS demonstrated a high synergic index of 0.093 ± 0.001, significantly lower than the
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free doxorubicin-gemcitabine combination (CI = 0.396 ± 0.034) at the same 1:10 molar ratio
and concentration [184].

In vivo studies of NPs have shown their rapid clearance via the reticuloendothelial
system (RES) and accumulation at the tumor site [185] due to the enhanced permeabil-
ity and retention (EPR) effect because of the leakiness of tumor blood vessels [186,187].
Nano-DDSs show different mechanisms to enter cells, such as endocytosis, which can
be divided into five distinct subgroups (micropinocytosis and phagocytosis, clathrin-
and caveolin-independent endocytosis, clathrin-dependent endocytosis, and caveolin-
dependent endocytosis). Alternatively, nano-carriers can cross the plasma membrane
of cells via physical or biochemical ways to directly enter the cytoplasm by lipid fusion
electroporation, microinjection, or translocation [188]. NP features (e.g., surface chem-
istry, morphology, size, chemical nature, charge) affect their interaction and mechanism
of cell uptake [189]. Another advantage of nano-DDSs is that they can simultaneously
carry multiple biologically relevant molecules (nucleic acids, organic/metallic drugs, and
contrast agents) [190–192]. Nano-DDSs can safeguard the loaded bioactive molecules from
potential degradation/inactivation in the bloodstream and guarantee the safe reaching of
these nano-carriers to their targets, together with the controlled release of drugs to enhance
in vivo therapeutic efficacy [193]. Moreover, some poorly hydrophilic drugs (e.g., danazol,
paclitaxel, and naproxen) can be formulated using nanocarriers without requiring non-
biocompatible organic solvents for their solubilization [194], which provides improved
in vivo pharmacodynamic and pharmacokinetic properties of the drug and reduced toxicity.
Regarding doxorubicin, for instance, in 1995, the Food and Drug Administration (FDA)
introduced a liposomal formulation (commercially known as Doxil®/Caelyx®) for several
tumors such as metastatic breast cancer with cardiac risk [195]. This liposomal formu-
lation can significantly reduce cardiotoxicity and myelosuppression of doxorubicin and
enhance its pharmaceutical efficiency due to the different biodistribution of the formulated
drug [196,197]. There are currently a few other commercialized drug nano-carriers [198],
such as Eligard® (based on polymeric PLGA (poly(lactic-co-glycolic acid), for prostate
cancer therapy), Abraxane® and Genexol PM® (for paclitaxel delivery, metastatic breast
cancer), and one for Irinotecan vehiculation (Onivyde®, for pancreatic cancer) [199].

Nanogels (NGs) have been studied as novel biocompatible DDSs, specifically for the
in vivo delivery of contrast agents and therapeutics [200,201]. Nanogels are nano-sized
supramolecular assemblies, having an internal hydrogel-like core which is stabilized by
an exterior surfactant shell, obtained from the submicronization of macroscopic hydrogels
or peptide sequences. Because of their biodegradability, biocompatibility, and easy syn-
thesis method (mild pH and temperature values), peptide-based nanogels are attractive
platforms for developing DDSs. Similarly to micelles and liposomes, NGs are injectable
and compatible with accumulation and prolonged bloodstream circulation, and different
targeting molecules (e.g., peptides, antibodies, or small organic molecules) can be attached
to their surface to recognize the site of action. Unlike micelles and liposomes, NGs resemble
hydrogels (due to their inner matrix) with their entangled fibrillary and porous network,
which can accommodate a large quantity of water and establish non-covalent interactions
between their peptide moieties (aromatic and aliphatic groups of amino acid segments),
which is probably the most important feature of peptide-NGs because they can be easily
tuned for modifying their loading and release properties by simply changing their primary
peptide sequence.

In 2020, Smaldone et al. introduced a highly stable peptide-NG formulation [202],
which was synthesized using Nα-9-fluorenylmethoxycarbonyl-diphenylalanine and Fmoc-
FF (Fmoc-Phe-Phe-OH, a well-studied low molecular weight hydrogelator), forming self-
assembling hydrogels under physiological conditions [203] with the capability of doxoru-
bicin encapsulation [204,205]. The authors evaluated the cytotoxicity of the unloaded NGs
on a panel of breast cancer cell lines. By the treatment with unloaded NGs, one of the tested
cell lines was more affected than the others, so it was found that this cargo-independent
cell-specific cytotoxicity is due to the specificity of the machinery used by Fmoc-FF NGs,
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which shows a selectivity towards the cancer cell lines overexpressing the protein caveolin1
and efficiently performing caveolae-mediated endocytosis.

Anticancer immunotherapy is based on helping the immune system (using synthetic
or natural regents) to specifically damage cancer cells, a promising anticancer treatment
with huge potential. As a type of immunotherapy, checkpoint inhibitor therapy (ICT) blocks
proteins that prevent the immune system from attacking cancer cells. The programmed
cell death-1 (PD-1) and programmed death ligand-1 (PD-L1) have exhibited a potent
response in various tumors such as triple-negative breast cancer (TNBC); however, only a
small portion of TNBC patients respond to ICT because of the immunosuppressive tumor
microenvironment (TME) and immunologically “cold” tumors, which later show low
mutational load, lack of T-cell infiltration, deficient PD-L1, and low MHC I expressions. To
improve the antitumor efficacy, complementary therapies are necessary to remold TME.
For enhancing PD-1/L1 effectiveness, the modulation of T cells is desirable (to make an
inflamed “hot tumor”) [206–208].

Immunogenic cell death (ICD) mechanism triggers the antitumor immune response,
which is well known to improve/modify the low immunogenicity of “cold” tumors by
releasing damage-associated molecular patterns (DAMPs) [209], such as adenosine triphos-
phate (ATP) secretion, calreticulin (CRT) surface exposure, and high mobility group box 1
protein (HMGB1), followed by the maturation of antigen-presenting dendritic cells (DCs)
and inducing a cascade process leading to antigen-specific T-cell infiltration [210]. Also,
the binding of TLR4 to HMGB1 triggers inflammatory responses as well [211]. These
in situ vaccine-like phenomena can induce immune responses to ease the transforma-
tion of “cold tumors” into “hot tumors” and eventually reshape the immunosuppressive
microenvironment and remove cancer cells [212].

Previous research has shown that some therapeutics (e.g., radio-/photodynamic
therapy, hyperthermia, and some types of chemotherapy [213]) can initiate ICD, which
makes the tumor accessible to the immune system. Chemotherapy-induced ICD plays a
key role in improving immunotherapy, and doxorubicin chemo-drug has been frequently
used for various malignancies, stimulating ICD-induced immunity [214]. However, this
doxorubicin immunogenicity is weak by itself, and tumor relapse can often be detected in
clinical cases [215].

Traditional Chinese medicine has exhibited great potential for introducing biocompat-
ible cancer adjuvants. Ginsenoside Rg3 is a steroidal saponin obtained from Panax ginseng,
which has shown various antitumor effects and immune-modulatory activities. More im-
portantly, the combination of well-known chemotherapeutics (e.g., doxorubicin, docetaxel,
and paclitaxel) with Rg3 has received great attention for significant antitumor activities in
different kinds of malignant tumors [216]. Rg3 can also improve the ICD effect stimulated
by doxorubicin and activated by the immunity system in acute myeloid leukemia (AML)
mice [217]. However, its poor solubility and lack of targeting ability restrict Rg3 penetration
into tumors, thus decreasing the outcome of combination doxorubicin-Rg3 therapy.

Chitosan (CS) is a natural polysaccharide with high biodegradability and biocompati-
bility [218], possessing free –NH2 and –OH functional groups in its structure, which are
amenable to chemical modifications, for its biological applications [219], including lysoso-
mal escape, targeted-drug delivery and TME response [220–222]. It is known that low drug
penetration leads to the failure of immunotherapeutic treatments (e.g., TNBC) [223,224], so
deep tumor penetration is required in chemotherapy. Cell-penetrating peptides (CPPs) may
solve this issue, as they are able to transfer NPs into the cell and improve their curative
effectiveness [225].

Cell-penetrating peptides (CPPs) are short peptides (fewer than 30 amino acids) that
have been used in preclinical research over the last three decades. Since they facilitate
drug or CPP/cargo transport across the plasma membrane (through endocytosis or by
perturbation of the lipid bilayer of the cell membrane), they have potential applications
in disease diagnosis, including cancer, inflammation, central nervous system disorders,
diabetes, otologic and ocular disorders. However, there are no FDA-approved CPPs or
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CPP/cargo complexes because many issues still need to be addressed before their clinical
translation [226–228].

To minimize the short circulation time and systemic toxicity of doxorubicin, cell-
penetrating peptide (R6F3)-modified NPs (PNPs) and chitosan loaded with ginsenoside Rg3
(Rg3) were synthesized using the self-assembly technique, followed by co-encapsulation
with doxorubicin-based on thermo-sensitive hydrogel [229]. In a recent work, Wu et al.
studied localized chemo-immunotherapy using this thermo-sensitive hydrogel nanocom-
posite to help the anti-tumor immunotherapeutic efficacy for 4T1 tumor (Figure 4) as a
typical TNBC model [230]. The targeted delivery of Rg3 by chitosan and transmembrane
peptides can degrade the tumor’s extracellular matrix and decrease its solid stress. More-
over, due to the presence of loaded R6F3, Rg3 could dramatically penetrate into tumor
cells, followed by targeting mitochondria due to positively charged NPs, thus reinforcing
the ICD effect triggered by doxorubicin. Thus, abundant tumor cell debris was detected,
with subsequent T cell activation and DC maturation. This methodology decreased the
tumor volume in the orthotopic 4T1 model and significantly prolonged its survival time,
demonstrating a reliable approach to improve the checkpoint-blocking therapy for 4T1
tumors and converting immune “cold” 4T1 into “hot” tumors.
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Other publications on peptide-based hydrogel nanocomposites for biological applica-
tions are summarized in Table 3.
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Table 3. Other hydrogel nanocomposites used for biological applications.

Hydrogel Nanocomposite Application Ref.

Oxidized carbon nanotubes
GO + (Fmoc-Phe-OH/Fmoc-Tyr(Bzl)-OH
Fmoc/Tyr-OH/Fmoc-Tyr(Bzl)-OH) hydrogel

drug delivery [231]

Graphene quantum dots + (Amoc-Phe-OH
Amoc-Tyr-OH) hydrogel drug delivery [232]

GO + (Py-Gly-Ala-Gly-Ala-Gly-Tyr-OH) hydrogel drug delivery [233]

Fmoc-FFpY-hydrogel assembled from
enzyme-adsorbed mesoporous silica nanostructures

thermo-responsive
doxorubicin release [234]

Fmoc–FFpY hydrogel nanocomposite containing silica
NPs functionalized covalently by alkaline phosphatase N/A [235]

graphene oxide as nano-filler for the reinforcement of
FEFKFEFK (β-sheet forming self-assembling peptide)

intervertebral disc repair
applications [236]

self-assembling a motif-specific peptide molecule
(LLVFGAKMLPHHGA) containing graphene foam

matrices for drug delivery or
bone tissue engineering [237]

RGDAEAKAEAKYWYAFAEAKAEAKRGD-
hydrogel-graphene
quantum dots

targeting and imaging of
tumor cells [238]

self-assembly of an amphiphilic peptide (APP) into a
nanochain with subsequent chemical crosslinking of
NIR-II Ag2S QDs

ultrasensitive Detection of
Peritoneal Metastasis [239]

3. Conclusions

Traditional chemotherapy is still restricted by the low effectiveness and systemic
toxicities of drugs. Due to the high recurrence rates of some types of cancers, tumor
resection is not the most reliable choice, and therefore, advanced DDSs are required.
Hydrogel nanocomposites have shown to be great candidates to enhance the therapeutic
efficacy of anticancer drugs. Due to their biodegradability, biocompatibility, and stimuli
responsiveness, they are excellent platforms for either passive or targeted drug delivery
applications. Combining both peptide-based hydrogels and NPs in a single composite,
they have successfully demonstrated the ability to target cancer cells and tumors with
high selectivity without compromising healthy tissues. Proof-of-concept studies have
shown successful in vivo models. However, for the use of hydrogel nanocomposites in
clinical trials, they should have some basic properties: (1) excellent mechanical strength
and injectability to enhance in vivo drug stability as well as in situ protection/retention
of drugs; (2) strong drug–carrier interactions to guarantee controlled and sustained drug
release; (3) tunability of the structure tunable for having different release profiles based on
the type of drug; and (4) capacity/ability to load several therapeutic components inside the
hydrogel matrix to achieve a synergic efficacy and multifunctionality.

The design of smart hydrogel nanocomposites based on peptide networks and NPs is
still a challenging field, with a broad range of physicochemical and therapeutic properties
to be controlled and understood. So, more computational and experimental studies are
necessary to rationalize their dynamic behavior and relevant interactions with drugs, cells,
and tissues to develop more effective formulations that may maximize the selectivity
and efficiency of chemotherapy. From a futuristic point of view, we believe that peptide-
based hydrogel nanocomposites will be further developed as novel DDSs to maximize the
selectivity and efficiency of the chemotherapy.

While significant advances have been recently made in optimizing hydrogel nanocom-
posites, there are still some challenges for their clinical application in drug delivery. For
instance, foreign body reactions frequently cause collagenous capsule formation, which re-
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stricts the performance of implantable nanocomposites. To address this challenge, ultra-low-
fouling zwitterionic hydrogels have been recently developed to resist capsule formation.

The in vivo safety of hydrogel nanocomposites is another main crucial issue which
makes product development challenging; therefore, it is vital to gradually decrease the
threshold through multidisciplinary collaborations between chemists, materials scientists,
biologists, and clinicians in order to define the future role of peptide-based hydrogel
nanocomposites in the field of anti-cancer drug delivery.
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