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Abstract: The Saffman–Taylor instability for yield stress fluids appears in various situations where
two solid surfaces initially separated by such a material (paint, puree, concrete, yoghurt, glue, etc.)
are moved away from each other. The theoretical treatment of this instability predicts fingering with
a finite wavelength at vanishing velocity, and deposited materials behind the front advance, but the
validity of this theory has been only partially tested so far. Here, after reviewing the basic results in
that field, we propose a new series of experiments in traction to test the ability of this basic theory
to predict data. We carried out tests with different initial volumes, distances and yield stresses of
materials. It appears that the validity of the proposed instability criterion cannot really be tested
under such experimental conditions, but at least we show that it effectively predicts the instability
when it is observed. Furthermore, in agreement with the theoretical prediction for the finger size,
a master curve is obtained when plotting the finger number as a function of the yield stress times the
sample volume divided by the square initial thickness, in wide ranges of these parameters. This in
particular shows that this traction test could be used for the estimation of the material yield stress.
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1. Introduction

The Saffman–Taylor instability (STI) is observed when a fluid pushes a more viscous fluid in
a confined geometry. The term confined here means that the distance between the solid walls is
much smaller than the characteristic length in the flow direction. Such boundary conditions are
typically encountered in porous media or between two parallel plates (i.e., Hele–Shaw cell). Under
so-called “stable conditions”, the length of the interface between the two fluids remains minimal,
so that it is straight for a flow in a single direction, or circular for a radial flow. When the STI develops,
the interface evolves in the form of fingers. For viscous fluids, the origin of the instability is as follows:
if the pressure along the interface is uniform, any perturbation or unevenness (local curvature) of the
interface tends to develop further; this is so because the viscous fluid tends to advance faster in front
of a curvature in the flow direction as the fluid volume to be pushed is smaller. The development of
this perturbation may only be damped if surface tension, which, on the contrary, works against the
deformation of the initial interface, and is sufficient to counterbalance the above viscous effect. This
instability has been widely studied for simple fluids [1–3].

Experiments with radial Hele–Shaw cells using non-Newtonian fluids have shown striking
qualitative differences in the fingering pattern (see e.g., [4,5]). It was discovered that, when the
high-viscosity fluid is viscoelastic, the interface grows along a narrow and very tortuous finger leading
to branched, fractal patterns [6]. It was also shown that this viscous fingering pattern can be replaced
by a viscoelastic fracture pattern for appropriate Deborah numbers [7,8]. On the theoretical side, the
treatment of the Saffman–Taylor instability problem was revisited for viscoelastic or shear-thinning
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fluids. Wilson [9] considered an Oldroyd-B fluid that exhibits elasticity and the case of power-law fluids
was treated by Wilson [9] for unidirectional flows and by Sader et al. [10] and Kondic et al. [11] for
radial flows. However, except in the case of fluids with a negative viscosity for which slip layers may
form [11] or for strongly viscoelastic fluids [8], the corresponding theoretical results did not show strong
changes in the basic process of instability as it appears for Newtonian fluids. For viscoelastic fluids,
Wilson [9] found a kind of resonance that can produce sharply increasing (in fact unbounded) growth
rates as the relaxation time of the fluid increases. Sader et al. [10] mainly showed that decreasing the
power-law index dramatically increases the growth rates of perturbation at the interface and provides
effective length compression for the formation of viscous-fingering patterns, thus enabling them to
develop much more rapidly. For non-elastic weak shear-thinning fluids, Lindner et al. [12] showed
that, during the evolution of the Saffman–Taylor instability in a rectangular Hele–Shaw cell, the width
of the fingers as a function of the capillary number collapse onto the universal curve for Newtonian
fluids, provided the shear-thinning viscosity is used to calculate the capillary number. For stronger
shear-thinning, narrower fingers are found. Further observations on shear-thinning elastic materials
were provided by Lindner et al. [13].

As far as we know, the theoretical description of STI with yield stress fluids (YSF) can flow only
beyond a critical stress; otherwise, they behave as solids [14], starting with the work of Coussot [15],
for both longitudinal and radial flows in Hele–Shaw cells. This approach is based on the use of an
approximate Darcy’s law for yield-stress fluids, which leads to a dispersion equation for both flow
types similar to equations obtained for ordinary viscous fluids, except that now the viscous terms in
the dimensionless numbers conditioning the instability contain the yield stress. As a consequence,
the wavelength of maximum growth can be extremely small even at vanishing velocities, so that
the STI can still exist and we have an original situation: a “hydrodynamic” instability at vanishing
velocity. Another original aspect of this instability for YSF is that, at a sufficiently low flow rate,
the fingering process leaves arrested fluid volumes behind the advancing front [15]. Miranda [16]
presented a theoretical analysis that goes beyond the above theory by using a mode-coupling approach
to examine the morphological features of the fluid–fluid interface at the onset of nonlinearity, and
finally proposed mechanisms for explaining the rising of tip-splitting and side-branching events.
However, this approach relies on a Darcy-law-like equation valid in the regime of high viscosity
compared to yield stress effects, which is precisely not the scope of the present paper. On the contrary,
as we are interested in the specific effect of yielding, we focus on situations for which there is a major
impact of the yield stress. On another side, a numerical approach was also developed to study the
standard problem of penetration of a finger in a Hele–Shaw cell (for Newtonian fluids a stationary
finger forms), first for a simple YSF [17], and then for a thixotropic fluid [18].

Experimentally, the SFI instability of YSF has been studied in a rectangular Hele–Shaw cell with
Carbopol gels [19,20]. This relies on the injection of air at a given point in the middle of the cell, which
then propagates through the fluid. For a Newtonian viscous fluid, when the instability criterion is
fulfilled, some fingers develop in the cell, but, after some distance, one finger becomes dominant while
the others stop and this single finger advances steadily along the main cell direction, with a size equal
to half the cell width. The result with a YSF is strongly different: at some time, there can be one finger,
but with a size possibly much smaller than the cell width. This finger, however, will soon destabilize in
secondary fingers, which are finally stopped, leaving again one finger and so on. A comparison with
theory is hardly possible in this context, but the details of the evolution and the different regimes have
been described [20]. Similar approaches were also developed for thixotropic YSF [21], which obviously
gives rise to effects more complex to predict due to the time-dependency of the fluid behavior.

There is a situation in which the STI of YSF is currently observed: the separation of two plates
initially in contact with a thin layer of YSF; as the plates are moved away, the layer thickness increases,
which induces a radial flow towards some central position; if the distance between the plates is
sufficiently small, the radial velocity is much larger than the axial one, so that the flow approximately
corresponds to a radial flow driven by the air entering the gap, which corresponds to the conditions
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under which the STI can be considered. This is the most frequent situation under which the STI for
YSF can be observed in our everyday life: as soon as some thin layer of paint, glue, puree, or yoghurt
is squeezed between two solid surfaces (a tool, a spoon, etc.) are then separated, one observes
a characteristic fingering shape. Note that it is possible to observe such pictures because the fluid
leaves arrested regions behind the flow front, which finally give this definitive shape. This contrasts
with simple liquids for which the fingers soon relax under the action of wetting effects and a uniform
layer rapidly reforms.

Finally, most of the theory–experiment comparisons concern the observations from traction tests.
In that case, a reasonable agreement between the fingering wavelength and the theoretical predictions
was found [19,22], but this was done in relatively narrow range of parameters, as essentially the
gap was varied. In addition, somewhat problematic are the observations of Barral et al. [23], which
showed that there is a strong discrepancy between the theoretical conditions and the experimental data
concerning the onset of the instability. The problem is that this appears to be the only experimental
approach of the onset of this instability with YSF, and it is in complete disagreement with existing
theory, which might suggest that something is missing in the theory.

Our present objective is to attempt to clarify the situation through new experiments and further
discussion of the experimental criterion of instability and the fingering wavelength. We rely on new
systematic traction tests under different conditions (fluid volume, initial aspect ratio, interaction with
the solid surface) and an analysis of these data with a critical eye, allowing for reaching some clearer
conclusions about the validity of the theory.

2. Materials and Methods

2.1. Materials

We used oil-in-water (direct) emulsions made of silicone oil (viscosity 0.35 Pa·s) as
dispersed phase, and a continuous phase (viscosity 5 mPa·s) made of distilled water and 3 wt%
myristyltrimethylammonium bromide (TTAB, Sigma-Aldrich, St. Louis, MO, USA). A Silverson mixer
(model L4RT), equipped with a rotating steel blade inside a punched steel cylinder, was also used as
an emulsifier. During the preparation, the fluids are sheared and the oil phase is broken into small
droplets while the water or water/glycerol phase fill the surrounding environment, and the interface is
stabilized by surfactants (TTAB). The rotation velocity of the mixer is progressively increased to reach
the maximum rate of 6000 rpm. A part of the bubbles incorporated in the mixture during this process
can be removed by tapping the container, and the rest of the bubbles are removed by centrifugation.
The droplet size is approximately uniform, around 5 microns. Different emulsions with different oil
volume fractions were prepared. The resulting yield stress of the emulsions prepared at 76%, 78%, 82%
and 84% (volume concentration of oil) was, respectively, 20 Pa, 30 Pa, 40 Pa and 50 Pa, within 1 Pa.

We also used a Carbopol (U980) gel. It has been observed that this material is essentially a glass
made of a high concentration of individual, elastic sponges (with a typical element size of 2 µm to
20 µm) [24], which gives rise to its yielding behavior. The preparation of Carbopol gel begins with the
introduction of some water in a mortar mixer. The rotation velocity is set at 90 rpm and the appropriate
amount of raw Carbopol powder (1 wt%) is slowly added to the stirring water. After about one
hour, the incorporation of the powder is done and the appropriate amount of Sodium Hydroxide
(1 mol/L) is quickly added to the solution, which increases its pH. The mixing is then maintained for
approximately one day to allow a full homogenization of the mixture.

2.2. Rheological Characterization

Rheological tests were performed with a Kinexus Malvern-stress-controlled rheometer equipped
with two circular, rough plates (diameter: 40 mm). The sample was carefully set up and the gap was
fixed at 2 mm taking care not to entrap air bubbles. A logarithmically increasing and then decreasing
stress ramp test was then applied over a total time of four minutes. Except for the first part of the
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increasing curve associated with deformations in the solid regime, the increasing and decreasing shear
stress vs. shear rate curves superimpose. We retain, here, the decreasing part as the flow curve of
the material. For similar emulsions, it has been shown that this apparent flow curve obtained from
macroscopic observations correspond to the effective, local constitutive equation observed at a local
scale with imaging technique [25]. The emulsions and the Carbopol gel exhibit a simple yield stress
fluid behaviour and their flow curve can be well fitted by a Herschel–Bulkley (HB) model (see typical
results in Figure 1):

τ > τc ⇒ τ = τc + k
.
γ

n, (1)

in which τ is the shear stress,
.
γ > 0 the shear rate, τc the yield stress, k the consistency factor and n the

power-law exponent.

Fluids 2019, 4, 53 4 of 12 

obtained from macroscopic observations correspond to the effective, local constitutive equation 
observed at a local scale with imaging technique [25]. The emulsions and the Carbopol gel exhibit a 
simple yield stress fluid behaviour and their flow curve can be well fitted by a Herschel–Bulkley (HB) 
model (see typical results in Figure 1): 

n
cc kγττττ +=> , (1) 

in which τ is the shear stress, 0>γ  the shear rate, τc the yield stress, k the consistency factor and n 
the power-law exponent. 

10-2 10-1 100 101 102

102

 

(Pa) τ

)(s -1γ

 
Figure 1. Typical flow curve of a one of our emulsion and of the Carbopol gel. The continuous lines 
are the Herschel–Bulkley model fitted to data with the parameters: (emulsion emulsion (78%)) τc = 30 
Pa, k = 4.5 Pa·sn and n = 0.45; (Carbopol) τc = 70 Pa, k = 23.5 Pa·sn and n = 0.4. 

2.3. Set up for Traction Tests 

For the adhesion tests, a dual-column testing system (Instron model 3365, Instron, Norwood, 
MA, USA) with a position resolution of 0.118 µm was used. The column was equipped with either a 
10 or 500 N static load cell, which were able to measure the force to within a relative value of ±10−6 of 
the maximum value. Waterproof sandpaper (average particle diameter 82 µm, a dimension much 
larger than the typical droplet size) was attached to the top and bottom plates. Since the volume loss 
in the roughness could be significant in some cases, a generous amount of extra sample was applied 
to the surface of the sandpaper before each test and the excess removed by scraping the surface with 
a palette knife. This also ensured reproducible wetting conditions of the fluid onto the solid surface. 
However, qualitatively similar results were obtained with initially dry or wet surfaces. Between two 
successive tests, both plates were removed and cleaned. A given volume (Ω0) of material was then 
collected with a syringe, put at the center of the bottom plate, and the upper plate was decreased at 
a fixed (initial) height (h0), thus squeezing the material. The adhesion test then consisted of lifting the 
upper plate at a constant velocity (0.01 mm/s) while monitoring the force (F) applied to the upper 
plate. The initial distance was varied between 0.2 mm and 5 mm. The initial volume was varied 
between 0.3 mL and 3 mL. 

3. Theoretical 

3.1. Instability in a Straight Hele–Shaw Flow 

The instability of radial flows of Newtonian fluids in Hele–Shaw cells has been studied [3,26,27] 
by using the vectorial form of Darcy’s law. The treatment below summarizes the assumptions and 
results of Coussot [15], whose approach has some similarity with the one adopted by Wilson [9] or 
Sader et al. [10] who considered power-law fluids and could not directly use the standard 
(Newtonian) Darcy’s law. 

Figure 1. Typical flow curve of a one of our emulsion and of the Carbopol gel. The continuous lines are
the Herschel–Bulkley model fitted to data with the parameters: (emulsion emulsion (78%)) τc = 30 Pa,
k = 4.5 Pa·sn and n = 0.45; (Carbopol) τc = 70 Pa, k = 23.5 Pa·sn and n = 0.4.

2.3. Set up for Traction Tests

For the adhesion tests, a dual-column testing system (Instron model 3365, Instron, Norwood, MA,
USA) with a position resolution of 0.118 µm was used. The column was equipped with either a 10 or
500 N static load cell, which were able to measure the force to within a relative value of ±10−6 of the
maximum value. Waterproof sandpaper (average particle diameter 82 µm, a dimension much larger
than the typical droplet size) was attached to the top and bottom plates. Since the volume loss in the
roughness could be significant in some cases, a generous amount of extra sample was applied to the
surface of the sandpaper before each test and the excess removed by scraping the surface with a palette
knife. This also ensured reproducible wetting conditions of the fluid onto the solid surface. However,
qualitatively similar results were obtained with initially dry or wet surfaces. Between two successive
tests, both plates were removed and cleaned. A given volume (Ω0) of material was then collected with
a syringe, put at the center of the bottom plate, and the upper plate was decreased at a fixed (initial)
height (h0), thus squeezing the material. The adhesion test then consisted of lifting the upper plate at
a constant velocity (0.01 mm/s) while monitoring the force (F) applied to the upper plate. The initial
distance was varied between 0.2 mm and 5 mm. The initial volume was varied between 0.3 mL and
3 mL.
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3. Theoretical

3.1. Instability in a Straight Hele–Shaw Flow

The instability of radial flows of Newtonian fluids in Hele–Shaw cells has been studied [3,26,27]
by using the vectorial form of Darcy’s law. The treatment below summarizes the assumptions and
results of Coussot [15], whose approach has some similarity with the one adopted by Wilson [9] or
Sader et al. [10] who considered power-law fluids and could not directly use the standard (Newtonian)
Darcy’s law.

We consider a yield stress fluid pushed by an inviscid fluid (say, air) so that it tends to flow in
a given direction x between two parallel plates separated by a distance h = 2b, with a mean fluid
velocity U. The initial interface is assumed to be uniform and straight (along the z direction). A stable
flow corresponds to a fluid motion along the x direction, uniform along the z direction. For an unstable
flow, this interface does not remain straight (see Figure 2).
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The linear stability analysis of this flow [15] relies on several assumptions: (i) the constitutive
equation of the fluid can be well represented by a HB behaviour; (ii) the lubrication assumption is
valid, i.e., the velocity component perpendicular to the cell plan can be neglected; and (iii) the shear
stress at the wall, even around the front of the flow, can be approximated by a value close to the exact
one for a stable uniform flow through this cell (see [15]):

τw = τc

[
1 + c

(
kUn

τcbn

)d
]

, (2)

where c and d two parameters which depend on n. For example, for n = 1/3, c = 1.93, d = 0.9 [15].
Under these conditions, the linear stability analysis of the flow, for negligible gravity effects,

predicts that the unidirectional flow above described is fundamentally unstable as soon as the inviscid
fluid pushes the yield stress fluid. Moreover, the wavelength of maximum growth is

λm = 2π

√
3σb
τw

(3)

in which σ is the surface tension. Note that the Newtonian case is recovered from this approach: by
using in Equation (3) the wall stress expression for a stable uniform flow of a Newtonian fluid in
such a cell, i.e., τw = 3µU/b, we find λm = 2πb

√
σ/µU, which is the standard expression found from

a complete theoretical analysis in the Newtonian case [2].
From Equation (3), we also deduce that the instability will be apparent only if λm < D, where D is

the width of the flow. This implies that the flow will be apparently unstable if

τw >
12π2σb

D2 . (4)
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Finally, note that, for a yield stress fluid, τw tends to τc when U → 0 or, more precisely, τw

≈ τc when kUn/τcbn << 1. Thus, at vanishing velocity, the wavelength tends to a finite value, i.e.,
λm = 2π

√
3σb/τc. This strongly contrasts with the result of the Saffman–Taylor instability for simple

fluids (i.e., without yield stress) for which the wavelength tends to infinity when the velocity tends to
zero. Thus, for yield stress fluid, if the front width is sufficiently large, we will see the development
of a hydrodynamic instability at vanishing velocity. Note that, more precisely, due to the square root
of the stress in the wavelength expression, the approximation above leading to neglect the flow rate
dependent term in the stress expression, leads to an approximation to within 10% of the exact value of
the wavelength if kUn/τcbn is smaller than 0.2.

Moreover, in the case of small front velocity, the stress should slightly overcome the yield stress in
the regions with highest velocities and, as a consequence, intuitively, the stress might be smaller than
the yield stress in regions with lowest velocities (see further demonstration in [15]). As a consequence,
the regions left behind should remain static just after the beginning of the unstable process. As long as
the fingers grow, the pressure drop applied to these regions therefore decreases so that they should
remain static even after a long time.

3.2. Instability in a Radial Hele–Shaw Flow

We consider now the case of a radial flow, with an inviscid fluid pushing the yield stress fluid
towards the center. This assumes that, if the plates remain at the same distance, the YSF for example
escapes through a central hole. Using again expression (2) for the wall shear stress (which neglects
orthoradial components), a linear stability analysis [15] leads to

λm = 2πR
(

3σb
σb + τwR2

)1/2
, (5)

in which R is the radius of the circular interface. Once again, this expression allows for recovering the
Newtonian case, λm = 2πR/

√
µUR2/σb2 + 1/3 [3], by introducing in Label (5) the expression for the

wall shear stress of the stable, and the uniform flow of a Newtonian fluid (see above).
Finally, for a YSF, the criterion for the apparent onset of instability (λm < 2πR) is:

τw >
2σb
R2 . (6)

The above remarks concerning the finite wavelength at vanishing velocity and the tracks left
behind still apply in this case.

3.3. Flow Induced by a Traction Test

We now consider the flow induced by a traction test, in which the material initially forming
a cylindrical layer situated between two plates, is then deformed as a result of the relative motion of
the two plates away from each other along their common axis. As the distance between the plates
increases, since the material remains in contact with the plate, the thickness of the sample increases.
As a result, the material tends to gather towards its central axis. Let us consider the ideal case where
the sample shape remains cylindrical during this process, i.e., the flow is stable and we neglect the
deposits of material along its motion along the plates. In that case, as a result of mass conservation, the
mean radial velocity (U) is related to the velocity of separation of the plates (V) through

U =
R
4b

V. (7)

From Label (7), we see that, as soon as the aspect ratio (i.e., R/2b) of the sample is sufficiently
large, the radial velocity is much larger than the separation velocity. In that case, the lubrication
assumption, i.e., the velocity components parallel to the plates are much larger than the perpendicular
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ones, is relevant, and we can consider that the flow is similar to that resulting from a pure radial flow
between plates at a fixed distance from each other. Obviously, this assumption will start to fail at some
point during the process, as the aspect ratio progressively decreases toward smaller values when the
plates are moved away from each other. In the following, we will a priori assume that the lubrication
assumption is valid, and discuss its possible non-validity as an artefact of the tests.

On the other side, for such a traction test, we can easily estimate the normal force needed
to separate the plates under the lubrication assumption for stable and sufficiently slow flows (i.e.,
kUn/τcbn << 1) [28]. In that case, the radial flow along the plate induces a shear stress equal to the
material yield stress. The momentum balance applied to the sample volume between R and r assuming
no surface tension effect and negligible atmospheric pressure leads to:

p(r) =
τc

b
(r− R). (8)

The net normal force exerted onto the plate in that case is then found by integrating the pressure (8)
over the surface of contact:

F =
2πτcR3

3b
. (9)

Equation (9) thus provides an expression for the force applied in the case of slow flows. Since
the assumed constitutive equation is continuous, i.e., it predicts a continuous transition from rest to
slow flows around the yield stress, Equation (9) also provides an expression for the minimum force to
induce some motion for a given separation distance and a given radius.

Note that, for a given volume of material (Ω0 = 2πR2b), this force may be rewritten as

F =
4τcΩ0

3/2

3
√

πh5/2 , (10)

which gives the force variation as a function of the distance (h = 2b) between the plates.

4. Results and Discussion

4.1. General Trends

The typical result of a traction test is the formation of an approximately symmetrical deposit over
each solid surface, associated with a tendency to a gathering of the material towards the central axis,
as proved by the larger thickness of material towards the central part. Depending on the experimental
conditions, the final deposit has different aspects, from a simple conical shape to a fingered structure
(see [23]). Since the initial shape is cylindrical, a stable flow would maintain a cylindrical interface.
As a consequence, a final fingered structure (see Figure 3) is the hallmark of flow instability.
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4.2. Force vs. Distance

The force during such a test strongly decreases with the distance and approximately follows
a slope of −2.5 in logarithmic scale (see Figure 4), which tends to confirm the validity of Equation (10).
However, we can remark that the force curve is shifted towards smaller values when the initial distance
is smaller, in contradiction with the above theory since expression (10) only depends on the sample
volume and the current distance. This is explained by the development of fingering, which implies
that some significant parts of the material do not flow anymore in the radial direction.Fluids 2019, 4, 53 8 of 12 
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Let us try to take this phenomenon into account. We assume that, during the withdrawal of
dR, the fingers well develop so that half the material is left behind as deposited material, while the
central flowing region is “plain”, with a current volume Ω. Thus, we have a variation of the current
volume of material still in the flowing region as dΩ = πRhdR, since, by definition of this volume:
Ω = πR2h, we deduce dΩ/Ω = dR/R and by integration Ω = Ω0R/R0 = Ω0

2/πhR0
2. We finally find

Fc =
2τcΩ0

3/2

3π1/2 h0
3/2h−4. Although this expression now effectively predicts a decrease of the force with

the initial distance, it also predicts a decrease of this force with the current distance as a power −4,
in contradiction with the data. Thus, we can conclude that, although we are able to reproduce some
qualitative trends through different approaches, we still lack a full theory for describing the force
evolution with distance when fingering develops significantly.

4.3. Characteristics of the Instability

4.3.1. Instability Criterion

We now discuss the characteristics of this instability. In order to better discuss the origin of the
evolution of the final shape of the deposit with the material and process parameters, we consider the
theoretical prediction of the instability criterion (i.e., Equation (6)) under negligible “additional viscous
effects”. Note that we checked that for all the tests with the emulsions kUn/τcbn was smaller than
0.2, which means that the above simplified expression for the finger width is relevant. This was not
the case for the Carbopol gel, for which kUn/τcbn was as large as 0.5 at the beginning of the test in
some cases, but, in the following, we neglect this aspect and it appears that this does not affect the
consistency of our results and analysis. In the instability criterion (Equation (6)), we can then use the
approximation τw ≈ τc, so that this criterion may be rewritten as τcΩ0/h2 > 2πσ. From this expression,
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we see that, if it is to occur, the instability will occur at the beginning of the withdrawal, when the
height is the smallest. As a consequence, the instability criterion writes: X = τcΩ0/h0

2 > 2πσ. Under
these conditions, we can expect that the instability will be “more developed” for increasing values
of X.

In Figure 5, we show the different final shapes observed for different values of X as a function
of the initial distance between plates. We see that h0 does not determine solely the intensity of the
instability: various deposit aspects are found for a given h0 value. On the contrary, as expected from
the theory, the aspect of the deposits seems to be close for a given value of X: we get approximately
similar branched structures along each horizontal line in this representation (see Figure 5). Then,
we can determine the limit between the unstable and stable regimes, by considering that the absence
of apparent fingering is the hallmark of stable flows. Note that, for small values of h0, this is an
extrapolation, since we were unable to get experimental data in this region of the graph as it required
too small sample volumes. We thus find that this limit corresponds to X ≈ 10 Pa·m. (Note that a similar
approach from the data of Barral et al. [15] would lead to X ≈ 80 Pa·m.) On the other side, using for
the surface tension the value of the interstitial liquid (water) [29], i.e., σ = 0.07 Pa·m, the left hand-side
of the instability criterion (6), i.e., 2πσ is equal to 0.4 Pa·m. Thus, we find that experiments give stable
flows in a wide range where unstable flows are expected from theory, namely between say X≈ 10 Pa·m
and X ≈ 0.4 Pa·m.
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Figure 5. Final aspects of the deposit after plate separation as a function of the parameter X and
the initial thickness, for a 40 Pa yield stress emulsion and different sample volumes (the volume
corresponding to each picture may be estimated from the value of X and h0 through Ω0 = Xh0

2/τc).
The diameter of the dark disk in all the photos is 10 cm.

At first glance, this result may be seen as a strong discrepancy between experiments and theory.
Actually, this is not so obvious. Indeed, looking at the flows considered as “stable”, we see that they
correspond to a rather limited radial flow. Under such conditions, the STI, or more precisely fingering,
would simply not have enough time or distance to develop. More precisely, this is the validity of
the lubrication assumption, which should be discussed, as we expect that, if this assumption is valid,
during the traction test the distance will now increase to large values, i.e., at least of the same order
as the initial radius, which implies a significant radial flow. If we compute the ratio h0/R0, we find
that the stable flows correspond exactly to those for which h0/R0 is larger than 0.1. This suggests that
here we in fact find stable flows because the lubrication assumption is not valid. In that case, we have
indeed a more complex flow than assumed in the theory, in particular there is now likely a significant
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component of elongation along the vertical axis, which might dampen the instability. In fact, looking
further at the initial and final sample shape, we see that the material essentially transforms from
a circular disk layer to a cone of same basis, and does not significantly flow radially. Actually, in similar
experiments carried out with smooth plates, with roughness of less than one nanometer, no instability
at all is observed in a wide range of initial distances [30]. In that case, we have a pure elongation
flow along most of the flow. This further confirms the above suggestion that, when the elongational
component is significant, no instability can be expected.

This suggests that we cannot really test the validity of the instability criterion because well before
the range for which stability is expected, the lubrication assumption is not valid. We can just say that,
under the proper assumptions, i.e., lubrication assumption, the flow is unstable, in agreement with the
theoretical criterion.

4.3.2. Fingering Wavelength

Let us now try another approach to test the theory, by looking at the wavelength of the fingering.
With that aim, we need to look at the fingering characteristics at the onset of the instability, since
this is the only aspect relevant within the frame of a linear stability analysis, which considers the
flow evolution for a slight perturbation of the initial stable flow. We assume that the corresponding
wavelength corresponds to the fingers apparent at the periphery of the initial sample layer and
we simply count the number of deposited fingers around the sample, which corresponds to N/2.
The theoretical prediction for the finger number N at the onset of the instability, i.e., 2πR/λm,
as deduced from Label (5) is:

N =
1√
3

(
1 +

2Y
π

)1/2
(11)

in which Y = X/σ.
All the data are shown in Figure 6, where we can see that globally the theoretical prediction is in

agreement with the experiments: all the data for the different fluids, different initial distances, and
different sample volumes, fall along a master curve which corresponds to an increase of the finger
number following on average the theoretical curve. Nevertheless, we can note some discrepancy:
at low Y values, the finger number is systematically below (by a factor about 1.5) the theoretical
prediction, which suggests that, in that case, the elongational component of the flow plays some
significant role and slightly dampens the instability; at large Y, the finger number is slightly above the
theoretical prediction, but we have no explanation for that.
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5. Conclusions

We have shown that it is in fact not possible to test the theoretical criterion for the instability
onset of yield stress fluids in traction tests: as soon as the radial flow induced is sufficiently developed,
an unstable flow is expected and effectively observed. On the contrary, in agreement with the theoretical
prediction for the finger size appears, i.e., a master curve is obtained when plotting N as a function
of X for the different volumes, yield stresses and initial thicknesses in rather large ranges. However,
there remains a discrepancy between theory and experiments: the finger number is smaller by a factor
about 1.5 for X < 25 Pa·m, and larger by a factor about 1.5 for X > 25 Pa·m. As a consequence, the basic
theory can be used to estimate and predict the fingering aspect for any application, as soon as one
knows the material yield stress, sample volume and initial thickness. On the other side, this traction
test could be used for the estimation of the material yield stress, from an analysis of the fingering
characteristics. Further work in that field could focus on the exact flow characteristics during such
a traction test, in particular when the instability has begun.
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