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Abstract: A series of large-scale numerical simulations is presented, which incorporate
parameterizations of vertical mixing of temperature and salinity by double-diffusion and by
small-scale turbulence. These simulations reveal the tendency of double-diffusion to constrain
diapycnal volume transport, both upward and downward. For comparable values of mixing
coefficients, the average diapycnal velocity in the double-diffusive thermocline is much less than in
the corresponding turbulent regime. The insulating effect of double-diffusion is rationalized using
two theoretical models. The first argument is based on the assumed vertical advective-diffusive
balance. The second theory uses the Rhines and Young technique to evaluate the net diapycnal
transport across regions bounded by closed streamlines at a given density surface. The numerical
simulations and associated analytical arguments in this study underscore fundamental differences
between double-diffusive mixing and mechanically generated small-scale turbulence. When both
double-diffusion and turbulence are taken into account, we find that the constraints on diapycnal
velocity loosen (tighten) with the increase (decrease) of the fraction of the overall mixing attributed
to turbulence. The range of diapycnal velocities that could be realized in doubly-diffusive fluids
is determined by the variation in the heat/salt flux ratio. We hypothesize that the unique ability
of double-diffusive mixing to actively control diapycnal volume transport may have significant
ramifications for the structure and dynamics of thermohaline circulation in the ocean.
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1. Introduction

Theory of heat and mass transfer by small-scale transient motions constitutes a large and important
component of numerous physical sciences, including fields as diverse and seemingly unrelated as
oceanography, astrophysics, geology and materials science. The key challenge in small-scale mixing
theory, in all its forms and applications, is the analysis and prediction of mean turbulent transport
for a given large-scale distribution of properties. Most small-scale mixing processes in fluids that
are nominally stably stratified—with density decreasing upwards—can be broadly classified into
mechanically-driven and double-diffusive categories. An example of a common mechanically-driven
phenomenon is the intermittent generation of small-scale turbulence by shear associated with internal
gravity waves. Double-diffusive phenomena, on the other hand, are caused by unequal molecular
diffusion rates of two (or more) individual density components, such as temperature and salt in the
oceanic context.

Recent years have witnessed a substantial progress in our understanding of both double-diffusive
and turbulent phenomena. In particular, reliable parameterizations have been developed for
double-diffusion in astrophysical [1,2] and oceanographic [3] contexts. These parameterizations
express the vertical fluxes (FT , FS) of diffusing properties (T, S) as a function of the corresponding
large-scale gradients using Fick’s diffusion model:
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FT = −KT

∂T
∂z

FS = −KS
∂S
∂z

(1)

where the eddy diffusivities (KT , KS) themselves are not uniform but assumed to depend on the

density ratio Rρ =
αTz

βSz
, where (α,β) are the expansion/contraction coefficients.

The purpose of this communication is to discuss one fundamental yet mostly overlooked
distinction in the dynamics and consequences of double-diffusive and mechanically-driven mixing.
In addition to the vertical transport of diffusing properties (e.g., temperature and salinity) which the
flux-gradient laws (Equation (1)) attempt to represent, numerous applications require knowledge of
the corresponding volume or mass transport across mean density surfaces. Following oceanographic
nomenclature, the velocity component normal to the density surfaces (w∗) will be referred to as the
diapycnal velocity and the associated volume flux as the diapycnal transport. It is the analysis of
diapycnal transport which reveals some rather unique properties of double-diffusion that have no
direct counterpart in one-component turbulent flows. In particular, we argue that in double-diffusive
flows, diapycnal volume transport is dramatically reduced relative to that in turbulent systems with
comparable mixing rates of density components. When both double-diffusion and turbulence are
present, diapycnal velocity is restricted to a finite range, which is controlled by the relative contributions
of double-diffusion and turbulence to overall mixing.

Much of the motivation for the analysis of diapycnal volume transport [4–7] stems from the role it
plays in the theory of thermohaline circulation in the ocean. Thermohaline circulation—the system of
large-scale flows driven by the sea-water density variation—is an essential regulator of the Earth’s
climate. Nevertheless, several aspects of it have not been fully explained. The classical view [8–11]
emphasizes the role of small-scale mixing and associated water mass transformation in the ocean
interior. This idea was challenged by studies advocating an alternative adiabatic view [12–14] which
invokes isopycnal advection as the key mechanism for maintenance of the Meridional Overturning
Circulation (MOC). While the exact contributions of different circulation components remain a source
of debate, there is a general consensus that the diabatic mode, driven by diapycnal fluxes, can be
substantial. Radko et al. [15] for instance, estimate that the diabatic mode of circulation accounts
for approximately one third of the Meridional Overturning Circulation (MOC) in the global ocean.
Another uncertain aspect of the theory of thermohaline circulation concerns the relative role of
shallow overturning cells in the main thermocline and deep circulation in the abyssal ocean. Earlier
efforts [9,16] were mostly focused on the abyssal dynamics. However, an interesting suggestion
was made [17] that the meridional transport of heat is controlled by the processes operating in the
upper ocean. In an attempt to quantify partitioning of the oceanic heat flux between the deep and
shallow overturning cells, these authors introduced the “heatfunction”, a quantity which identifies
the components of circulation which contribute to the total meridional heat flux. Boccaletti et al. [17]
have shown that the heatfunction represents a surface-intensified flow largely limited to the main
thermocline. Therefore meridional heat transport is dominated by the contribution from the upper
branch of the MOC where double-diffusion is most active. For instance, as much as 95% of the Atlantic
thermocline is double-diffusively unstable [18]. Thus, the link between double-diffusion and diapycnal
volume transport can have potentially critical ramifications for thermohaline circulation and should be
explored much further.

In order to rationalize the tendency of double-diffusion to suppress the diapycnal volume
transport, we propose two arguments. The first argument applies to the strongly diabatic regime
representative of the lower (diffusive) thermocline that is often described by Munk’s [9] vertical
advection-diffusion balance. We find that steady one-dimensional solutions in double-diffusive
systems are possible only for a very narrow range of diapycnal velocities. The second argument is more
relevant for the central thermocline, where double-diffusive processes are most common. Dynamics of
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the main thermocline are fundamentally three-dimensional [19]. The overall water-mass distribution is
set by large-scale advection whereas diapycnal mixing is relatively weak. Nevertheless, in this regime
it is still possible to predict the impact of higher order diabatic processes on cross-isopycnal transfer
using a technique originally developed by Rhines and Young [20]. The crux of this approach is the
integration of governing equations along closed streamlines, which effectively eliminates the zero
order advective terms in integral balances. Adapting this procedure to the double-diffusive problem
allows us to evaluate the average diapycnal velocity in regions bounded by closed streamlines and,
ultimately, to explain the insulation effect from first principles. Thus, for both advectively-dominated
and diffusively-dominated regimes, there are theoretical reasons to expect the suppression of diapycnal
volume flux by double-diffusion.

The paper is set as follows. Our starting point (Section 2) is an analysis of a one-dimensional
vertical advective-diffusive balance of temperature and salinity of Munk’s [9] type. This analysis,
albeit highly idealized, suggests that fundamental differences may exist in the way turbulent and
double-diffusive mixing affect diapycnal volume transport. Motivated by this possibility, we perform
a series of large-scale three-dimensional multi-century numerical simulations (Section 3), which also
consistently reflect the tendency of double-diffusion to constrain diapycnal volume transport.
In Section 4, we develop an analytical model of the double-diffusive insulation in a three-dimensional
setting. We summarize and conclude in Section 5.

2. Preliminary Considerations

Our inquiry into the link between double-diffusive mixing and the associated diapycnal
volume transport was originally motivated by the following fairly abstract problem. Consider
a one-dimensional model consisting of the steady state temperature and salinity equations:

w
∂T
∂z

= −∂FT
∂z

w
∂S
∂z

= −∂FS
∂z

(2)

where T(z) and S(z) are the large-scale temperature and salinity of the sea-water; w is the upward
vertical velocity. The temperature and salinity fluxes (FT , FS) are attributed to small-scale mixing
processes and related to large-scale gradients through Equation (1). We are interested in solving
Equation (2) for given boundary conditions:{

(T, S) =
(
Ttop, Stop

)
at z = −Htop = −Hbot + H

(T, S) = (Tbot, Sbot) at z = −Hbot
(3)

where z = −Htop, (z = −Hbot) represents the top (bottom) of the mixing zone and H is its thickness
(see the schematic in Figure 1. In particular, we are concerned by the differences in the solutions
of Equations (2) and (3) for cases in which vertical mixing is controlled by: mechanical turbulence,
double-diffusion, and a combination thereof.
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Figure 1. One-dimensional model. We search for the temperature and salinity profiles T(z) and S(z)
satisfying the vertical advection-diffusion equations for given vertical velocity (w) and boundary
conditions at the ends of the mixing zone (−Hbot < z < −Htop).

2.1. Turbulent Mixing

To illustrate the basic properties of the 1D system (Equation (2)), consider first the simplest model
of turbulent mixing characterized by constant and equal eddy diffusivities of heat and salt:

KT = KS = Kturb (4)

In this case, Equations (2) and (3) can be solved for any value of diapycnal velocity (w):
T = (Ttop − Tbot)

exp(w(z− zbot)/Kturb)− 1
exp(wH/Kturb)− 1

+ Tbot

S = (Stop − Sbot)
exp(w(z− zbot)/Kturb)− 1

exp(wH/Kturb)− 1
+ Sbot

for w 6= 0 (5)

and {
T = (Ttop − Tbot)(z− zbot)/H + Tbot

S = (Stop − Sbot)(z− zbot)/H + Sbot
for w = 0 (6)

Thus, the turbulent mixing model (Equation (4)) represents an extreme case of a completely passive
system which offers no restrictions on diapycnal velocity. For any value of w it is possible to construct
a consistent solution of the T-S advection-diffusion equations satisfying the boundary conditions at
z = zbot and z = ztop. It should be noted that the advective-diffusive balance (Equation (2)) remains
passive even when the diffusivities of heat and salt are spatially uniform but not equal to each other
(KT 6= KS). The latter model can be used to represent differential diffusion, the preferential turbulent
mixing of temperature relative to salinity under certain conditions [21,22]. In order to demonstrate
that the passive character of the advective-diffusive balance is not necessarily realized in other types
of mixing, we now turn to a very different configuration which demands a unique value of w—the
constant flux ratio model of double-diffusion.

2.2. Double-Diffusion: The Constant Flux Ratio Model

Double-diffusion comes in two distinct forms, fingering and diffusive convection. The fingering
regime is commonly realized in the subtropical thermocline where warm and salty water overlies cold
and fresh. Diffusive convection is more prevalent in high-latitude oceans, where temperature and
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salinity frequently increase downward. While we believe that the analysis in this paper is relevant for
both forms of double-diffusion, to be specific, the discussion is focused on the salt-finger regime.

The single most significant parameter controlling diapycnal mixing in regions of active
double-diffusion is the local density ratio

Rρ =
αT z

βSz
(7)

where α and β are the expansion/contraction coefficients in the linear equation of state—see the
discussion in Schmitt [18,23] and Radko [24]. Double-diffusive parameterizations typically assume
that the eddy diffusivities of heat and salt (KT , KS) are determined by Rρ. It is also common to
approximate the ratio of thermal and haline density fluxes, so-called flux ratio (γ), by a constant value:

αFT
βFS

= γ0 = const (8)

Particular examples of such parameterizations can be found in, for example, Schmitt [25],
Zhang et al. [26], and Merryfield et al. [27].

Combining Equations (2) and (8), we arrive at

w
(

Rρ

γ0
− 1
)
= 0 (9)

To maintain fingering convection, the loss of potential energy stored in salt stratification should
exceed the energy gain by heat stratification and therefore γ0 < 1. The density ratio, on the other hand,

has to exceed unity in order for density to decrease upward. Hence,
Rρ

γ0
> 1 and therefore Equation (9)

can be satisfied only if w = 0. Thus, in contrast with the turbulent mixing model, the double-diffusive
system actively controls diapycnal velocity. Of course, the selection of a unique w in this model could
be a consequence of the chosen flux laws; of particular concern is the constant flux ratio approximation
(Equation (8)). However, even when the assumption of constant flux ratio is relaxed (Appendix)
by considering typical finite variations in γ(Rρ) we still find that the range of permitted diapycnal
velocities is rather narrow: max |w| ∼ 5× 10−9 m/s.

2.3. Combined Effects of Double-Diffusion and Turbulence

Because small-scale mixing in the ocean is controlled by a combination of double-diffusion and
mechanically generated turbulence, it is of interest to examine the constraints on diapycnal velocity
in a model which includes both mixing processes. For that, we extend the foregoing analyses by
considering the following closure:

KT = Kdd
T (Rρ) + Kturb, KS = Kdd

S (Rρ) + Kturb,
αKdd

T Tz

βKdd
S Sz

= γ (10)

which assumes equal and uniform diffusivities of heat and salt due to turbulence (Kturb). Note that this
simplified conceptual model does not take into account the possibility of direct influence of turbulence
on double-diffusion [28,29].

There have been at least two attempts to evaluate the flux ratio based on oceanographic field
measurements [30,31]. Both estimates were mutually consistent, suggesting the flux ratio of

γ ≈ 0.85 (11)
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The individual values of salt finger fluxes, and particularly the pattern of their variation with Rρ,
are more difficult to infer from observations. Therefore, we adopt the parameterization proposed by
Radko and Smith [3] on the basis of high-resolution DNS: Kdd

S = kT

[
aS√

Rρ − 1
+ bS

]
Rρ for 1 < Rρ < Rcuto f f

Kdd
S = 0 for Rρ > Rcuto f f

(12)

where (aS, bS, Rcuto f f ) = (135.7,−62.75, 5.67) and

Kdd
T =

γKdd
S

Rρ
(13)

We assume parameter values representative of mid-latitude thermocline:

∆T ≡ Ttop − Tbot = 10 ◦C, R0 = 2, ∆S ≡ Stop − Sbot =
α∆T
βR0

= 1.3 psu, H = 1000 m (14)

where R0 =
α∆T
β∆S

. Next, we systematically vary Kturb in an attempt to determine how it affects the

range of diapycnal velocities.
The system consisting of Equation (2) and Equations (11)–(14) was coded in Maple software

package and solutions were sought for a range of
(

w, Kturb
)

. Note that in the context of the
one-dimensional model, in which all field variables are assumed to vary in z only, the continuity
equation ∇ ·→v = 0 reduces to the requirement that w = const. This feature simplifies the exploration
of the parameter space and the results are shown in Figure 2. Calculations resulting in regular solutions
are indicated by the heavy dots and the light dots represent conditions under which no solutions were
found. Figure 2 indicates that the constraints on diapycnal velocity loosen (tighten) with the increase
(decrease) in Kturb/Kdd

T (R0)—a quantity measuring the relative contributions from turbulence and
double-diffusion to the net mixing.
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Figure 2. The range of diapycnal velocities permitted in the hybrid model which includes both
double-diffusive and turbulent mixing. Parameter Kturb/Kdd

T (R0) measures the relative contributions
from turbulence and double-diffusion to the net mixing. The numerical calculations resulting in regular
solutions are indicated by heavy dots and light dots represent conditions under which no solutions
were found.
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Despite considerable uncertainties in the estimated magnitudes of double-diffusive and turbulent
mixing, it is plausible that in the central thermocline of the Atlantic Ocean their diffusivities are
comparable [32]. For Kturb/Kdd

T (R0) ∼ 1 we obtain the following constraint on the (dimensional)
diapycnal velocity:

max |w| ∼ 10−7m/s ∼ 3 m/year (15)

which is similar to the data-based estimates of the diapycnal velocity in regions susceptible to both
double-diffusive and turbulent mixing [32].

In summary, the foregoing calculations indicate that (i) in the turbulent model, the assumed
vertical T-S balances do not impose any internal constraints on diapycnal transport; (ii) in the
double-diffusive model the diapycnal transport is zero; and (iii) the hybrid model, which takes
into account both double-diffusion and turbulence, allows only a finite range of diapycnal velocities.
These findings, of course, should be interpreted with great caution—the ability of any one-dimensional
model to reflect the inherently three-dimensional dynamics of ocean circulation is suspect. Perhaps
it is most profitable to interpret these one-dimensional solutions as the result of the averaging of the
advection-diffusion equations along isopycnal surfaces, although this conceptualization raises the
question whether such averaging is physically justified. Nevertheless, the profound differences in the
way various mixing models affect diapycnal volume transport provide a compelling reason to launch
a more comprehensive investigation of this phenomenon using more realistic—three-dimensional and
time-dependent—models. We now proceed with the analysis of double-diffusive insulation based on
a series of large-scale numerical simulations.

3. Large-Scale Numerical Simulations

3.1. Formulation

The MIT General Circulation Model (MITgcm), described in [33,34], was used to simulate an ocean
of equatorial to sub-arctic meridional extent with a zonal width comparable to that of the North Atlantic.
The model solves the incompressible Boussinesq equations of motion with the linear equation of state.
The model geometry is a rectangular domain with dimensions

(Lx, Ly, Lz) = (6400 km, 6400 km, 3000 m) (16)

resolved by 64× 64× 60 Cartesian grid points with ∆x, ∆y = 105 m and ∆z = 50 m. The relatively
coarse horizontal resolution prevents generation of mesoscale variability, thereby isolating phenomena
of interest—double-diffusive and turbulent diapycnal mixing. Thermohaline forcing is represented by
strong relaxation of the surface temperature and salinity to the zonally uniform target patterns shown
in Figure 3a,b. The surface temperature and salinity vary linearly with latitude from TSouth = 30 ◦C
and SSouth = 37.75 ◦C to TNorth = 5.67 ◦C, and SSouth = 34.22 ◦C. Surface forcing also includes
y-dependent zonal wind stress (Figure 3c) prescribed as follows:

τ (y) = −τ0sin
(

2π
y
Ly

)
, 0 < y < Ly (17)

where τ0 = 0.05 N · m−2. The variation in the Coriolis parameter (f ) is represented by the
beta-plane approximation:

f = βcy (18)

where βc = 10−11 m−1 · s−1.
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Figure 3. The meridional patterns of the model forcing fields. Thermohaline forcing is applied by
relaxing the surface temperature and salinity to the target patterns shown in (a) and (b) respectively.
The wind stress is shown in (c). All forcing fields are zonally-uniform.

The model was initialized from rest with a T-S distribution that is zonally uniform but varies
linearly in y and z. The target temperatures and salinities (Figure 3) served as initial surface values as
well and initial bottom values were Tabyss = 4.6 ◦C and Sabyss = 34.1 ◦C. The corresponding density
ratios monotonically increase from Rρ = 1.88 at y = 0 to Rρ = 2.35 at y = Ly. Horizontal and vertical
eddy viscosities were set at AH = 4× 105 m2 · s−1 and AZ = 5× 10−4 m2 · s−1. The nonlocal K-Profile
Parameterization (KPP) scheme of Large et al. [35] is used to model convective and near-surface
mixing processes. Geostrophic eddy parameterization follows Gent and McWilliams [36]. To reduce
spurious interactions with KPP and to isolate the dynamics of interest, the isopycnal diffusivity was
set to the minimal value (κρ = 10 m2 · s−1) required to maintain the numerical stability of the model.
Vertical mixing of temperature and salinity was represented by a combination of double-diffusion and
turbulence. Double-diffusion was parameterized using Equations (12) and (13). The interior turbulent
diffusivity (Kturb) associated with overturning gravity waves, is assumed to be spatially uniform and
equal for temperature and salinity. In a series of simulations Kturb was systematically varied from 0 to
2× 10−4 m2 · s−1. In the region of western intensification (x < Lint), however, Kturb was maintained
at the minimum value of Kturb

min WBC = 2× 10−4 m2 · s−1. This restriction was implemented to prevent
excessive convection in the regions where the western boundary current, transporting relatively warm
and light water northward, enters locations with much higher target surface density. Each simulation
was integrated forward for at least 200 years using a time step of 480 s, which was sufficient to produce
quasi-steady circulation patterns.

Figures 4 and 5 present a typical final state realized in our numerical experiments. This simulation
has been performed assuming purely double-diffusive interior mixing, with Kturb = 0 for
x > Lint = 1000 km. Figure 4a shows the horizontal temperature distribution and the velocity pattern
at z = −500 m. As expected, the flow field is dominated by clockwise circulation in the subtropical
region (1/4Ly < y < 3/4Ly) where wind forcing is anticyclonic. A vertical zonal section of temperature
at y = 0.5Ly is shown in Figure 4b. Clearly visible is a well-defined thermocline with relatively
warm water extending several hundred meters downward from the surface. Figure 5 presents
a three-dimensional view of the isopycnal ρ = ρav, where

ρav =
ρmax + ρmin

2
(19)

and ρmax (ρmin) represents the maximal (minimal) density in the computational domain. The color
coding represents the values of the density ratio on this isopycnal. The observed range of density ratios
1 < Rρ < 3 indicates that fingering is active on this isopycnal and that its intensity is relatively high.
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realistic three-dimensional setting, the diagnostics of large-scale simulations will be focused on 
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vertical coordinate: 
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Figure 4. The final state (t = 200 years) realized in the numerical experiments with double-diffusive
mixing (the constant flux ratio case): (a) The horizontal temperature distribution and velocity pattern
at z = −500 m; (b) The zonal section of temperature at y = 0.5Ly. Clearly visible is a well-defined
thermocline with relatively warm water extending several hundred meters downward from the surface.
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Color coding represents the density ratio distribution on this isopycnal. The observed range of density
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3.2. Diapycnal Velocity

The analysis in Section 2 pertained to steady one-dimensional systems in which diapycnal volume
transport is associated with vertical advection. To quantify diapycnal fluxes in a more realistic
three-dimensional setting, the diagnostics of large-scale simulations will be focused on diapycnal
velocity w∗ [37,38] which is generally dissimilar to the vertical velocity (w). Diapycnal velocity can be
defined by rewriting governing equations in terms of density (rather than z) as a vertical coordinate:

w∗ = w(x, y, ρ)− d
dt

z(ρ) (20)

where
d
dt

z(ρ) ≡ ∂z(ρ)
∂t

+ u
∂z(ρ)

∂x
+ v

∂z(ρ)
∂y

(21)

In Equation (21),
∂z(ρ)

∂x
= −ρx

ρz
and

∂z(ρ)
∂y

= −
ρy

ρz
represent the slopes of isopycnal surfaces in x

and y. For steady-state circulation patterns, Equation (20) reduces to

w∗ =
uρx + vρy + wρz

ρz
(22)
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Figure 6 illustrates the following physical interpretation of diapycnal velocity. Consider
a Lagrangian particle initially located at the motionless isopycnal surface ρ (point A). In the presence
of a finite cross-isopycnal flow, this particle will be advected by velocity

→
v = (u, v, w) to a new point

B, located off the isopycnal. Let C be the vertical projection of the point B onto the isopycnal surface.
In this configuration, the diapycnal velocity in Equation (22) represents the rate of increase of the

vertical separation of our Lagrangian point from the density surface: w∗ =
d
dt
[BC] =

dzB
dt
− dzC

dt
.

Note that the shadow point C, which remains on the isopycnal, can also alter its z-level and the
corresponding vertical velocity can be expressed as

wρ =
d
dt

zC = −u
ρx

ρz
− v

ρy

ρz
(23)

Thus, the isopycnal ascent rate wρ and diapycnal velocity w∗ represent two distinct components
of vertical velocity:

w = w∗ + wρ (24)
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Figure 6. Physical interpretation of diapycnal velocity. A Lagrangian particle initially located on
a motionless tilted isopycnal surface is advected from A to B by a cross-isopycnal flow. Point C is the
vertical projection of B onto the isopycnal surface. Diapycnal velocity represents the rate of the increase
in vertical separation of the Lagrangian point from the isopycnal surface.

Equation (22) indicates that in the absence of any diabatic water-mass transformation,
dρ

dt
=
→
v · ∇ρ = 0 and therefore diapycnal velocity is zero. Curiously, the reverse statement is

not necessarily correct. The double-diffusive example in Section 2.2 indicates that diapycnal velocity
can still be zero even in the presence of substantial diabatic mixing of properties.

An alternative explanation of low diapycnal velocity can be based on the dianeutral velocity
equation [4] which, for the conditions assumed in our study, reduces (in present notation) to:

w∗ = (Kturb)z + gN−2Kturb (αθzz − βSzz) + gN−2 (1− γ)βFS
z (25)

In the case of a purely double-diffusive system, the diapycnal transport is represented by the
third term on the right-hand side, which is proportional to (1− γ). Since the flux ratio in the ocean
(Equation (11)) is rather close to unity, relatively low values of diapycnal velocity are expected
even when the stratification cannot be accurately described by the predominantly one-dimensional
Munk-type model.

The following analysis will therefore attempt to determine whether, and to what extent, w∗ is
suppressed by double-diffusion in the more realistic three-dimensional systems.

3.3. Diapycnal Transport in the Double-Diffusive and in the Turbulent Ocean

First, the proposed diagnostics have been applied to the double-diffusive experiment shown in
Figures 4 and 5. Diapycnal velocity was computed using Equation (22) and evaluated at the isopycnal
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surface ρ = ρav. The results are plotted (Figure 7a) for the interior region (Lint < x < Lx) where mixing
is exclusively double-diffusive. The same procedure was then applied to the turbulent experiment
(Figure 7b). The latter was designed in the same way as the baseline double-diffusive run, except that
the vertical mixing was assumed to be exclusively turbulent with

Kturb = 2× 10−5 m2/s (26)

The comparison of diapycnal velocities in these experiments reflects the dramatic difference
in the way double-diffusion and turbulence affect diapycnal transport. Over most of the isopycnal
surface, the double-diffusive w∗ are on the order of ∼ 5 × 10−9 m/s or less (both positive and
negative values are observed). On the other hand, the turbulent w∗ is mostly positive and is
larger by at least an order of magnitude (∼ 5 × 10−8 m/s). The difference between Figure 7a,b
becomes particularly striking when we recall that typical T-S diffusivities in the two experiments are
comparable. For instance, the volume-averaged diffusivities in the double-diffusive experiment are(

Kdd
T , Kdd

S

)
= (1.07, 2.18) × 10−5 m2/s, and these values are similar to the turbulent diffusivity

(Equation (26)).
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Figure 8a presents the mean diapycnal velocity evaluated at various isopycnal surfaces * ( )isow ρ . In 
computing *

isow , we excluded the contribution from two regions with elevated turbulent diffusivity: 
(i) the western intensification region ( intx L< ) and (ii) the near surface region ( 250 mz > − ) where 
some isopycnal surfaces enter the mixed layer, particularly in the cold Northern parts of the domain. 
Diapycnal velocity *

i s ow  was evaluated for both turbulent and double-diffusive experiments and 
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Figure 7. Diapycnal transport in the double-diffusive and turbulent oceans. Diapycnal velocity (w∗)
is evaluated at the average isopycnal surface ρ = ρav in the ocean interior (x > Lint) and shown for
the double-diffusive (a) and turbulent (b) experiments. In the double-diffusive case, typical values
of w∗ are on the order of ∼ 5× 10−9 m/s or less with both positive and negative values observed.
In the turbulent experiment, diapycnal velocities are mostly positive and larger by at least an order of
magnitude (∼ 5× 10−8 m/s).

Figure 8a presents the mean diapycnal velocity evaluated at various isopycnal surfaces w∗iso(ρ).
In computing w∗iso, we excluded the contribution from two regions with elevated turbulent diffusivity:
(i) the western intensification region (x < Lint) and (ii) the near surface region (z > −250 m) where
some isopycnal surfaces enter the mixed layer, particularly in the cold Northern parts of the domain.
Diapycnal velocity w∗iso was evaluated for both turbulent and double-diffusive experiments and
referenced (Figure 8a) to the average depth of isopycnal surfaces hiso(ρ). Figure 8a shows that turbulent
diapycnal velocity (blue curve) substantially exceeds the double-diffusive w∗iso (green curve) for most
isopycnals. In both cases, relatively large values of w∗iso were found at the base of the main thermocline
(hav ∼ 1000 m). Diapycnal velocity in the turbulent experiment was also greatly amplified in the abyssal
region ( h→ 3000 m) whereas no such amplification occurred in the double-diffusive simulation.
It is interesting to note that the patterns of isopycnal-averaged diapycnal velocity are qualitatively
similar to the corresponding local vertical profiles. For instance, in Figure 8b we plot the diapycnal
velocity profile at the center of the model domain: w∗loc = w∗(0.5Lx, 0.5Ly, z). Local diagnostics also
indicate that the diapycnal velocity in the turbulent ocean greatly exceeds the double-diffusive w∗.
Thus, the double-diffusive insulation effect considered in this study represents both the integral and
the local property of large-scale flows.
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)
. Both diagnostics indicate that

diapycnal velocity in the turbulent case (indicated by the blue curves) substantially exceeds that in the
double-diffusive ocean (green curves). The patterns of w∗iso and w∗loc are qualitatively similar.

An attempt has also been made to determine the constraints on diapycnal velocity in an ocean
experiencing vertical mixing due to a combination of double-diffusion and mechanically generated
turbulence. For that, we performed a series of simulations in which Kturb was systematically varied,
while retaining the parameterization (Equations (11)–(13)) for double-diffusion. Diapycnal velocity
was computed and evaluated as previously (Figures 7 and 8). As expected, we find that diapycnal
transport intensifies with the increase of the fraction of the overall mixing attributed to turbulence.
Figure 9 presents the variation of the isopycnal-averaged diapycnal velocity w∗av = w∗iso(ρav) at the
isopycnal surfaces ρ = ρav in Equation (19) as a function of Kturb. These diagnostics also support our
interpretation of double-diffusive mixing as an insulating mechanism. When Kturb is less than typical
values for Kdd

S and Kdd
T , the overall system behaves like the fully double-diffusive case (e.g., Figure 7a).

Values of mean diapycnal velocity are on the order of ∼ 5 × 10−9 m/s or less for experiments
with Kturb ≤ 2× 10−6 m2/s. Conversely, simulations with Kturb ≥ Kdd

S , Kdd
T ∼ 2× 10−5 m2/s are

characterized by w∗ on the order of ∼ 5× 10−8 m/s or greater.Fluids 2016, 1, 25 13 of 27 
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of Kturb. The diagnostics are based on a series of simulations which incorporate both double-diffusive
and turbulent mixing. Note the monotonic increase in w∗av with increasing Kturb.



Fluids 2016, 1, 25 13 of 25

3.4. The Role of the Flux Ratio

The foregoing experiments have illustrated the dramatic differences in diapycnal volume flux in
double-diffusive and turbulent systems. The question that naturally arises at this point is what aspect of
double-diffusion makes it so effective in blocking diapycnal volume transport? Theoretical arguments
presented in the Appendix suggest that, at least in one-dimensional models, the range of diapycnal
velocities is controlled by the effective variation in the flux ratio (γ). Double-diffusive systems are
characterized by a relatively uniform γ. For instance, Radko and Smith [3] find that as the density
ratio increases from Rρ = 1.1 to Rρ = 3, the flux ratio decreases by ∆γ ∼ 0.15. The flux ratio realized
in turbulent fluids

(
γ = Rρ

)
varies over the same interval much more (∆γ = 1.9), which suggests

significantly larger values of diapycnal velocity. In particular, the one-dimensional model (Appendix)
predicts that w∗ ∝ ∆γ. To determine whether these conclusions remain relevant for three-dimensional
systems, we have performed an additional series of four double-diffusive simulations with variable
flux ratio patterns.

The new simulations were identical to the baseline double-diffusive experiment (Figures 3 and 4)
in all respects except for the chosen flux ratio model, which assumed that γ varies linearly with the
density ratio:

γ
(

Rρ

)
= γ0 + δ

(
Rρ − 1

)
(27)

The flux ratio models used in these simulations are shown in Figure 10a, along with the baseline
(δ = 0) experiment, and the corresponding parameter values are δ = 0, 0.25, 0.5, 0.75, 1 and
γ0 = 0.85, 0.8875, 0.925, 0.9625, 1 respectively. The negative values of δ have not been considered
since the decreasing γ

(
Rρ

)
relation results in the formation of thermohaline staircases [39–41].

The presence of staircases, characterized by nearly homogeneous interior convecting layers, would
greatly complicate the diagnostics of diapycnal velocity (Equation (22)). Thus, the flux ratio pattern in
Figure 10a gradually changes from the zero-slope baseline experiment (γ = 0.85) to the one realized
in the turbulent model

(
γ = Rρ

)
. In all experiments, however, we retain the double-diffusive mixing

parameterization (Equations (12) and (13)); the corresponding KS(Rρ) pattern is shown in Figure 10b.Fluids 2016, 1, 25 14 of 27 
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Figure 10. The assumed patterns of the flux ratio (a) and salt diffusivity (b) used for parameterization
of double-diffusion in the numerical simulations (Section 3.4).

As previously (e.g., Figure 9), our analysis is focused on the properties of w∗av—the
isopycnal-averaged diapycnal velocity calculated for each simulation along the density surface
ρ = ρav—and these results are summarized in Figure 11. The diapycnal velocity for the δ = 0
case is very weak (w∗ ∼ 10−9 m/s) and negative. However, as δ increases and the flux ratio becomes
less and less uniform, w∗av monotonically increases. Finally, for δ = 1, which corresponds to the
turbulent flux ratio model

(
γ = Rρ

)
, the average diapycnal velocity increases to w∗av ≈ 5× 10−8 m/s.
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Diapycnal velocities in this case become comparable to those realized in the fully turbulent model
(Figure 7b). The pattern of w∗av(δ) in Figure 11 can be reasonably well described as a linear relation
and is broadly consistent with the one-dimensional theoretical model developed in the Appendix
(see Figure A2).
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3.5. Forced Simulations

The previous experiments addressed the evolution of diapycnal transport driven by surface wind
and thermohaline forcing through relaxation of temperature and salinity at the surface. To explore the
effectiveness of double-diffusion in constraining diapycnal velocity under more controlled conditions,
another series of “forced” experiments was performed in which the vertical velocity was set at the
target value above the sea-floor and below the ocean surface. The interior upwelling was implemented
in MITgcm by relaxing the horizontal velocities in the surface and bottom boundary layers to the
prescribed convergent (at the bottom) and divergent (below the surface) patterns. The interior
upwelling was balanced by downwelling in the vicinity of the Northern boundary. Wind forcing was
not applied. One of the goals of the forced experiments was the determination of system behavior
when the target vertical velocity significantly exceeds the anticipated constraint on diapycnal velocity.

The first experiment was performed using the fully turbulent mixing model with
KT = KS = 10−4 m2/s—the nominal Munk [9] diffusivity—and the target value for vertical velocity
was 10−7 m/s. The vertical T-S profiles at the center of the model domain

(
0.5Lx, 0.5Ly

)
after 200 years

of integration are shown in Figure 12a. As expected for the turbulent model, which offers no constraints
on the magnitude of diapycnal velocity, stratification takes a regular exponential form. Figure 12b
presents the corresponding double-diffusive simulation. In this experiment, we used the functional
form (Equation (12)) for the parameterization of double-diffusion, but the amplitude was adjusted
upward to match the diffusivity assumed for the turbulent experiment (Figure 12a). The outcomes of
these two simulations are drastically different—the stratification in the double-diffusive simulation
becomes highly irregular, with fingering regions separated by deep well-mixed convecting layers.

It is also interesting to note that values of diapycnal velocity evaluated in the double-diffusive
regions remain small—at least an order of magnitude less than in the corresponding turbulent
experiment (Figure 12a) and, somewhat surprisingly, significantly less than the target vertical velocity.
These results underscore the robust and generic tendency of double-diffusion to constrain diapycnal
velocity in various configurations.
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experiment performed with double-diffusive mixing. Note the dramatic differences in the resulting
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4. Theoretical Model of Double-Diffusive Insulation

Numerical simulations (Section 3) indicate that double-diffusive insulation occurs over most of the
thermocline and it is not limited to Munk’s regions characterized by vertical advective-diffusive balance.
Therefore our next step represents an attempt to rationalize this phenomenon without relying on the
highly restrictive one-dimensional assumption used in Section 2. Over much of the main thermocline,
small-scale mixing constitutes a numerically small component of the full advective-diffusive balance of
temperature and salinity. Yet, this component is responsible for the diabatic water-mass transformation
and, ultimately, for the selection of diapycnal velocity. Diabatic dynamics can be brought to the fore
and analyzed theoretically using a procedure analogous to the one used by Rhines and Young [20],
albeit in a very different context.

Consider a zero-order steady state of the ocean in the absence of mixing. This state is characterized
by exact conservation of temperature, salinity, density and potential vorticity. This ideal basic state
is slightly perturbed by including weak diapycnal fluxes of heat and salt in the advection-diffusion
equations of motion. It is assumed that the perturbation results in only slight (first order) modification
of the corresponding ideal zero order solution. The perturbed state is governed by

d
dt

T =
→
v · ∇T =

d
dt

∣∣∣∣
ρ

T + w∗
∂T
∂z

= −∂FT
∂z

d
dt

S =
→
v · ∇S =

d
dt

∣∣∣∣
ρ

S + w∗
∂S
∂z

= −∂FS
∂z

(28)

where
d
dt

∣∣∣∣
ρ

≡ u
∂

∂x
+ v

∂

∂y
+ wρ

∂

∂z
and wρ is given in Equation (23). Figure 13 represents the typical

circulation pattern in the subtropical ocean on an arbitrarily chosen isopycnal surface ρ = ρ0. On this
surface, we select a closed temperature contour (T = T0). Since temperature, salinity and density
are assumed to be uniquely related through the linear equation of state, it follows that salinity is
also constant along the chosen contours (S = S0). These contours closely follow the corresponding
streamlines of the ideal basic state on which (T0, S0, ρ0) are conserved exactly.
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Figure 13. Schematic diagram illustrating the analytical model of double-diffusive insulation.
The model suggests that the average diapycnal velocity in the regions bounded by closed streamlines
on the density surfaces in the ocean interior (indicated by grey shading) is zero if vertical mixing is
double-diffusive but can be finite in the presence of mechanically generated turbulence.

The following analysis is pivoted about the time integrals of Equation (28) along such
closed contours: 

u
w∗

∂T
∂z

dt = −
u ∂FT

∂z
dt

u
w∗

∂S
∂z

dt = −
u ∂FS

∂z
dt

(29)

The major simplification here is achieved by elimination of the zero order advective terms.
Combining Equation (29) with the double-diffusive parameterization (Equation (8)), we arrive at

z
w∗
(
α

∂T
∂z
− γ0β

∂S
∂z

)
dt = 0 (30)

The next step is the change of the integration variable from time (t) to the length coordinate
measured along the contours (l), which reduces Equation (30) to

z
w∗
(
α

∂T
∂z
− γ0β

∂S
∂z

)
dl∣∣∣→v h

∣∣∣ = 0 (31)

where
∣∣∣→v h

∣∣∣ is the absolute value of horizontal velocity. The mid-latitude circulation patterns
(e.g., Figure 12) consist of two distinct regions: relatively slow geostrophic interior (Lint < x < Lx) and
swift western boundary currents (0 < x < Lint). The inspection of Equation (31) indicates that even
if a streamline passes through both regions (Figure 13), the dominant contribution to Equation (31)
comes from the interior geostrophic region, where

∣∣∣→v h

∣∣∣ is much less (by a factor Lx/LWBC >> 1) than
the velocity in the boundary current. Neglecting the small contribution from the region of western
intensification allows us to focus exclusively on geostrophic dynamics and express the horizontal
velocity components as follows: 

f v =
∂M
∂x

∣∣∣∣
ρ=ρ0

f u = − ∂M
∂y

∣∣∣∣
ρ=ρ0

(32)
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where M is the Montgomery potential. This system (Equation (32)) indicates that the contours of
integration in Equation (31) at the leading order coincide with the isopleths of M. Another simplification
brought by geostrophic approximation is that the Ertel potential vorticity in this case takes a relatively
simple form

q = f
∂C
∂z

(33)

where C is any conservative tracer. Recall that the perturbed solution is assumed to be only slightly
different from its adiabatic counterpart, which conserves temperature, salinity, and potential vorticity in
the Lagrangian sense. Thus, we conclude that at the leading order (i) potential vorticity q is conserved
along the contours of integration and (ii) the tracer C can be represented by any combination of
temperature and salinity. Given the structure of the line integral (Equation (31)), we expect significant
simplifications to occur for

C = αT − γ0βS (34)

Since potential vorticity is approximately uniform along each streamline, we divide Equation (31)
by q, entering it directly into the integrand, which reduces the line integral to

z

int

w∗

f
dl∣∣∣→v h

∣∣∣ = 0 (35)

Here, the notation “int” is used to emphasize that the integration is carried out only over the
geostrophic interior. By virtue of Equation (32), we further simplify Equation (35) to

z

int

w∗
dl
|∇M| = 0 (36)

The final step is the transition from the line integrals to the area integrals over the regions bounded
by closed contours of the Montgomery potential (M = M0):

x

M>M0
int

w∗dxdy = 0 (37)

Equation (37) shows that there could be no net diapycnal transport across broad regions on
the isopycnal surfaces laterally bounded by closed streamlines, which confirms and rationalizes the
double-diffusive insulation effect discussed and numerically modeled in Section 3. The foregoing
arguments are certainly not relevant for the turbulent ocean. In the turbulent case, the flux laws do
not satisfy Equation (8) and therefore Equation (30)—and all that follows—does not apply. Hence,
no analogous constraints on diapycnal velocity are expected to arise in purely turbulent systems.

5. Discussion

This communication draws attention to the dramatic differences in the dynamics of diapycnal
transport realized when the dominant mixing agent is double-diffusion and when mixing is controlled
by mechanically-generated turbulence. Double-diffusion occurs in numerous geophysical and
astrophysical fluid systems. In the ocean, nearly half of water masses are potentially affected by
double-diffusive mixing [42]. Double-diffusion is also likely to play a major role in the dynamics of
massive stars and giant planets [43,44]. Unlike mechanically-generated turbulence, double-diffusion is
characterized by unequal eddy diffusivities of density components, which depend on the background
density ratio. This feature is ultimately responsible for rather unique properties of double-diffusive
mixing, such as its ability to actively constrain diapycnal volume transport—all smooth steady
solutions of the T-S advection-diffusion equations are necessarily characterized by low diapycnal
velocities. This property is contrasted with the passive behavior of systems dominated by mechanically
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generated turbulence, where it is possible to construct consistent steady-state solutions for an arbitrarily
wide range of diapycnal velocities.

Our interest in the problem of diapycnal volume transport was ignited by the need to
fully understand dynamics of the oceanic thermohaline circulation and associated meridional
overturning. The classical view [9] ascribes small-scale diapycnal mixing a critical role for its
establishment and maintenance. This notion has profoundly affected the evolution of physical
oceanography. It motivated development of the extensive small-scale mixing research program,
largely aimed at quantification of the average diapycnal diffusivity in the ocean [16,45]. It is
commonly assumed that the increase in diapycnal diffusion of temperature and salinity necessarily
amplifies the diabatic component of the meridional overturning [46]. Our study presents a peculiar
counter-example of this tendency by showing that mixing can have an adverse impact on overturning.
Using a suite of basin-scale simulations and theoretical models, we demonstrate that the inclusion
of double-diffusion can place rather severe constraints on the magnitude of vertical diapycnal
velocity. In the extreme case when vertical mixing is dominated by double-diffusion, typical values of
diapycnal velocity (w∗ ∼ 5× 10−9 m/s) are less, by at least an order of magnitude, than w∗ driven by
mechanically-generated turbulence with comparable T-S diffusivities. Simulations indicate that these
constraints are realized both locally and in the isopycnal-average sense. In essence, double-diffusion
acts to seal the thermocline by preventing the leakage of seawater (both upward and downward)
across the isopycnal surfaces on which double-diffusion is a dominant mixing process. Mechanically
generated turbulence, on the other hand, offers no restrictions on diapycnal velocity. When both
double-diffusion and turbulence are present, the constraints on w∗ loosen (tighten) with the increase
(decrease) of the fraction of the overall mixing attributed to turbulence.

When the contributions to mixing from double-diffusion and turbulence are comparable—the
regime which is perhaps realized in the central Atlantic thermocline [32]—the maximum diapycnal
velocity is on the order of ∼ 10−7 m/s. This value is comparable to current estimates of diapycnal
velocity, which raises an intriguing possibility that diapycnal transport could be controlled by
constraints on w∗ imposed by double-diffusion. This suggestion is distinct from the ideas expressed
by mainstream models of thermohaline circulation [47] in which the T-S advective-diffusive dynamics
constitute only a part of the problem. Ultimately, diapycnal velocity is selected by invoking
three-dimensional large-scale balances involving both momentum and density. It should be realized,
however, that the latter proposition is based on mixing models with uniform and equal vertical
diffusivity (KT = KS = const). The examples in this paper indicate that such models may not capture
all the relevant dynamics and therefore we urge caution in conceptualizing the thermohaline circulation
based on oversimplified mixing parameterizations.

Our attempts to force the double-diffusive thermocline by applying a large vertical velocity which
lies outside of the permitted range—the range in which smooth regular solutions can be found—have
led to rather dramatic transformations of the stratification into a series well-defined convective layers
separated by stratified interfaces. In this regard, it should be noted that one of the most interesting
and controversial problems of double-diffusive theory concerns the origin and dynamics of so-called
thermohaline staircases—stepped structures in the vertical temperature and salinity profiles. Several
hypotheses have been proposed to explain the formation mechanisms [39,48] and our analysis of the
“forced” experiments (Section 3.5) may add another candidate to the list. Thermohaline staircases
could form as a response to strong externally imposed vertical advection, provided that the magnitude
of vertical velocity is such that the advective-diffusive balance of Munk’s [9] type can only be satisfied
by discontinuous step-like solutions.

Of course, there are a number of uncertainties in the presented model, particularly with regard
to its ability to incorporate all relevant dynamics of the oceanic circulation. For instance, it is not
clear how resilient the double-diffusive insulating blanket is in the presence of active mesoscale
variability, which can also impact diapycnal transport [38]. The processes discussed in this study
could be affected by the nonlinearities of the equation of state [49]. Thus, the quantitative accuracy
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of double-diffusive insulation theory is readily questioned. However, the differences in the way
double-diffusion and turbulence affect diapycnal transport identified here are suggestive and are likely
to be realized in Nature. In this regard, it should be emphasized that large-scale modeling studies
which take into account double-diffusion [26,27,50] report systematic reduction in the strength of
meridional overturning. Although the extent of this reduction varies considerably between models,
it is possible that these results can be attributed to the double-diffusive insulation effect. Finally,
it should be mentioned that while the specific solutions in this paper are based on the assumed
parameterizations of double-diffusive fluxes, which require further refinements and testing, additional
experiments (not shown) indicate that our results are not particularly sensitive to the choice of the
functional relations for KT(Rρ) and KS(Rρ). Therefore, we expect our qualitative conclusions to be
sufficiently robust.
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Appendix A

Appendix A.1. Asymptotic Solutions for the Double-Diffusive Model with Weak Variation in the Flux Ratio

The one-dimensional advection-diffusion Equation (2) are non-dimensionalized using H as the
unit of length and kT/H as the unit of velocity. The expansion/contraction coefficients of the linear
equation of state (α,β) are incorporated in (T, S), and α(Ttop − Tbot) is used as the scale for both
temperature and salinity. The non-dimensionalization is implemented as follows:

z→ zH − Hbot

w→ K0

H
w

T →
(
Ttop − Tbot

)
T + Tbot

S→ α

β

(
Ttop − Tbot

)
S + Sbot

(38)

The governing Equation (2) and boundary conditions (Equation (3)) in non-dimensional units
reduce to: 

w
∂T
∂z

=
∂

∂z

(
KT
kT

∂T
∂z

)
w

∂S
∂z

=
∂

∂z

(
KS
kT

∂S
∂z

) and

 (T, S) =
(

1, R−1
0

)
at z = 1

(T, S) = (0, 0) at z = 0
(39)

The purpose of the following theory is to examine solutions of Equation (39) in the regime
where the heat/salt buoyancy flux ratio γ is nearly uniform. This assumption is generally supported
by numerical, theoretical and experimental evidence (see the discussion in [41]). The variation in
the flux ratio is fairly gentle, which makes it tempting to approximate γ by a constant in theoretical
models [30,32]. However, this approximation, while simplifying the analytical development, also filters
out some key processes affecting the dynamics of double-diffusive fluids [15,38,47]. Therefore, a more
physical and precise model of the flux ratio incorporates weak variability which is determined by the
density ratio: γ = γ(Rρ).

Appendix A.2. General Solutions

In order to extend the double-diffusive constant flux ratio model in Section 2, we consider the
case when the variation in flux ratio is small but non-zero:

γ = γ0 + ε
2γ1(Rρ) (40)
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where ε << 1. As is common in weakly nonlinear models [51], we search for a solution of the
governing Equation (39) using the power series in ε:

T = T0(z) + εT1(z) + ε2T2(z) + ...

S = S0(z) + εS1(z) + ε2S2(z) + ...

w = w0 + εw1 + ε
2w2 + ...

(41)

These power series are substituted in the governing Equation (39) and the terms of the same order
in ε are collected. At the zero order, we essentially arrive at the constant flux ratio model discussed in
Section 2.2, which requires zero diapycnal velocity. The zero order equations for T0(z) and S0(z) are
satisfied by the linear gradients: 

T0 = z
S0 = R−1

0 z
w0 = 0.

(42)

The boundary conditions for the individual T-S components become:

Ti(0) = Si(0) = Ti(1) = Si(1) for i = 1, 2, ... . (43)

The first order equations are given by
K′S(R0)γ0

(
∂2T1

∂z2 − R0
∂2S1

∂z2

)
+ KS(R0)γ0

∂2S1

∂z2 = w1

K′S(R0)

(
∂2T1

∂z2 − R0
∂2S1

∂z2

)
+ KS(R0)

∂2S1

∂z2 =
w1

R0

(44)

Multiplying the second equation by γ0 and subtracting from the first yields:

w1 = 0 (45)

and integrating Equation (44) twice in z, subject to Equation (45) and the boundary conditions
(Equation (43)), we arrive at:

T1 =
K′S(R0)R0 − KS(R0)

K′S(R0)
S1 (46)

Using Equations (45) and (46), we write down the second order equations:
K′S(R0)γ0

(
∂2T2

∂z2 − R0
∂2S2

∂z2

)
+ KS(R0)γ0

∂2S2

∂z2 +
γ0R0K′′S (R0)K2

S(R0)

K′2S(R0)

∂S1

∂z
∂2S1

∂z2 = w2

K′S(R0)

(
∂2T2

∂z2 − R0
∂2S2

∂z2

)
+ KS(R0)

∂2S2

∂z2 +
R0K′′S (R0)K2

S(R0)

K′2S (R0)

∂S1

∂z
∂2S1

∂z2 =
w2

R0

(47)

Multiplying the second equation in Equation (47) by γ0 and subtracting from the first one yields:

w2 = 0 (48)

The third order T-S equations are obtained in a similar manner. When the third order salinity
equation is multiplied by γ0 and subtracted from the third order temperature equation, we obtain:

K2
S(R0)γ

′
1(R0)

∂2S1

∂z2 = w3K′S(R0)(γ0 − R0) (49)
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which is solved for S1(z) using the boundary conditions (Equation (43)):

S1 =
1
2

w3K′S(R0)(γ0 − R0)z(z− 1)
K2

S(R0)γ′1(R0)R0
(50)

Combining Equation (50) with Equation (46), we obtain an explicit expression for T1(z):

T1 =
1
2

w3
(
K′S(R0)R0 − KS(R0)

)
(γ0 − R0)z(z− 1)

K2
S(R0)γ′1(R0)R0

(51)

The expansion can be similarly extended to higher orders. The significance of the foregoing
analysis lies in the suggestion that similarity solutions exist in the asymptotic sector

(T′, S′, w) ∝
(
ε, ε, ε3

)
(52)

where (T′, S′) ∝ (T, S)− (T0, S0).

Appendix A.3. Specific Solutions

To illustrate the structure of the asymptotic solution and examine its accuracy, we now consider
specific patterns of KT(Rρ) and KS(Rρ) in Equations (12) and (13). The flux ratio is taken as

γ(Rρ) = γ0 + δ(Rρ − 1) (53)

which conforms to the assumed asymptotic pattern (Equation (40)) for ε =
√
|δ|. The following

explicit expressions are obtained for R0 = 2, γ0 = 0.85, and (w1, w2, w3, w4, w5, ...) = (0, 0, W, 0, 0, ...).
In this case,

w = ε3W (54)

and Equations (50) and (51) reduce to:{
T1 = 3.67× 10−3Wz(1− z)

S1 = 8.48× 10−3Wz(1− z)
(55)

Further extending the asymptotic expansion, we obtain the second order{
T2 = 7.99× 10−6W2z(z− 1)(2z− 1)

S2 = 1.20× 10−6W2z(z− 1)(2z− 1)
(56)

and third order T-S components:

{
T3 = Wz(1− z)(8.19× 10−8W2z2 − 8.19× 10−8W2z + 1.13× 10−8W2 + 2.40× 10−4)

S3 = Wz(1− z)(1.34× 10−8W2z2 − 1.34× 10−8W2z + 2.59× 10−9W2 + 9.77× 10−4).

To validate the foregoing asymptotic theory, we also solve the governing equations using the
numerical ODE solver of the Maple software package. A meaningful comparison of the asymptotic
and numerical solutions requires some information about relevant values of δ, which represents the
variation in the flux ratio. The pattern of the flux ratio γ = γ(Rρ) has been studied analytically [52],
numerically [24,32], experimentally [25] and observationally [7]. These studies are mutually consistent,
suggesting that a reasonable choice of δ in the ocean would be |δ| ∼ 0.1− 0.2. Therefore, in Figure A1
we present the numerical and asymptotic solutions for R0 = 2, δ = 0.1 (corresponding to ε = 0.32)
and W = −500 (corresponding to w = −15.81). The black curve represents the numerical solution for
the (non-dimensional) departure of temperature profile from the uniform gradient T′(z) = T(z)− z.
The blue, green, and red curves represent the power series in ε that are truncated at the first, second,
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and third order respectively. The analytical curves rapidly converge to the numerical solution with
increasing order of the expansion. The third order asymptotic closely approximates the fully nonlinear
solution even for the relatively large ε used for the calculation in Figure A1.

Appendix A.4. Constraints on the Diapycnal Velocity

In addition to the parameters used in Figure A1, we have examined numerous other cases,
all of which indicate that the asymptotic series in ε are remarkably accurate in describing the steady
solutions of the one-dimensional advection-diffusion Equation (39) provided that such solutions exist.
The question arises whether these series could be used to formulate simple explicit conditions for the
existence of solutions.

If |W| ≤ O(1), then all coefficients of the power series in ε for T and S are of order one. Such series
are generally characterized by a finite radius of convergence. This implies that for |W| ≤ O(1),
solutions always exist as long as ε is sufficiently small. What happens when |W| >> 1? In this case,
the asymptotic series for temperature and salinity can be approximated by{

T = a0 + (Wε)a1 + (Wε)2a2 + (Wε)3a3 + ...

S = b0 + (Wε)b1 + (Wε)2b2 + (Wε)3b3 + ...
(57)

where the coefficients (ai, bi) are independent of W and ε. These power series for (Wε)are also valid
only within a finite radius of convergence. Thus, denoting the radius of convergence of the series in
Equation (57) by rC, we can expect the existence of regular solutions for T and S for as long as

|Wε| < rC (58)

When Equation (58) is rewritten in terms of w = ε3W and |δ| = ε2, we arrive at the explicit
constraint on the diapycnal velocity:

|w| < |δ| rC (59)

This result is highly suggestive—Equation (59) implies that the range of diapycnal velocities is
proportional to the effective variation in the flux ratio. To systematically test this prediction, we have
performed a series of numerical calculations in which we varied δ and w. The results obtained with
R0 = 2 and the flux parameterizations in Equations (12), (13) and (53) are shown in Figure A2. The dots
in (δ, w) parameter space represent all attempts to solve the governing equations. The experiments
in which regular solutions have been found are indicated by heavy dots, whereas the light dots
represent conditions for which the numerical search for solutions failed. The results in Figure A2 are
consistent with the theoretical prediction in Equation (59). All solutions are largely confined to two
sectors—corresponding to positive and negative δ—bounded by straight lines emanating from the
(0,0) point in the parameter space.

It is also of interest to examine the relevant range of diapycnal velocities in the double-diffusive
zone in Figure A2. Assuming that the variation of flux ratio in the ocean is δ ≈ 0.15, we obtain
non-dimensional constraint |w| ≤ 40. This estimate can be expressed in terms of dimensional variables
by reverting the non-dimensionalization Equation (38). For kT = 1.4× 10−7 m2/s and H ∼ 1000 m,
we obtain the maximum dimensional diapycnal velocity of

max |wdim| ∼ 5× 10−9 m/s (60)

This estimate suggests that double-diffusion could severely constrain the diapycnal velocity.
To interpret Equation (60) in the global circulation context, let us recall that the nominal value of
diapycnal velocity, commonly used in climate models [42], is ∼ 10−7 m/s, exceeding Equation (60) by
more than an order of magnitude. Thus, the diapycnal transport, both upward and downward, can
be essentially blocked in the ocean regions where mixing is dominated by double-diffusion. Finally,
we note that Equation (60) was obtained on the basis of one-dimensional arguments. Nevertheless,
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the range of diapycnal velocities realized in three-dimensional double-diffusive simulations (Section 3)
is of the same order as Equation (60) and much less than in the corresponding turbulent experiments
(e.g., Figures 7 and 8).Fluids 2016, 1, 25 24 of 27 
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Figure A1. The non-dimensional departure of temperature from the linear gradient T′(z) = T(z)− z.
T′ is computed numerically (black curve) and compared with the calculation based on the asymptotic
expansion in ε truncated at the first, second, and third orders (blue, green, and red curves respectively).
For ε = 0.32 (δ = 0.1), the numerical result is almost indistinguishable from the third order
asymptotic prediction.
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