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Abstract: The relations between the kinetic energy spectrum and the second-order longitudinal
structure function for 2D non-divergent flow are derived, and several examples are considered.
The transform from spectrum to structure function is illustrated using idealized power-law spectra of
turbulent inertial ranges. The results illustrate how the structure function integrates contributions
across wavenumber, which can obscure the dependencies when the inertial ranges are of finite extent.
The transform is also applied to the kinetic energy spectrum of Nastrom and Gage (1985), derived
from aircraft data in the upper troposphere; the resulting structure function agrees well with
that of Lindborg (1999), calculated with the same data. The transform from structure function
to spectrum is then tested with data from 2D turbulence simulations. When applied to the (Eulerian)
structure function obtained from the transform of the spectrum, the result closely resembles the
original spectrum, except at the largest wavenumbers. The deviation at large wavenumbers occurs
because the transform involves a filter function which magnifies contributions from large separations.
The results are noticeably worse when applied to the structure function obtained from pairs of
particles in the flow, as this is usually noisy at large separations. Fitting the structure function to a
polynomial improves the resulting spectrum, but not sufficiently to distinguish the correct inertial
range dependencies. Furthermore, the transform of steep (non-local) spectra is largely unsuccessful.
Thus, it appears that with Lagrangian data, it is probably preferable to focus on structure functions,
despite their shortcomings.
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1. Introduction

Large-scale turbulence in the ocean is responsible for the fluxes of energy, enstrophy and tracers
across scales. Turbulence, for example, facilitates the dissipation of energy injected by the winds [1].
However, the exact nature of the turbulence remains uncertain because it is difficult to quantify
kinetic energy spectra in the ocean. Satellite data, which has the spatial coverage required for such
quantification, is limited in horizontal resolution, which is of order of 100 km [2,3]. Shipboard
current measurements can produce finer resolution estimates, down to several kilometers, in targeted
regions [4,5]. However, there are still relatively few studies in which spectra have been calculated, and
the results often differ with region.

The present work concerns using Lagrangian data—specifically, the trajectories of pairs of drifting
buoys—to estimate Eulerian energy spectra. There is currently a wealth of Lagrangian data, both at
the surface and below the surface, with global coverage. The newest generation of surface drifters
in particular are tracked via the Global Positioning System (GPS), yielding positions with 10 m
accuracy. Thus, Lagrangian data offers the tantalizing possibility of measuring energy spectra down to
such scales, in most parts of the global ocean.

The study of particle pair or “relative” dispersion dates back to Richardson [6], who studied
the spreading of smoke from factory stacks . It was recognized subsequently that pair dispersion in
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turbulent flows depends on the kinetic energy spectrum, and Richardson’s observations were shown
to be consistent with a Kolmogorov energy spectrum [7]. Thus, relative dispersion offers a means for
deducing kinetic energy spectra in turbulent flows.

A number of studies have examined the connection between relative dispersion and turbulence
spectra [8–12]. “Local dispersion” occurs when pairs are influenced by eddies with scales comparable to
the pair separation and “non-local dispersion” when they are dominated by larger eddies. Under local
dispersion, the mean square pair separation (the dispersion) exhibits power-law growth, with an
exponent related to the slope of the energy spectrum [9]. Under non-local dispersion, the dispersion
grows exponentially in time.

In the atmosphere, exponential dispersion was observed at separations below 2000 km in balloon
experiments [13,14]. Exponential dispersion has also been observed at the ocean surface, at scales
below the Rossby radius of deformation [15–17]. The balloon- and drifter-derived results agree with
independent Eulerian estimates at these scales in the atmosphere [18] and ocean [4]. However, different
conclusions have also been made. The aforementioned balloon dispersion is possibly also consistent
with local dispersion [19], and there is evidence for local dispersion in the ocean as well, both at the
surface [20,21] and subsurface [22,23].

In all such cases though, the energy spectra were inferred from dispersion. However, under certain
conditions the energy spectra can be calculated directly from velocity differences from pairs of drifters.
The following focuses on this calculation in 2D flows, which are appropriate for large-scale motion in
the atmosphere and ocean. We examine the results in different applications, including atmospheric
spectra and 2D turbulence simulations.

2. Spectra and Structure Functions

In a homogeneous flow, the two-point velocity autocorrelation and the kinetic energy spectrum
are related via the Fourier transform [24]:

Rij(~r) =
∫ ∞

−∞

∫ ∞

−∞
Φij(k, l)ei~k·~r dk dl, Φij(k, l) =

1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
Rij(~r)e−i~k·~r drx dry, (1)

where:
Rij ≡< ui(~x +~r)uj(~x) > .

The brackets indicate an ensemble average; assuming ergodicity, this is calculated as an
area average over ~x. Similar relations apply in three dimensions as well, but we will focus on
two dimensions hereafter. For an isotropic flow, the spectrum depends only on the magnitude of the
wavenumber, K. Then correlation is given by:

Rij(r) = 2π
∫ ∞

0
Φij(K)Jo(Kr)K dK. (2)

Thus, Rij(r) is the Hankel transform of Φij. The kinetic energy is just the trace of Rij at
zero separation:

Etot =
1
2

Rii(0) =
∫ ∞

0
πΦiiK dK ≡

∫ ∞

0
E(K)dK, (3)

with summation implied for repeated indices. The inverse relation follows from the orthogonality
condition for Hankel transforms and is:

E(K) =
1
2

∫ ∞

0
Rii(r)KrJ0(Kr) dr. (4)

In homogeneous and isotropic flows, the two-point correlation can be determined from either
Eulerian or Lagrangian measurements.
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The velocity correlation, in turn, can be written in terms of the longitudinal ( f ) and transverse (g)
velocity correlations [24]:

Rij =
f − g

r2 rirj + gδij, (5)

where δij is one for equal indices and zero otherwise, and:

f (r) =< u‖(~x +~r)u‖(~x) >, g(r) =< u⊥(~x +~r)u⊥(~x) >, (6)

with parallel and perpendicular referring to the separation vector,~r. Relation (5) derives from symmetry
conditions relevant for isotropic matrices [24].

Imposing continuity in 2D requires:

∂

∂xi
Rij = 0 → g = f + r

∂ f
∂r

=
∂

∂r
(r f ), (7)

(see also [25–27]). (2D non-divergence is a somewhat restrictive assumption for the ocean.
The geostrophic velocities are 2D non-divergent, but deviations occur at smaller scales, where the
Rossby number is order one. At such scales, the flow is also less 2D, so a shift to 3D might be
considered). Using (7), Rii can be written:

Rii = f − g + 2g = f + g = f +
∂

∂r
(r f ). (8)

Substituting this into (4):

E(K) =
1
2

∫ ∞

0
[ f +

∂

∂r
(r f )]KrJ0(Kr) dr =

1
2

∫ ∞

0
f K2r2 J1(Kr) dr, (9)

after integration by parts, and assuming that f vanishes at infinity. The inverse relation is:

f (r) = 2
∫ ∞

0
E(K)

J1(Kr)
Kr

dK. (10)

Thus, E/(K2r) and K2r f are also a Hankel transform pair. Expressions (9) and (10) are the
2D counterparts of Batchelor’s expressions 3.4.16 [24].

A common measure used in analyzing turbulent flows is the second-order velocity structure
function [24,28]:

S2(r) ≡< |~u(~x +~r)− ~u(~x)|2 > . (11)

In a homogeneous and isotropic flow, the longitudinal component, S2l(r), can be measured from
the separation velocity of pairs of particles (e.g., [11]):

S2l(r) =< (
d
dt

rij)
2 > |r, (12)

where rij is the magnitude of the particle separation vector. Note that S2l on the left side of (12) is an
Eulerian measure while the average on the right side is Lagrangian. The brackets indicate that the
average is conditioned by r, the magnitude of the separation.

The structure function in turn is related to the longitudinal velocity correlation:

S2l(r) ≡< (u||(~x +~r)− u||(~x))
2 >= 2 f (0)− 2 f (r) = 2Etot − 2 f (r), (13)

assuming the flow is isotropic. Thus:

S2l(r) = 2
∫ ∞

0
E(K)(1− 2J1(Kr)

Kr
) dK. (14)
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Expression (14) is similar to Equation (3.1) of [9], except that the latter relates instead to the full
structure function. What differs is the factor in parentheses (the full expression has 1− J0(Kr)). The two
expressions behave similarly, however, acting as high pass filters (Figure 1). For small arguments
(Kr � 1), the filter is proportional to K2r2 (see below), while for large arguments, it approaches one.
Hence, S2l(r) asymptotes to twice the total kinetic energy at large separations.

The energy can be determined from the inverse relation, which follows from (9):

E(K) =
1
2

∫ ∞

0
[Etot −

S2l(r)
2

]K2r2 J1(Kr) dr. (15)

An important point here is that the filter, K2r2 J1(Kr), has no asymptotic limit for large values
of Kr. Even though divergence of the integral is avoided because [Etot − S2l(r)

2 ] → 0, the filter
magnifies the response at large separations. This hinders the inversion, as seen hereafter. Nevertheless,
a particle-derived structure function can, in principle, be used to calculate the energy spectrum.

3. Idealized Spectra

We first examine calculating the structure function from the spectrum. Consider an
idealized spectrum:

E(K) = E0(
K
Ko

)−α K0 < K < K1. (16)

The spectrum has a finite range (rather than extending from K = 0 to K = ∞) and thereby avoids
associated singularities.

The dependence of the longitudinal structure function on separation can be deduced using an
approximate version of the high pass filter in (14), based on the asymptotic limits of that filter:

HF =

{
K2r2

8 if Kr ≤ 2
√

2
1 if Kr > 2

√
2 .

(17)

This is plotted in Figure 1 (its validity as a substitute for the actual filter is demonstrated hereafter).
Using (17), the structure function (14) is approximately:

S2l(r) ≈ 2
∫ 2
√

2/r

0
E0(

K
Ko

)−α K2r2

8
dK + 2

∫ K1

2
√

2/r
E0(

K
Ko

)−α dK

=
E0Kα

0
4(3− α)

r2K3−α|2
√

2/r
K0

+
2E0Kα

0
1− α

K1−α|K1
2
√

2/r

(18)

for inverse separations in the spectral range. If α > 3 (a non-local spectrum) and the lower wavenumber,
K0, is sufficiently small, the integral is approximately:

S2l(r) ≈
E0K3

0
16π2(α− 3)

r2. (19)

The structure function increases as r2, regardless of how steep the spectrum is. If the slope is such
that 1 < α < 3 (local spectrum) and K1 is sufficiently large, the second term dominates:

S2l(r) ≈
2E0Kα

0
(α− 1)(2π)α−1 rα−1. (20)

For a Kolmogorov spectrum (α = 5/3), the structure function scales as r2/3. However, unless the
spectral range is long (K1 � K0), the other terms will contribute and cause deviations. This illustrates
the difficulty with examining the structure function alone: it mixes contributions from different parts
of the spectrum.
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Figure 1. The high pass filter, used in converting the energy spectra function (in red). The filter of
Bennett (1984) is shown for comparison (in blue). Also shown is the approximate filter (17) (the dashed
curve), based on the asymptotic limits of the full filter.

For large separations, r � 1/K0, the structure function is constant:

S2l(r) = 2
∫ K1

K0

E dK = 2Etot. (21)

Thus, the lower wavenumber limit, K0, determines the scale at which S2l flattens out.
The transform with α = 3 is shown in Figure 2 (the results with local spectra are qualitatively

similar). The case above is plotted in blue in the left panel, with K0 = 1 and K1 = 256. The two other
spectra peak instead at K = 5. The structure functions in the right panel were calculated numerically
from (14).

(a) (b)

Figure 2. Idealized enstrophy spectra ((a) panel) and the corresponding second-order structure
functions ((b) panel). The dashed curve in the right panel was calculated using the approximate
filter function in (17) and plotted in Figure 1.
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The structure function for the spectrum peaked at K0 is shown in blue in the right panel.
This increases more slowly than r2, illustrating the effect of having a finite wavenumber range. The two
other spectra exhibit a similar increase at small scales but level off sooner, due to having a larger
peak wavenumber. Note too that the difference at low wavenumbers between the two spectra with
K = 5 has little impact on the structure functions. This reflects the greater importance of the large
wavenumbers in (14).

In addition, there is the dashed curve in Figure 2, the structure function obtained using the
approximate filter in (17). This is nearly the same as the structure function obtained using the full filter,
which supports using (18) to infer the limiting behavior. The similarity implies that the oscillations
due to the Bessel function have little impact on the integrals.

4. The Nastrom and Gage (1985) Spectrum

For a more realistic example, consider a spectrum from the upper troposphere. Nastrom and
Gage [18] calculated zonal and meridional wavenumber spectra using data collected from commercial
aircraft over the United States. Lindborg [26] subsequently calculated longitudinal and transverse
structure functions, using the same data. Lindborg rationalized the structure functions using
asymptotic limits appropriate for the two inertial ranges seen in the Nastrom and Gage spectra,
specifically K−3 for separations from 2000 km to several hundred kilometers, and K−5/3 at
smaller scales.

However, one can estimate the longitudinal structure function directly from the spectra, using (14).
We extracted the zonal and meridional spectra from Figure 3 of [18] (the data were obtained digitally
using Engauge digitizer software (http://markummitchell.github.io/engauge-digitizer/)). Assuming
the flight tracks were primarily east–west, we used the zonal spectrum to approximate the longitudinal
component. We then evaluated (14), numerically.

The resulting second-order structure function is shown in the right panel of Figure 3.
The longitudinal structure function of [26] is the dotted curve, and the dashed line indicates twice
the zonal kinetic energy. The two structure functions agree well, except at the smallest scales where
the predicted S2l is less than the observed. This may reflect deviations from isotropy and/or 2D
non-divergence at small scales (e.g., [29]), as noted before. Nevertheless, the overall agreement is
very good.

(a) (b)

Figure 3. The zonal, meridional and total energy spectra extracted from Figure 3 of [18] ((a) panel).
The 2D longitudinal structure function calculated from the zonal energy spectrum is shown by the
solid curve in the (b) panel. Also shown is the structure function (dotted curve) calculated from data,
obtained from Figure 3 of [26]. The dashed horizontal line is the twice the zonal energy, calculated
from integrating the zonal spectrum. Reproduced with permission.

http://markummitchell.github.io/engauge-digitizer/
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5. Turbulence Spectra

Now, we consider calculating the spectrum from the structure function. For this, we employ data
from several 2D turbulence simulations, studied previously by [17]. The numerical code [30–32] solves
the barotropic vorticity equation:

∂

∂t
ζ + J(ψ, ζ) = F −D, (22)

where ψ is the velocity streamfunction, such that:

(u, v) = (−∂ψ

∂y
,

∂ψ

∂x
) .

In addition, ζ = ∂
∂x v − ∂

∂y u = ∇2ψ is the relative vorticity, J(a, b) = ∂
∂x a ∂

∂y b − ∂
∂x b ∂

∂y a is the
Jacobian operator and F andD are the applied forcing and dissipation. The domain is doubly-periodic,
with 5122 grid points and dimensions 2π × 2π. The forcing is isotropic and applied in specified
wavenumber ranges, with random phases in space and time. The amplitude was set so that the
final (dimensionless) kinetic energy was approximately 1.0. For dissipation, we employed linear
(Rayleigh) friction:

D = −Rζ . (23)

The model also has an exponential cut-off filter which removes energy at the smallest scales [33].
A snapshot of the streamfunction in the equilibrated state from one run is shown in the left panel

of Figure 4. The forcing was applied in the wavenumber range K = [30, 35] and the Rayleigh coefficient
was R = 0.1. There are numerous large eddies, but smaller scale features are seen as well. The large
eddies exceed the forcing scale (2π/30 ≈ 0.05), suggesting an inverse energy cascade (e.g., [34]).

Version October 4, 2016 submitted to Fluids 11 of 18

Figure 4. Streamfunction (left panel) and particle trajectories (right panel) from a two dimensional
turbulence simulation forced in the range K = [30, 35]. The trajectories have been “unwrapped” from
the doubly periodic domain, which explains why their extent exceeds the domain scale of 2π × 2π.

Figure 5. Kinetic energy spectrum (left panel) from the turbulence simulation, reproduced from Fig. 9
of [17]. The structure functions (right panel) calculated from the energy spectrum (solid curve), from
all particle pairs (dashed red) and from pairs deployed together (dashed yellow).

(a) (b)

Figure 4. Streamfunction (a) and particle trajectories (b) from a two-dimensional turbulence simulation
forced in the range K = [30, 35]. The trajectories have been “unwrapped” from the doubly periodic
domain, which explains why their extent exceeds the domain scale of 2π × 2π.

When the stationary state was reached, 2000 particles were deployed on a uniform grid and
advected with a fourth-order interpolation scheme. The initial particle separation was r0 = 0.01,
comparable to the model grid size. The trajectories are shown in the right panel of Figure 4.

The time-average energy spectrum was shown in Figure 9 of [17] and is reproduced in the panel
of Figure 5a. The spectrum is steep from the forcing range (K = [30, 35]) to roughly K = 200, where
the exponential filter is acting. The slope is nearly −4 and is thus greater than the theoretical value
(−3) for a 2D enstrophy range [35]. This is due to the Rayleigh damping; simulations without this
produce a slope closer to −3, as seen below. The spectrum is nevertheless non-local above the forcing
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wavenumber, implying the same impact on pair separations as in an enstrophy range [9]. There is also
a short energy range, with a slope of K−5/3, from the forcing wavenumbers up to K = 10. This is in
line with an inverse energy cascade, as inferred from Figure 4.

(a) (b)

Figure 5. Kinetic energy spectrum ((a) panel) from the turbulence simulation, reproduced from Figure 9
of [17]. The structure functions ((b) panel) calculated from the energy spectrum (solid curve), from all
particle pairs (dashed red) and from pairs deployed together (dashed yellow).

The second-order longitudinal structure functions are shown in the right panel of Figure 5.
Three curves are plotted. One (blue solid) is that predicted from the energy spectrum using (14).
The second (red dashed) was obtained using velocity differences from all particle pairs in the flow.
The third (yellow dash-dot) was calculated using velocities only from pairs deployed together,
“original pairs” in the terminology of [13].

The three curves are very similar. All increase nearly as r2 from the grid scale (r = 0.01) up
to the forcing scale (r = 0.1). The curves flatten out above r = 1.0. The r2/3 dependence expected
for an energy range is not seen, due most likely to its limited wavenumber extent. However, all
three estimates are very similar. This implies that the choice of original or “chance” pairs does not
yield qualitative differences in S2l ; it merely effects the number of samples (there are many more
chance pairs).

To test the transform (15), we first use the structure function calculated from the energy
spectrum. We do this numerically. (Cree and Bones [36] discuss the numerical evaluation of Hankel
transforms. In such cases, the transform integral is (necessarily) truncated at a finite upper limit.
To accommodate this, the transformed function is assumed to vanish above this scale/wavenumber.
Appropriate choices of equally-spaced separations and wavenumbers are also made. We employ
Hankel functions which are available in Matlab (www.mathworks.com)). Of course, this is just a
test of the invertibility of the Hankel transforms linking the two measures. The result is shown
in Figure 6. The reconstruction is good in the wavenumber range below the forcing range, but at
higher wavenumbers, the predicted spectrum deviates from the original substantially, even becoming
(nonphysically) negative at some wavenumbers.

The failure at large wavenumbers is due to the filter function in (15), K2r2 J1(Kr). As seen
in Figure 7, this oscillates and grows with separation, asymptotically as (Kr)3/2. Thus, the small
wiggles present in the structure function where it levels off (Figure 5) affect the energy spectrum,
particularly at large wavenumbers. Note this is not a consequence of integrating the Hankel transform

www.mathworks.com
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over a finite range of wavenumbers; it is rather due to having a blue filter function, which magnifies
noise at large separations.

Thus, we explored an alternate approach. The longitudinal velocity correlation, f (r), is easily
obtained from the second-order structure function from (13). One can then calculate the two-point
correlation, Rii(r), using (8), and the energy spectrum follows from (4). This is preferable to (15)
because the filter in (4), KrJ0(Kr), increases more slowly (Figure 7), asymptotically only as (Kr)1/2.

Figure 6. Kinetic energy spectrum from the turbulence simulation with the reconstruction from the
structure function based on (15). The structure function was obtained from the spectrum using (14).

Figure 7. The “filter” function used in the spectrum reconstruction in (15) (dashed curve). Also shown
is the function used in the alternate reconstruction in (4) (solid curve).
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The spectrum obtained using this alternate approach is shown in Figure 8. Now, a greater range
of wavenumbers is reproduced, up to roughly K = 100. Hence, this approach produces a more
satisfactory inversion, and we use it hereafter.

Figure 8. As in Figure 6, but with the reconstruction from the structure function based on (4).

Next, we turn to the particle-derived structure functions. For this, we use the structure
function obtained from all particle pairs (the results with the original pairs are similar but noisier).
The reconstructed spectrum is very noisy, as indicated by the red dots in Figure 9. The spectrum has
energies that are also greatly in excess of the actual values. These contributions are accompanied by
negative spectral values, not shown in the figure. This again is due to the inversion (4), amplifying
variations in the structure function at large separations. In this case, those variations (which are both
positive and negative, as seen below) are large enough to corrupt the spectrum over nearly the entire
range of wavenumbers.

Figure 9. Kinetic energy spectra using the reconstruction based on (4), for the particle-derived
second-order structure function (red dots). Also shown is the reconstruction based on a sixth-order
polynomial fit of the structure function (yellow dotted curve).
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The results are improved if the structure function is fit to a polynomial, to remove oscillations at
large separations. We did this by fitting the logarithm of S2l with a sixth-order polynomial, as shown
in the panel of Figure 10a. As seen, the behavior at small scales is well captured by the fit while the
wiggles at large scales are eliminated.

(a) (b)

Figure 10. Second-order structure function for the particles with a sixth-order polynomial fit ((a) panel).
The two-point velocity correlations calculated using (8) and (13), for the raw particle data (red), from the
polynomial fit of S2l (yellow) and derived from the theoretical structure function ((b) panel).

Shown in the right panel are the two-point correlations, Rii(r), from the raw particle-derived S2l
(in red) and from the polynomial fit (in yellow). Also plotted is the two-point correlation obtained
from the transformed S2l (i.e., that obtained from the transform of the spectrum), in blue (all three
correlations have been adjusted so that the last value is zero, as expected for the Hankel transform [36]).
The particle-derived correlation is similar at small separations but is much noisier at larger separations,
oscillating between positive and negative values. These oscillations result in the large positive and
negative spectral values in Figure 9. The polynomial fit remedies this somewhat by removing
the oscillations. However, the resulting correlation still differs from the curve obtained with the
transformed S2l .

Using the two-point correlation from the polynomial fit in (4) yields the spectrum plotted in
yellow dots in Figure 9. This still exhibits oscillations which grow with wavenumber, but the result is
significantly improved over the estimate using the raw structure function. That said, one is not able to
detect the two inertial ranges present in the original spectrum (Figure 5).

The results from two other simulations are shown in Figures 11 and 12. The first is for a
pure energy cascade, forced in the range K = [100, 120], with a Rayleigh coefficient of R = 0.1.
Plotted are the original spectrum (in black), the reconstruction from the transformed S2l (in red), from
the raw particle-derived S2l (green dots) and from a sixth-order polynomial fit of the latter (blue).
The original spectrum exhibits a well-defined K−5/3 inertial range from the forcing range down to
K = 10. The spectrum from the transformed S2l matches the original to roughly K = 100, as in the
previous case. The spectrum from the raw S2l is again noisy, while that from the polynomial fit is
closer to the actual spectrum. However, the latter is also steeper than the true spectrum, giving an
incorrect estimate of the slope in the inertial range.
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Figure 11. Spectral reconstructions from a simulation of a 2D inverse cascade, forced in the range
K = [100, 120]. The original spectrum is in black and the reconstruction from the theoretical structure
function is in red. The green dots show the spectrum from the raw particle S2l and the blue curve
shows that obtained with the polynomial fit S2l .

Figure 12. As in Figure 11, but with a simulation of a 2D enstrophy cascade, forced in the range
K = [1, 5].
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The results with a pure enstrophy cascade, forced in the range K = [1, 5], are significantly worse
(Figure 12). The slope in the inertial range is close to, though slightly steeper than, K−3 (there is no
Rayleigh damping in this simulation). Significantly, the spectrum from the transformed S2l (red dotted
curve) is accurate only at the smallest wavenumbers. It begins to oscillate around K = 10 and these
oscillations increase with wavenumber (the dotted curve indicates the upper branch of the curve, and
the lower values are negative). The spectrum derived from the polynomial fit (blue dotted curve)
deviates from the original spectrum at even smaller wavenumbers, and exhibits negative values even
below K = 10. The upper branch mirrors that from the transformed S2l , but the values are roughly
10 times larger. The spectrum from the raw data (green dots) is again poor.

The results with a non-local spectrum are poorer because the structure function is steeper at
the smallest separations, growing nearly as r2 (Figure 2). As such, the larger separations have a
proportionally greater impact on the spectral transform than with a local spectrum, degrading the
spectrum at smaller wavenumbers.

Averaging the spectral values in logarithmically-spaced bins produced estimates closer to
the observed spectrum (not shown), but the results remained fairly poor. Other fits, of both the
structure function and the two-point correlation, were also attempted with similar results. Generally,
the polynomial fit described above yielded the best results.

Thus, the transform essentially fails for non-local spectra. It may be in the future that more refined
methods of filtering the structure functions will be more successful, but the differences between the
particle-derived correlation and the theoretical one (Figure 10) suggests this is unlikely.

6. Discussion and Conclusions

Relations between the kinetic energy spectrum and the second-order velocity structure function
were derived in two dimensions. These are related to those given by [9] but are specifically applicable
to longitudinal structure functions, which are easily measured with pairs of particles. The relations
involve Hankel transforms, and can be evaluated with routines found in Matlab.

Structure functions derived from idealized, power-law spectra exhibit power-law dependencies
on separation as described previously (e.g., [9,10]). However, the results with inertial ranges of
finite extent can differ from those derived assuming infinite ranges. This probably explains why
the r2 dependence is rarely observed in situations where the spectra are believed to be non-local
(e.g., [37]). We also applied the transform to the kinetic energy spectrum in the upper troposphere
of [18]. The resulting second-order structure function closely resembles the longitudinal structure
function calculated previously with the same data by [26].

The relations were then applied to data from several 2D turbulence simulations. First, the structure
function was calculated from the spectrum using (14), and then the inverse relation (15) was used to
recover the energy spectrum. The spectrum was reproduced at small wavenumbers but not at large
wavenumbers because the Hankel transform (15) has a filter that magnifies contributions from large
separations. However, calculating the two-point velocity correlation first and then using (4) produced
a spectrum which matched the original over most of the wavenumber range.

The problems associated with large separations are amplified when using particle-derived
structure functions, which are noisy precisely at the largest scales. The spectral estimates are improved
if one fits the structure functions with a high-order (6th in this case) polynomial, but they deviate
nonetheless from the original spectra. The results also are better when the spectra are local (shallower
than K−3). The transform functions poorly with non-local spectra because the large separations have a
relatively greater contribution to the integrated structure function. It may be that more sophisticated
data processing could improve this situation.

Thus, the transform from spectrum to structure function is more robust than the inverse.
This follows from the difference in the filtering inherent in the two operations. While the filter
asymptotes to one for large separations with the spectral transform (14), it increases with separation
for the inverse transform (4). A similar issue pertains in three dimensions, as seen in Equations 3.4.16
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of [24]. Thus, it is easier working with the forward transform to assess a given structure function,
like that of Lindborg’s, than to do the inverse.

The present results also suggest that it is probably better to examine structure functions with
Lagrangian data than to extract energy spectra. As seen here, the structure functions are fairly robust,
agreeing well regardless of whether chance or original pairs are used. Nevertheless, structure functions
integrate contributions across wavenumber and are certainly not as “clean” as energy spectra.

Several recent studies have examined decomposing energy spectra into rotational and divergent
components [29,38,39]. This usefully separates contributions from large-scale balanced motions
(e.g., vortices) and small-scale phenomena like waves. A similar decomposition can be applied to
structure functions [40,41]. The present relations can be used to test consistency between the two,
as shown here in relation to the atmospheric spectra.
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