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Abstract: With the continuous development of the world’s aerospace industry, countries have put
forward higher requirements for thermal protection materials for aerospace vehicles. As a nano
porous material with ultra-low thermal conductivity, aerogel has attracted more and more attention in
the thermal insulation application of aerospace vehicles. At present, the summary of aerogel used in
aerospace thermal protection applications is not comprehensive. Therefore, this paper summarizes the
research status of various types of aerogels for thermal protection (oxide aerogels, organic aerogels,
etc.), summarizes the hot issues in the current research of various types of aerogels for thermal
protection, and puts forward suggestions for the future development of various aerogels. For oxide
aerogels, it is necessary to further increase their use temperature and inhibit the sintering of high-
temperature resistant components. For organic aerogels, it is necessary to focus on improving the
anti-ablation, thermal insulation, and mechanical properties in long-term aerobic high-temperature
environments, and on this basis, find cheap raw materials to reduce costs. For carbon aerogels, it is
necessary to further explore the balanced relationship between oxidation resistance, mechanics, and
thermal insulation properties of materials. The purpose of this paper is to provide a reference for the
further development of more efficient and reliable aerogel materials for aerospace applications in
the future.

Keywords: aerogel; thermal property; mechanical property; aerospace

1. Introduction

In recent years, great progress has been made in the research of heat-resistant materials
for aerospace applications. However, many limitations are still observed in terms of their
high-temperature physical and chemical stability, effective service time, and energy loss.
These limitations impede the further development of new aerospace vehicles. Therefore,
enhancing the extreme environmental resistance of existing thermal protection materials
and exploring new thermal protection material systems are crucial in meeting the urgent
needs of developing hypersonic aircraft and aerospace vehicle technologies.

As a type of porous amorphous solid material, aerogel offers notable advantages in
reducing solid heat conduction and limiting thermal convection within its well-developed
nanoporous network structure. Kistler first demonstrated that aerogel has a thermal con-
ductivity of only 0.02 W/(m·K)−1 at an ambient temperature (25 ◦C), which is lower than
that of static air (0.025 W/(m·K)−1) [1]. Heat transfer in aerogels primarily occurs through
solid-phase conduction and gas-phase conduction. Regarding solid-phase heat transfer,

Gels 2023, 9, 606. https://doi.org/10.3390/gels9080606 https://www.mdpi.com/journal/gels

https://doi.org/10.3390/gels9080606
https://doi.org/10.3390/gels9080606
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/gels
https://www.mdpi.com
https://doi.org/10.3390/gels9080606
https://www.mdpi.com/journal/gels
https://www.mdpi.com/article/10.3390/gels9080606?type=check_update&version=2


Gels 2023, 9, 606 2 of 28

conventional thermal insulation materials have a high solid-phase heat transfer coefficient
due to the short heat transfer path and the large contact area between particles. In contrast,
aerogel thermal insulation materials facilitate heat transfer along an extensive pathway
with minimal particle contact area, resulting in a lower solid-phase heat conduction coeffi-
cient. Regarding gas-phase heat transfer, heat transfer occurs through molecular collisions.
However, the pore size of aerogels is smaller than the average free path of gas molecules,
resulting in minimal heat transfer between gases. Consequently, the gas-phase heat transfer
coefficient of aerogels is markedly smaller than that of conventional macroporous insulation
materials. These factors contribute to the markedly superior thermal insulation capabilities
of aerogels. In addition, the radiative heat transfer mode of aerogel thermal insulation
materials under high temperatures becomes important. Aerogels can absorb, reflect, and
scatter infrared radiation by incorporating infrared sunscreens, further reducing thermal
conductivity. The three basic heat transfer modes of typical research in Aerogel are solid
heat conduction, gas heat conduction, and radiation [2]. On the basis of these properties,
aerogels are often referred to as ‘super thermal insulation materials’ within the aerospace
industry [3].

With the advancement of science and technology, the research focus on aerogels for
aerospace thermal protection has been gradually increasing. As shown in Figure 1, the
number of papers on aerogels for thermal protection has shown a consistent upward trend
over the past decade. However, in recent years, there are few reports on the application
status and characteristics of typical thermal protection aerogel materials, including oxide
aerogels, carbon aerogels, and organic aerogels. Considering the application of aerogels in
aerospace thermal protection, this paper aims to systematically review the recent progress
in preparation methods, thermal insulation properties, and application status of various
types of aerogels. Furthermore, it proposes a future development direction for aerogels,
considering the urgent needs and research priorities in the aerospace field.
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2. Process and Performance of the Aerogel for Thermal Protection

Since the advent of aerogels in 1931, researchers have been focused on exploring
their structure and thermal protection properties [1]. In the past 90 years, remarkable
advancements have been made in the development of various aerogel materials for thermal
protection. On the basis of their composition and structure, aerogels can be classified
into organic aerogels, inorganic oxide aerogels, and carbon aerogels. In the following
sections, the research progress on different types of aerogels for thermal protection will be
summarized, highlighting their compositions and characteristics.

2.1. Inorganic Oxide Aerogels and Composites for Thermal Protection

Inorganic oxide aerogels and composites are widely used in the aerospace industry
due to their high-temperature resistance, low thermal conductivity, ease of molding, and
processability. This category primarily includes single-component oxide aerogels and
composites (SiO2, Al2O3, ZrO2, etc.) and multicomponent oxide aerogels and composites
(SiO2-Al2O3, SiO2-ZrO2, etc.).

2.1.1. Single-Component Oxide Aerogels and Composites for Thermal Protection

Within the periodic table of elements, one-fifth of the elements can be employed for
the preparation of single-component oxide aerogels [4]. Notably, SiO2, Al2O3, and ZrO2
exhibit excellent thermal stability at high temperatures due to their high ionic bond energy
and elevated melting points. In addition, these elements are often preferred in thermal
protection due to their affordability and controllable precursors.

SiO2 Aerogel and Composites for Thermal Protection

SiO2 aerogel, the earliest and most extensively studied type of aerogel, possesses re-
markable characteristics, including high porosity (80–99.8%), high specific gravity
(100–1400 m2/g), and low density (0.003–0.4 g/cm3). Recent research on SiO2 aerogels has
primarily focused on atmospheric drying, mechanical enhancement, and high-temperature
radiation suppression [5]. In the aerospace industry, thermal protection materials often
need to withstand extreme conditions, including high temperatures and pressures. How-
ever, the weak internal structure of SiO2 aerogels typically results in fracture or collapse
at temperatures exceeding 650 ◦C, potentially leading to major engineering accidents.
Consequently, the aerospace community places considerable emphasis on the mechanical
reinforcement of SiO2 aerogels. At present, mechanical reinforcement strategies for SiO2
aerogels usually involve in situ network skeleton reinforcement [6], polymer composite
reinforcement [7], and fiber composite reinforcement [8]. The general preparation process
is shown in Figure 2.
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Figure 2. SiO2 aerogel prepared using the sol–gel method and various mechanical strengthening
methods. (a) Preparation process of the traditional SiO2 aerogel. The right side of the figure shows
a scanning electron microscopy (SEM) image of the traditional SiO2 aerogel. Reproduced with
permission [9]. (b) Preparation process of the surface-modified SiO2 aerogel. The right side of the
figure shows an SEM image of the surface-modified SiO2 aerogel. Reproduced with permission [6].
(c) Preparation process of the polymer-modified SiO2 aerogel. The right side of the figure shows an
SEM image of the polymer-modified SiO2 aerogel. Reproduced with permission [7]. (d) Preparation
process of the fiber-modified SiO2 aerogel. The right side of the figure shows an SEM image of the
fiber-modified SiO2 aerogel. Reproduced with permission [8].

In situ network framework reinforcement primarily aims to optimize the pore struc-
ture of aerogels by controlling their composition and synthesis process, thereby enhancing
their mechanical properties. This approach can be categorized into five types based on
the characteristics of the preparation methods: Heat treatment [10], coprecursor prepara-
tion [11], chemical additives [9], aging [12], and surface modification [13]. Although the in
situ network skeleton reinforcement method has experienced remarkable advancements
in recent years, it still faces challenges, such as high cost, long preparation cycles, and
environmental hazards, which hinder its industrial application in the aerospace field.

Polymer composite reinforcement involves transferring stress from the aerogel to the
polymer component by forming an interpenetrating network structure, thereby improving
the mechanical properties. Depending on the characteristics of the preparation method,
polymer composite reinforcement can be divided into two steps, including the solution
immersion polymer modification method [14], the one-step method [15], and the chemical
vapor deposition polymer method [16]. However, when polymer aerogels are applied in
the aerospace field, they tend to form particle aggregates at high temperatures, leading
to coking and aggregation during usage, which can block the pores and reduce heat
insulation capacity.
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Currently, fiber composite reinforcement is considered the most effective method
for reinforcing SiO2 aerogels in aerospace thermal protection. In terms of fiber type,
the commonly used reinforced fibers include organic and inorganic fibers. Inorganic
fibers are widely studied because of their higher temperature range and better mechanical
reinforcement effect. The preparation methods for inorganic fibers and SiO2 aerogels can
be classified as molding methods [17] and gel integral molding methods [18]. In addition,
inorganic fibers can be categorized in terms of their composition, such as quartz, glass,
ceramics (aluminum silicate), mullite, and alumina. Table 1 provides a summary of the
physical properties and mechanical parameters of these representative inorganic fibers.
Quartz, mullite, and other inorganic fibers can withstand temperatures exceeding 1000 ◦C
whilst maintaining good mechanical properties. Therefore, the addition of inorganic fibers
to the SiO2 aerogel matrix as a toughener results in a composite aerogel material with
excellent mechanical and thermal properties.

Table 1. Physical properties and mechanical parameters of several inorganic fibers [19].

Type of Inorganic
Fiber Density/g·cm−1 Tensile

Strength/MPa
Service

Temperature/◦C

Quartz fiber 2.20 6000 1200
Glass fiber 2.48 4800 450

Aluminum silicate
fiber 2.20 800 1260

Mullite fiber 3.17 1400 1400
Alumina fiber 3.70 2080 1600

Current research on inorganic fiber-reinforced SiO2 aerogel composites for thermal
protection primarily focuses on two aspects. On the one hand, SiO2 aerogels are tailored
for specific scenarios requiring high-temperature resistance, high strength, flexibility, and
other specific application requirements. On the other hand, researchers address the chal-
lenge of weak connections between micron-sized fibers and the micron-sized or even
millimeter-sized gap between fibers. The first problem is primarily solved through surface
modification of inorganic fibers using chemical functional groups [20], whiskers [21], and
other means [22]. The second problem is primarily tackled by selecting the size [23,24]
and type [25,26] of inorganic fibers. Figure 3 shows the recent research applications of
fiber-reinforced SiO2 aerogels.

Al2O3 Aerogel and Composites for Thermal Protection

The aerospace industry has shown increased interest in Al2O3 aerogels for specific
applications, such as hypersonic aircraft engines, due to their superior thermal stability
at high temperatures (approximately 1300 ◦C) compared with SiO2 aerogels. Since the
development of Al2O3 aerogels in 1975, researchers have made remarkable progress in the
preparation process, performance optimization, and other aspects of thermal protective
alumina aerogels.



Gels 2023, 9, 606 6 of 28
Gels 2023, 9, x FOR PEER REVIEW 6 of 29 
 

 

 

Figure 3. Application progress of fiber-reinforced SiO2 aerogel composites: (a) Interface bonding 

between reinforced fiber and aerogel. Reproduced with permission [27]. (b) Enhancement of the 

thermal stability of the aerogel. Reproduced with permission [22]. (c) Adjustment of the shape and 

density of the aerogel. Reproduced with permission [24]. (d) Increase in the sintering resistance of 

the aerogel. Reproduced with permission [26]. 

Al2O3 Aerogel and Composites for Thermal Protection 

The aerospace industry has shown increased interest in Al2O3 aerogels for specific 

applications, such as hypersonic aircraft engines, due to their superior thermal stability at 

high temperatures (approximately 1300 °C) compared with SiO2 aerogels. Since the devel-

opment of Al2O3 aerogels in 1975, researchers have made remarkable progress in the 

Figure 3. Application progress of fiber-reinforced SiO2 aerogel composites: (a) Interface bonding
between reinforced fiber and aerogel. Reproduced with permission [27]. (b) Enhancement of the
thermal stability of the aerogel. Reproduced with permission [22]. (c) Adjustment of the shape and
density of the aerogel. Reproduced with permission [24]. (d) Increase in the sintering resistance of
the aerogel. Reproduced with permission [26].

The preparation process of Al2O3 aerogel is similar to that of SiO2 aerogel, involving
three steps: Wet gel preparation, gel aging, and gel drying. Depending on the precur-
sors used, the methods can be categorized into organic alkoxide methods, inorganic salt
methods, and boehmite methods. The organic alkoxide method and inorganic salt method
involve the generation of Al–O–Al sol particles through the condensation reaction of the
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Al–OH intermediate formed after precursor hydrolysis. Subsequently, a gel is formed
through a series of cross-linkages. The main difference is that the organic alkoxide method
often requires the addition of chelating agents (such as ethyl acetoacetate, acetylacetone,
etc. [28,29]) to form an Al–O–C structure and reduce the reaction activity because the
precursor activity is typically high. The inorganic salt method involves the consumption of
hydrogen ions through the ring-opening reaction of epoxides, leading to the generation and
condensation of more Al–OH in the solution [30]. In the aerospace field, Al2O3 aerogels
are often obtained using the organic alkoxide method because it enables the preparation of
aerogels with high specific gravity and high purity, which are suitable for high-temperature
service. Aging of the Al2O3 aerogel primarily involves processes, such as condensation,
dehydration shrinkage, grain coarsening, and phase transformation. This is achieved by
soaking the wet gel in specific solutions, such as H2O/EtOH and TEOS/EtOH, in certain
proportions. At present, research on the influence of aging steps on the structure and
properties of aerogels is limited. The drying of Al2O3 aerogel is typically performed by
drying the Al2O3 wet gel. The drying methods of Al2O3 wet gel are similar to those used for
other aerogels, primarily including supercritical drying and atmospheric drying. Figure 4
illustrates the different drying methods. At present, the common supercritical drying media
primarily include CO2 and EtOH [31,32].
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For performance optimization and to enhance the mechanical and thermal properties
of Al2O3 aerogels, researchers usually introduce reinforcing materials, such as fibers [33,34]
or light-blocking agents (primarily fibers), to improve their performance. Unlike SiO2
aerogels, Al2O3 and ZrO2 aerogels undergo phase transformation during use [35], which
can result in structural failure and reduced thermal insulation performance, as shown
in Figure 5. Therefore, research efforts are focused on inhibiting the phase transition of
Al2O3 and ZrO2 aerogels during use. At present, researchers often use methods such as Si
doping [36] and deposition modification [37] for optimization. This aspect will be further
discussed in the next chapter.
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ZrO2 Aerogel and Composites for Thermal Protection

Zirconia (ZrO2) is an inorganic nonmetallic material known for its high-temperature
resistance, wear resistance, and corrosion resistance. It exhibits low resistance at high
temperatures and high resistance at low temperatures, offering excellent chemical stability
and thermal stability. ZrO2 possesses higher chemical stability than traditional carriers
and acid and alkali resistance. It has a Mohs hardness of more than 7, surpassing that of
other silicate materials, making it a widely used material. In 1976, Teichner [38] and others
synthesized the first ZrO2 aerogel, which garnered wide attention across various industries.
ZrO2 aerogels demonstrate extraordinary properties and structural properties, becoming a
prominent research topic in the field of aerogels.

ZrO2 aerogels possess not only the properties of general ZrO2, such as the easy forma-
tion of oxygen holes [39], oxidation–reduction [40], acid–base duality, and high chemical
thermal stability, but also exhibit characteristics such as nanoscale structure controllability,
high specific surface area, low density, high porosity, and low thermal conductivity. These
properties give ZrO2 aerogels high application value in various fields, particularly in the
potential application of thermal insulation materials, which have attracted wide attention.

Since the discovery of ZrO2 aerogels with their excellent properties, researchers have
developed various preparation methods. Examples include gas-phase methods, such as
chemical vapor synthesis and chemical vapor deposition, liquid-phase methods, such
as precipitation, solvothermal, and sol–gel methods, and solid-phase methods, such as
thermal decomposition and solid-phase reaction methods. Amongst these methods, the
sol–gel method is a wet chemical method that offers several advantages: (1) It produces
materials with uniform, fine, and narrow particles sizes; (2) the obtained materials have
high purity and uniform chemical composition; and (3) the reaction conditions are mild and
can be conducted at room temperature. This makes the sol–gel method the most practical
approach for preparing ZrO2 aerogels. The following provides a brief overview of the
sol–gel method.

Figure 6 describes seven different gel methods for zirconia gel: Sol–gel [41], hydrother-
mal treatment [42], sonochemistry [43], electrolysis [44], solution heating [45], chemical
precipitation [46], and microwave radiation [47]. These gel methods can be used for various
aerogel systems. Amongst these methods, the sol–gel method in wet chemical synthe-
sis offers the following characteristics: (1) It produces materials with uniform, fine, and
narrow particle sizes; (2) the obtained materials have high purity and uniform chemical
composition; and (3) it allows for mild reaction conditions that can be conducted at room
temperature. Therefore, the sol–gel method is an ideal and practical approach for preparing
ZrO2 aerogels for thermal protection.
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Although ZrO2 aerogels prepared using the aforementioned methods exhibit a high
specific surface area, their high-temperature stability is poor. ZrO2 undergoes crystal
form transformation, as shown in Figure 6, which involves a volume change and conse-
quently leads to the destruction of its pore structure. This results in the aerogel’s limited
high-temperature stability. Enhancing the high-temperature resistance of ZrO2 aerogels
and ensuring their structural stability at elevated temperatures are important areas of
development for ZrO2 aerogels.

2.1.2. Multioxide Aerogels and Composites for Thermal Protection

As mentioned previously, Al2O3 aerogels exhibit better thermal stability at high tem-
peratures (approximately 1000 ◦C) compared with SiO2 aerogels. Consequently, their
application in specific scenarios, such as hypersonic aircraft engines, has garnered atten-
tion from researchers. However, the crystalline phase of Al2O3 undergoes changes with
increasing temperatures, leading to structural failure of the aerogel and a subsequent
decrease in its thermal insulation performance [49,50]. Composite oxide gels have been
developed to mitigate the influence of temperature on the gel’s structure and performance.
Amongst them, Al2O3-SiO2 and ZrO2-SiO2 aerogels and composites, obtained through
various modifications of the two aerogels, have received the most extensive study.

Al2O3-SiO2 Aerogel and Composites for Thermal Protection

Pure Al2O3 aerogel is prone to sintering at temperatures exceeding 1000 ◦C, and
the α phase transition of the crystal lattice leads to the polycondensation of the overall
structure, resulting in a degradation of aerogel performance. Al2O3-SiO2 aerogels have
been widely studied because of the ability of Si atoms to uniformly enter the center of
the Al2O3 tetrahedron. This phenomenon remarkably inhibits the lattice vibration and
rearrangement of Al atoms, allowing for the formation of a uniform and stable mullite
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phase at 1200 ◦C, thereby improving the thermal insulation performance of the aerogel [51].
The research in this area primarily focuses on the preparation process and performance
optimization.

For the preparation process of the Al2O3-SiO2 aerogel, similar to single-component ox-
ide aerogels, the process can be divided into three steps: Wet gel preparation, gel aging, and
gel drying. In the case of Al2O3-SiO2 wet gel, the wet gel preparation involves the prepa-
ration and mixing of sols for both components. Depending on the proportions of Al2O3
and SiO2 aerogels, Al2O3-SiO2 aerogels can be categorized into Al2O3 sol systems [52,53]
and SiO2 sol systems [54]. In Al2O3 sol systems, methanol, glacial acetic acid, and water
are typically added as catalysts to form Al2O3-SiO2 sol gels. In SiO2 sol systems, ammonia
water and ethanol are commonly used as catalysts to produce Al2O3-SiO2 sol gels. Table 2
summarizes the basic characteristics of Al2O3-SiO2 aerogels prepared using different wet
gel preparation and gel drying processes.

Table 2. Basic characteristics of Al2O3-SiO2 aerogel.

Raw Materials Drying
Method

Drying
Medium and

Operating
Conditions

Density/g·cm−3
Specific
Surface

Area/m2·g−1

Shrinkage at High
Temperature/%

Thermal
Conductivity/

W·(m·K)−1
Reference

AIP, TEOS Supercritical
drying

EtOH (10 MPa,
300 ◦C) - 99 (1300 ◦C) 14 (1300 ◦C) - [55]

ASB, TEOS Supercritical
drying

EtOH (10 MPa,
300 ◦C) 0.249 120.6 (1200 ◦C) - - [56]

Al (NO3)3,
TEOS

Atmospheric
drying 30 ◦C 0.5 304.2 (1000 ◦C) - - [57]

AlCl3, TEOS Supercritical
drying

EtOH (10 MPa,
300 ◦C) 0.053 120 (1200 ◦C) 40 (1200 ◦C) - [58]

AlCl3, TEOS Supercritical
drying

EtOH (10 MPa,
300 ◦C) - 124.2 (1200 ◦C) - 0.0275 [59]

ASB, TMEO Supercritical
drying

EtOH (10 MPa,
300 ◦C) - 72 (1200 ◦C) 38 (1200 ◦C) - [60]

AlCl3, TEOS Supercritical
drying

EtOH (10 MPa,
260 ◦C) - 234 (1000 ◦C) - 0.05 [61]

γ-AlOOH,
TMOS

Supercritical
drying

EtOH (10 MPa,
300 ◦C) 0.146 79 (1200 ◦C) 2.5 (1300 ◦C) - [62]

The performance optimization of Al2O3-SiO2 aerogel follows a similar approach to
that of single-component oxide aerogels. Both types of aerogels suffer from poor me-
chanical properties, which limit their application in the aerospace field. Therefore, for
two-component oxide aerogels, mechanical strengthening remains a major concern for
researchers. Whiskers, fibers, and particles are used as reinforcing phases in Al2O3-SiO2
aerogels to improve their mechanical properties. Table 3 presents the properties of Al2O3-
SiO2 aerogels reinforced with different fibers. In terms of aerospace thermal protection,
fiber composite reinforcement proves to be the most effective method for enhancing the
mechanical properties of Al2O3-SiO2 aerogels. Figure 7 shows the schematics of Al2O3-
SiO2 aerogel composites prepared using various methods and the performance diagrams
depicting thermal conductivity and compression strength from different studies.

As a thermal protection material, the fiber-reinforced Al2O3-SiO2 aerogel still exhibits
higher high-temperature thermal conductivity higher compared with SiO2 aerogel compos-
ites, highlighting the need for further reduction. In addition, the current temperature range
of Al2O3-SiO2 aerogels is limited to approximately 1300 ◦C, raising the question of how to
extend their performance to even higher temperatures.
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Table 3. Properties of Al2O3-SiO2 aerogel composites.

Enhancement
Phase Density/g·cm−3

Room Temperature
Thermal

Conductivity/
W·(m·K)−1

High Temperature
Thermal

Conductivity
W·(m·K)−1

Compressive
Strength/MPa Reference

MF 1 (SiC) - - 0.049 (1000 ◦C) - [32]
MF 1 0.36 - 0.082 (1200 ◦C) 0.12 [65]

MF 1 (TiO2) 0.23 0.068 0.168 (1050 ◦C) [67]
CNT 0.23 0.178 (1000 ◦C) 1.36 [68]

ABOW (30%) 2 0.35 0.049 - 1.02 [66]
Kevlar (R) 0.12 0.028 - - [69]

Quartz fiber 0.36 0.049 - 0.85 [64]
Al2O3-SiO2 fiber 0.33 0.050 - 0.41 [70]

ZrO2 fiber 0.59 0.049 0.102 (1000 ◦C) 1.22 [36]
Carbon fiber 0.37 0.081 0.330 (1000 ◦C) - [63]

1 MF: Mullite fibers; 2 ABOW: Aluminum borate whisker.
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ZrO2-SiO2 Aerogel and Composites for Thermal Protection

ZrO2, renowned for its high-temperature resistance and wear resistance, possesses
exceptional chemical stability and thermal stability. Recent studies have explored ZrO2-
based solid materials due to their superior chemical stability over traditional carriers,
such as Al2O3 and SiO2. However, similar to Al2O3 aerogels, ZrO2 aerogel gels undergo
notable phase transformations and shrinkage at high temperatures (500–1000 ◦C), resulting
in reduced performance. Therefore, the introduction of SiO2 and other components is
usually used to optimize their properties. Table 4 lists the properties of ZrO2-SiO2 aerogels
reinforced with various fibers. Extensive research has been conducted on the preparation
methods and performance optimization of ZrO2-SiO2 aerogel composites. This research
primarily focuses on the selection of raw materials, the introduction of SiO2 additives, and
the choice of reinforcing phases.

Table 4. Properties of ZrO2-SiO2 aerogel and its composites.

Raw Materials Enhancement
Phase Density/g·cm−3

Specific
Surface

Area/m2·g−1

Room Temperature
Thermal

Conductivity/W·(m·K)−1

Compressive
Strength/MPa Reference

ZrOCl2,
Na2SiO3

- 0.136 383 (1000 ◦C) 0.026 - [71]

ZrOCl2, TEOS - 0.270 228 (1000 ◦C) - - [72]

ZrOCl2, TEOS - 0.290 - 0.027 - [73]

ZBO 1, TEOS - - 172 (1000 ◦C) - - [74]

ZrO (NO3)2,
TEOS - 0.202 - - - [75]

PAZ 2, TEOS - 0.144 214 (1000 ◦C) - - [76]

ZrOCl2, TEOS PMF 0.450 - 0.052 1.05 [77]

ZrOCl2, TEOS MF 0.225 - 0.027 0.438 [78]

ZrOCl2, TEOS ZrO2 Fiber 0.302 - 0.034 0.170 [79]

ZrOCl2, TEOS ZrO2 Fiber 0.290 - 0.029 0.530 [80]
1 ZBO: Zirconium (IV) butoxide; 2 PAZ: Polyacetylacetonatozirconium.

Although many strategies have been successfully applied to the preparation and
modification of ZrO2-SiO2 aerogel composites, the current application temperature range
is approximately 1000 ◦C, exhibiting inferior thermal protection compared with Al2O3-
SiO2 aerogel gel composites. Therefore, enhancing the thermal stability of ZrO2-SiO2
aerogel composites through improved preparation processes and modification techniques
represents a crucial avenue for future exploration.

2.2. Organic Aerogels and Composites for Thermal Protection

The study of organic aerogels began in 1987 when Pekala [81] first prepared organic
monomer aerogels from resorcinol and formaldehyde under alkaline conditions using the
sol–gel process and the supercritical drying method. Organic aerogels include polymer-
based aerogels and biomass-based aerogels. Polymer-based aerogels are primarily used
in aerospace thermal protection. These aerogels are porous network structures formed by
the combination of polymer molecules and colloidal particles through hydrogen bonds or
van der Waals forces [82]. Polymer-based organic aerogels utilized for aerospace thermal
protection include polyimide [83] and phenolic [84].

2.2.1. Polyimide Aerogels and Composites for Thermal Protection

Polyimide (PI) is a type of polymer that finds applications in engine components
due to its stability, high dielectric properties, and excellent mechanical properties at high
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temperatures [85]. Recent research has focused on functional PI aerogels, and several
PI aerogels for space exploration and electronics have been reported. Previous studies
demonstrated highly flexible and even foldable PI aerogels [86]. However, these strategies
primarily involve altering the chemical composition or introducing chemical crosslinkers to
modify the skeleton chemistry of polyimide aerogels. Although improvements have been
achieved in various properties, these traditional strategies have limitations, necessitating
more effective methods to enhance the functionality of PI aerogels. Recent efforts to
enhance the performance of polyimide aerogel thermal insulation materials have focused on
inhibiting shrinkage and improving the temperature resistance and fibrosity of polyimide
aerogels. Table 5 presents the properties of polyimide aerogel materials obtained from
relevant research.

Functional additives, hybridization, and optimization of other processes are com-
monly employed to inhibit the shrinkage of polyimide aerogel and enhance its thermal
insulation performance. The introduction of additives into PI aerogels to reduce shrinkage
is achieved by utilizing their physical support, chemical crosslinking, or a combination
of both. These functional additives include aerogel powder [87], silica spheres [88], and
other particle-like structures. In addition, ultrafine fibers [89] and raw fiber minerals [90],
such as whiskers [91] and carbon nanotubes [92], are also used as additives to improve
the antishrinkage properties of PI aerogels. In addition, sheet materials, such as reduced
and oxidized graphene sheets [93], are attractive as functional additives. These additives
exhibit varying effects on reducing the shrinkage of PI aerogels.

Table 5. Properties of PI aerogels and their composites.

Raw Materials Enhancement Phase Density/g·cm−3 Thermal
Conductivity/W·(m·K)−1 Shrinkage/% Reference

NMP 4, ODA 1,
BPDA 2 SiO2 aerogel-powders 0.020 0.028 7.5 [87]

DMAc 3, BPDA 2,
ODA 1, TEA

SiO2 nanoparticles 0.080 0.020 9.0 [88]

DMAc 3, ODA 1,
PAA FHal 8 0.065 0.039 21.9 [90]

NMP 4, ODA 1,
PMDA

SiC whisker 0.238 0.036 16.2 [94]

ODA 1, BPDA 2,
PAA 5 CNT 0.107 0.023 6.2 [92]

PAA, LDH 6 GO 9 0.052 0.036 29 [93]
ODA 1, PPDA 7 Glass fiber 0.143–0.177 0.023–0.029 - [89]

1 ODA: Triethylamine, 4,4′-oxydiphenylamine; 2 BPDA: Biphenyl tetraic anhydride; 3 DMAc: Dimethyl acetamide;
4 NMP: N-Methyl-2-pyrrolidinone; 5 PAA: Polyamide acid; 6 LDH: Layered double hydroxides; 7 PPDA: P-
phenylenediamine; 8 FHal: Clay halloysite nanotubes; 9 GO: Graphene oxide.

In the field of polyimide aerogel fibrosis, extensive research has been conducted
because of the unique combination of high-temperature resistance and thermal insulation
properties of PI aerogel, along with the exceptional mechanical properties of fibers. The
development of PI aerogel fibers has garnered considerable attention, as they can be
woven into textiles to create multifunctional fabrics, particularly suitable for applications
requiring temperature regulation. This advancement holds immense potential for the next
generation of smart textiles, encompassing everyday clothing, sports-wearable equipment,
fire-fighting equipment, and even aerospace garments. The methods primarily employed
for the preparation of PI aerogel fibers include freezing spinning [95], wet spinning [96],
and capillary gel [97]. A visual representation of these specific preparation techniques is
shown in Figure 8.
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permission [98].

2.2.2. Phenolic Aerogels and Composites for Thermal Protection

Phenolic resin (PFR) offers desirable characteristics, such as good mechanical proper-
ties, fire resistance, flame retardancy, chemical resistance, and weather resistance. Conse-
quently, PFR finds wide applications in the defense and military industry, aerospace, civil
construction, electronics, and electrical fields. However, traditional PFR matrix composites
suffer from drawbacks, such as high density and high thermal conductivity, which limits
their usage to some extent. PFR aerogels can effectively mitigate these issues by reducing
material density and thermal conductivity, thereby expanding their potential applications
in aerospace and other fields [99]. Recent research has focused on enhancing the ablation re-
sistance [100] and optimizing the thermal and mechanical performance of phenolic aerogel
thermal insulation [101,102] in high-temperature aerobic environments. Table 6 provides
an overview of the properties of phenolic aerogel materials obtained from relevant studies.

Table 6. Properties of PI aerogel and its composites.

Raw Materials Enhancement
Phase Density/g·cm−3

Thermal
Conductivity/

W·(m·K)−1
Linear Ablation/mm s−1 Reference

PR 1, HMTA 2 Carbon fiber 0.270–0.370 0.093–0.230 0.029 (1.5 MW/m2 33 s) [102]
PR 1, ZrB2, SiB6 Quartz fiber felt 0.348 - 0.017 [103]
PR 1, HMTA 2,

MTMS 3, DMDES 4 Carbon fiber felt 0.30–0.35 0.068 0.019 (1.5 MW/m2 300 s) [99]

PR 1, MTMS 3,
DMDES 4, APTES

5

Quartz/carbon
hybrid
fiber

0.310–0.350 0.050–0.063 0.058 (3.62 MW/m2 300 s) [104]
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Table 6. Cont.

Raw Materials Enhancement
Phase Density/g·cm−3

Thermal
Conductivity/

W·(m·K)−1
Linear Ablation/mm s−1 Reference

PR 1, APTES 5,
HMTA 2 Quartz fiber 0.200 0.048 0.010 (1.5 MW/m2 180 s) [100]

PR 1, HMTA 2 Glass fiber wool 0.036–0.140 0.031–0.037 - [105]
PF, HMTA 2 - ~0.112 0.021 - [106]

PR 1, HMTA 2 Quartz felt ~0.016 ~0.030 0.003 (1.5 MW/m2 300 s) [107]
1 PR: Phenolic resin; 2 HMTA: Hexamethylenetetramine; 3 MTMS: Methyltrimethoxysilane; 4 DMDES:
Dimethyldiethoxysilane; 5 APTES: 3-Aminopropyltriethoxysilane.

However, pure phenolic aerogel exhibits poor resistance to high-temperature envi-
ronments when it comes to ablation performance. Initially, phenolic aerogel gel was used
as an antiablation material in combination with carbon fiber [99,102]. However, carbon
fiber-reinforced phenolic aerogels are susceptible to oxidization in high-temperature aer-
obic environments, resulting in the failure of thermal protection materials. Researchers
commonly adopt methods such as inorganic modification of the matrix or substituting
carbon fiber with high-temperature inorganic fiber to enhance the ablation resistance of
phenolic aerogel thermal insulation materials in such conditions [100,103,104]. The ablation
resistance of the material can be improved by leveraging the heat resistance and oxidation
resistance of inorganic components.

The microstructure of phenolic aerogels can be adjusted to enhance their thermal
insulation performance, effectively reducing their thermal conductivity at room temper-
ature and enabling the production of phenolic aerogels with varying thermal insulation
properties [108]. In addition, a common approach involves incorporating phenolic aerogels
into traditional inorganic aerogel gels, leveraging the nanoporous structures and intrinsic
low thermal conductivity of inorganic aerogels to improve the thermal insulation perfor-
mance of the composite materials [109]. However, the mechanical properties of composite
materials containing phenolic aerogels may experience a certain degree of decline due to
the inherent brittleness of inorganic aerogels [110].

2.3. Carbon Aerogels and Carbide Aerogels and Composites for Thermal Protection

Carbon aerogels and carbide aerogels offer the advantages of low density and high
porosity exhibited by traditional oxide aerogels and demonstrate excellent temperature
resistance in inert atmospheres. Moreover, carbon aerogels and carbide aerogels have
important applications in aerospace fields, such as in the base of the return module, the
nose of space shuttles, and solid rocket motors, due to their excellent high-temperature
resistance.

2.3.1. Carbon Aerogels and Composites for Thermal Protection

In 1987, Pekala first carbonized phenolic aerogels to obtain carbon aerogels, marking
the beginning of research on carbon aerogels [81]. Under an inert atmosphere or vacuum
environment, carbon aerogels exhibit high-temperature resistance of up to 2000 ◦C, and
graphitized carbon aerogels further enhance this temperature resistance, reaching up to
3000 ◦C [111]. Moreover, carbon aerogels effectively inhibit high-temperature radiation heat
transfer compared with traditional inorganic aerogel thermal insulation materials, resulting
in a reduction of their high-temperature thermal conductivity [112]. Therefore, carbon aero-
gels have gained increasing attention for thermal protection applications in the aerospace
field. Over the past few decades, research on carbon aerogel thermal insulation materials
has primarily focused on two aspects: Improving processes and optimizing performance.

Process improvement efforts typically involve optimizing the preparation process,
cross-linking the polymer, and constructing a multiscale multipenetrating network frame-
work. Figure 9 shows the fundamental procedure for the preparation of carbon aerogels.
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The classification of carbon aerogels based on their precursors and their respective prop-
erties are summarized in Table 7. The supercritical drying process, commonly used for
preparing oxide aerogels, shares similarities with the drying process for carbon aerogels.
However, the supercritical drying process has several drawbacks, including long opera-
tion cycles, high-risk factors, high energy consumption, and high costs. These limitations
greatly restrict the industrial production and application of carbon aerogels. In contrast, the
atmospheric drying process is more suitable for the production of carbon aerogels. During
normal pressure drying, three key factors are believed to reduce the collapse and shrinkage
of the pore structure in carbon aerogels: Proper network structure strength, larger particle
and pore sizes, and low surface tension [113]. The condensation reaction between polymer
monomers and residual hydroxyl groups on the surface of the carbon aerogel network
can lead to the formation of a polymer film. This film enriches and coats the surface of
the gel’s solid network skeleton, resulting in a thicker skeleton and larger connection area
between adjacent secondary particles, finally strengthening the network structure of the
gel. In addition, introducing another component or multiple components to build a dual
network or multinetwork skeleton structure that interpenetrates or intertwines with each
other can effectively adsorb fracture energy at cracks. This mechanism prevents cracks from
propagating to the macro level and effectively strengthens the gel’s network structure [114].
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For performance optimization, the addition of fibers and carbon nanomaterials to
the aerogel matrix is a common method to improve their mechanical properties [117].
Figure 10 shows several preparation methods and physical properties of fiber reinforced
carbon Aerogel. In terms of added fibers, the commonly used fiber tougheners in the
aerospace field are primarily inorganic fibers (mullite fiber, Al2O3 fiber, carbon fiber, etc.).
Amongst these inorganic fibers, carbon aerogels reinforced with fiber felts have attracted
extensive attention from researchers due to their good formability and designability. Carbon
nanomaterials (graphene oxide, carbon nanotubes, graphite, etc.) are also considered
suitable for enhancing the toughness and thermal protection capabilities of aerogels in
the aerospace field due to their unique material structure and physical and chemical
properties. Amongst these carbon nanomaterials, graphene oxide has been widely studied
for its excellent chemical stability and temperature resistance (up to 2000 ◦C). Table 8
provides information on the physical, chemical, and mechanical properties of various
carbon aerogel composites.
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Figure 10. Several preparation methods of fiber-reinforced carbon aerogels: (a) Schematic of the
fabrication process of MCA. Reproduced with permission [118]. (b) Schematic illustration of the
preparation of OAMs and CAMs. Reproduced with permission [119]. (c) Schematic illustration
of the bioinspired fabrication processes of CTAs. Reproduced with permission [120]. (d) Thermal
conductivity of carbon aerogel composites in this paper. (e) Compressive strength of carbon aerogel
composites in this paper.
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Table 7. Classification and properties of carbon aerogels based on precursors. Reproduced with
permission [115].

Types Precursors Properties

synthetic polymer-based carbon aerogel

3 aromatics (phenol, cresol,
phloroglucinol) and aldehydes
(furfural, formaldehyde)

Textural properties controllable by
synthesis conditions

Uniform morphology through bottom-up
process

3 polymers (poly (vinyl alcohol), poly
(vinyl chloride), polyimide) Applicable to large-scale production

Graphitic materials-based carbon aerogel
3 carbon nanotube (CNT), graphene,

carbide, carbonitride

Crosslinked each other through van der
Waals interactions

Promising candidates as electrically
conductive materials

Carbonization process is skippable

Biomass-based carbon aerogel
3 hydrated biomass (watermelon,

cucumber, aloe, celery, pumpkin) Not required for the gelation process

3 highly porous biomass (cotton,
cattail, cane)

Porous structure obtained via
sublimation of water in hydrated biomass
Inexpensive, abundant, and eco-friendly

Table 8. Properties of carbon aerogel and its composites.

Raw Materials Enhancement
Phase Density/g·cm−3 Thermal

Conductivity/W·(m·K)−1
Compressive
Strength/MPa Reference

P 1, HMTA 2 UCF 10 0.16 0.030 0.93 [121]
R 3, F 4 PAN fiber 0.17 0.073 - [122]

R 3, F-F 5 PAN fiber 0.68 0.690 6.10 [123]
P 1, MF 6 - 0.12 0.111 2.50 [118]

PPA 7, GO - 0.11 0.023 - [124]
DMF 8, PPA 7, GO - - 0.045 - [125]

GO Quartz fiber 0.07 0.033 - [126]
GO - 0.13 0.033 0.18 [127]

MWCNTs - - 0.030 - [128]
Te NWs 9, glucose - - 0.023 - [120]

P 1, H - 0.07 0.032 5.00 [119]
1 P: Phenolic resin; 2 HMTA: Hexamethylenetetramine; 3 R: Resorcinol; 4 F: Formaldehyde; 5 F-F: Furfural; 6 MF:
Melamine foam; 7 PPA: Paraphenylene diamine; 8 DMF: N, N-Dimethylformamide; 9 Te NWs: Te nanowire; 10

UCF: Ultralight carbon fiber.

2.3.2. Carbide Aerogels and Composites for Thermal Protection

Although carbon aerogels and their composites have excellent high-temperature resis-
tance in an inert atmosphere, reaching a maximum temperature of 3000 ◦C, their oxidation
resistance in an air atmosphere is poor. Therefore, they need to be coated with antiox-
idation coatings to prevent oxidation. However, for reusable aircraft, the compactness
and antioxidation performance of the antioxidation coating may decline over time due to
long-term high-temperature aerodynamic heating and repeated thermal scouring. Carbide
aerogel materials represent one of the most abundant branches of aerogel materials. Com-
pared with traditional oxide aerogels, carbide aerogels offer higher-temperature resistance,
reaching up to 3000 ◦C in an inert atmosphere, with a density of less than 0.4 g/cm3 and a
room temperature thermal conductivity of less than 0.040 W/(m·K) [129,130]. Therefore,
carbide aerogel materials have become highly promising for applications in a tempera-
ture range above 1200 ◦C and are widely used in aerospace and other high-temperature
insulation fields.
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SiC Aerogels and Composites for Thermal Protection

SiC aerogels have been extensively studied in extreme environments due to their
stable chemical properties, good thermal shock performance, and low thermal expansion
coefficient. In the past decade, research on SiC aerogel thermal insulation materials for
thermal protection has focused on enhancing their mechanical properties and thermal
insulation properties and developing practical preparation technologies.

To enhance the mechanical properties and thermal insulation properties of SiC aerogels,
researchers have recently developed 1D SiC nanofibers as new materials. These nanofibers
possess stacking faults and micro twin structures that enable them to exhibit a super strong
plastic deformation ability, resulting in further improvement of the intrinsic mechanical
properties of SIC aerogels [131,132]. Other scholars have prepared anisotropic and layered
SiC nanowires based on template directional solidification and high-temperature heat
treatment of SiC-SiO2 nanowire aerogels. Compared with SiC nanowire aerogel, this mate-
rial demonstrates superior thermal insulation performance [133]. Unlike predominantly
amorphous oxide aerogels, SiC aerogels consist of abundant crystals. Heat conduction in
the SiC skeleton is primarily governed by phonon transmission, whereas phonon scattering
occurs because of lattice defects, such as impurities, vacancies, lattice oxygen content, gaps,
and dislocations at room temperature. These defects play a crucial role in determining the
thermal conductivity of SiC aerogels [134]. Therefore, SiC aerogels exhibit good infrared
shielding performance. However, their thermal conductivity is still higher than that of
SiO2, ZrO2, and other oxide aerogel materials. In recent years, the addition of SiO2 as
a sunscreen into aerogels can markedly enhance their interfacial thermal resistance and
greatly reduce their thermal conductivity [135]. Two types can be distinguished on the
basis of the method of introducing SiO2: The direct addition of nano-SiO2 particles into the
SiC precursor to form the SiC/SiO2 interface as the adiabatic phase or utilizing the SiO2
layer formed by in situ oxidation of SiC as the adiabatic phase. The former type, which
involves point contact between particles, has a limited number of new interfaces, resulting
in only a slight improvement in thermal insulation performance [134]. The in situ SiO2
layer can effectively ‘weld’ the SiC skeleton particles together, creating a high-strength
SiC/SiO2 composite aerogel with a core/shell structure, which exhibits excellent thermal
insulation performance [136]. The performance of this composite is summarized in Table 9.

In terms of practical SiC aerogel preparation technology, the current commonly used
method involves using organic/SiO2 composite aerogels as precursors and combining
the sol–gel method with the carbothermal reduction method to produce complete blocky
SiC aerogels. However, this method presents some challenges, such as a complex process,
a lengthy preparation period, and the need to address the high carbothermal reduction
temperature. In addition, the huge volume shrinkage during the high-temperature car-
bothermal reduction can lead to internal stress, making it difficult to prepare large-scale,
specially shaped SiC aerogel components. Therefore, a novel approach utilizing flexible
carbon fiber as a SiC support structure and growth template holds promise as a crucial
direction for future research in this field. Another emerging area in practical SiC aerogel
preparation involves using preceramic polymers. This method avoids dependence on the
carbothermal reduction of organic/SiO2 composite aerogels and enables the achievement
of atomic-level mixing of Si and C in the preceramic polymer precursor, resulting in a
remarkable reduction in the required high-temperature heat treatment [137].

Table 9. Properties of SiC aerogel and its composites.

Raw Materials Density/g·cm−3 Specific Surface
Area/m2·g−1

Thermal
Conductivity/W·(m·K)−1 Reference

PAN 1, SiO2 0.500 20 - [138]
PAN 1, TMOS 0.320 20 - [139]

APTES 2 0.29 251 - [140]
SMP-10 3 0.170 444 - [141]
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Table 9. Cont.

Raw Materials Density/g·cm−3 Specific Surface
Area/m2·g−1

Thermal
Conductivity/W·(m·K)−1 Reference

PCS-800 4, KIT-6 - 942 - [142]
Siloxane gel 0.005 78 0.026 [143]

Graphene foam 0.017 - 0.160 [144]
SiO powder, Balsa

wood - - 0.019 [145]

SiC Nanowire 0.007 - 0.014 [133]
SiC fiber 0.039 - 0.025 [146]

Si powder, SiO2
powder 0.076 - 0.035 [140]

1 PAN: Polyacrylonitrile; 2 APTES: 3-aminopropyltriethoxysilane; 3 SMP-10:Allylhydropolycarbosilane; 4 PCS-800:
The commercial polycarbosilane

Other Carbide Aerogels and Composites for Thermal Protection

With the rapid advancement of new aerospace technologies, the development of
super thermal insulation materials possessing high temperature, low density, and ultralow
thermal conductivity has become an important direction in the field of thermal insulation
materials. Traditional aerogels exhibit high specific surface area, low density, and low
thermal conductivity. However, their low strength limits their practical application. In
contrast, SiOC [147], ZrC [148], ZrOC [149], and SiCNO [150] aerogels offer higher strength
and superior high-temperature stability compared with SiO2 aerogels. This is attributed to
the partial replacement of oxygen atoms in traditional oxides, such as SiO2 and ZrO2, with
carbon atoms in the tetravalent state. This substitution effectively increases the density
of chemical bonds and forms a robust molecular network structure, resulting in excellent
thermal stability and mechanical properties in the synthesized ternary carbide aerogels.
These advantages overcome the shortcomings associated with low oxide strength and the
susceptibility of binary carbides to oxidation at high temperatures. Consequently, these
new C5 aerogels are expected to become the next generation of high-performance aerogel
insulation materials suitable for aerospace thermal protection systems.

3. Application of Aerogels for Thermal Protection in the Aerospace Field

Since the early 1990s, the ASPEN Company of the United States, with the support of
NASA, has been developing fiber-reinforced aerogel composite technology and conduct-
ing research on the application of nanoporous thermal insulation composites in various
aerospace applications. These include hypersonic aircraft reentry thermal protection sys-
tems, cryogenic tanks and valve pipe insulation systems for liquid rocket fuel, noise reduc-
tion, and thermal insulation systems for warships and aircraft engines’ thermal insulation
systems. In recent years, aerogels and their composites have found diverse applications in
the aerospace field.

As early as 1997, SiO2 aerogel materials were used as thermal insulation materials
in the aerospace field in the United States. NASA filled a 25–32 mm SiO2 aerogel (with
a thermal conductivity of 0.0163 W/(m·K)−1) with thermal insulation properties into the
structural plate of the electronic element incubator (WEB) of the Mars probe ‘Traveler’.
This application aimed to safeguard the main battery pack of the probe’s alpha particle
X-ray spectrometer from the impact of extremely low temperatures [151]. Building on the
success of using aerogel in the Mars mission, NASA used a 0.4% graphite-doped SiO2
aerogel as the thermal insulation material for electronic components in the Mars rovers
‘Spirit and Opportunity’ in 2003. This further reduced the negative impact of thermal
radiation and ensured the normal operation of the detector within a temperature range
of −20–90 ◦C [152]. In 2011, during the launch of NASA’s Curiosity Mars probe, graphite-
doped SiO2 aerogel was utilized as the thermal insulation material on the chassis of the
Mars rover. It was also used to provide heat insulation for the multimission radioisotope
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thermoelectric generator heat exchanger, which powers the system [153]. In addition, the
spacesuit used requires excellent thermal protection in the Martian space environment
to ensure astronauts’ safe extravehicular activities on Mars. With the support of NASA
Johnson Space Centre, the Aspen Company has developed a fiber-reinforced silica aerogel
flexible composite fiber material. Its thermal conductivity in the Martian low vacuum
environment is 0.005 W/(m·K)−1, which is only one-fifth of that of multilayer insulation
structures [154]. In NASA’s deep-space exploration activities, such as Mars exploration,
PI nanoaerogels are applied to the flexible thermal protection system of the Hypersonic
Inflatable Aerodynamic Decelerator to provide adiabatic insulation [155].

In 2000, the NASA Ames Research Centre developed the ceramic fiber aerogel com-
posite heat shield, which was applied as the thermal insulation material for the space
shuttle, demonstrating a thermal insulation performance 10 to 100 times higher than the
original shield. This new type of heat shield can also be used in the thermal insulation layer
of future reusable spacecraft and fuel tanks [156]. In 2008, NASA applied SiO2 aerogel
material on the outer wall of the liquid hydrogen storage tank of a launch vehicle, ensuring
the fuel tank’s normal operation at low temperatures and greatly reducing the weight of
the space shuttle [157]. Aerogel materials have also found applications in military aircraft,
particularly for thermal insulation protection of cabin bulkheads and important instruments
in passenger aircraft. They are primarily used in aircraft in the United States and Britain.
For example, both the MKV-22 ‘Osprey’ tiltrotor cabin wall thermal insulation system and
the infrared system of the United States utilize aerogels. Similarly, aerogel materials were
used in the cockpit thermal insulation wall of the modified British ‘Jaguar’ fighter.

4. Conclusions

The development of aerogels for thermal protection relies on advanced aerogel materi-
als and multifunctional integrated thermal protection structures. Expanding the capabilities
of existing thermal protection aerogel materials to withstand extreme service environments,
exploring new material systems for thermal protection, and innovating the design concept
of integrated thermal protection structures are crucial for advancing aerospace vehicle tech-
nology. Although considerable achievements and breakthroughs have been made in the
research and application of aerogel thermal insulation materials, numerous challenges still
need to be addressed. The current difficulties and possible future development directions
primarily focus on the following aspects.

The excellent properties of aerogels, such as their lightweight nature and thermal
insulation, are closely related to their unique microstructure. Adjusting the gel’s struc-
ture primarily depends on key preparation processes, such as sol–gel, aging, and drying.
Building upon existing research, further investigations into the relationship between the
preparation, structure, performance, and application of aerogels will lead to the develop-
ment of higher-performance aerogels, thereby advancing the research and application of
aerogel materials in the aerospace field.

For oxide aerogels, on the one hand, it is necessary to develop a new generation of
aerogel materials with a high melting point and low thermal conductivity; for example,
zirconium-based compounds, hafnium-based compounds, etc. On the other hand, it is
necessary to develop sintering problems that suppress temperature-resistant components.
To solve the current technical difficulties. For organic aerogels, phenolic aerogel and
polyimide aerogel are still key research directions. It is necessary to further improve their
anti-ablation ability in the use process and study their dimensional stability. On the other
hand, it is necessary to search for low-cost organic raw materials to achieve large-scale
preparation and engineering applications. For carbon aerogels, finding the balance between
oxidation resistance and mechanical and thermal properties is the focus of future research.
In addition, reducing production costs by shortening the preparation cycle is also one of
the challenges that need to be overcome.

The rapid development of aerospace technology has introduced new requirements for
thermal protection systems with high performance, including high-temperature resistance,
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lightweight characteristics, and high transmission capabilities. Through the structural
design and performance optimization of various aerogels, key technologies such as the
development of high-temperature-resistant aerogels, ultralow density aerogels, and wave
transparent aerogel gels have already been achieved, initially meeting the needs of various
aircraft. However, as the future service environment becomes more complex and demand-
ing, the comprehensive performance of aerogel materials, such as temperature resistance,
heat insulation, load-bearing capacity, wave transmission, and stealth capabilities, needs to
be further improved to meet the evolving requirements.
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