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Abstract: In this work, the modelling of horizontal two-phase flows within the two-fluid Euler–Euler
approach is investigated. A modified formulation of the morphology detection functions within
the Algebraic Interfacial Area Density (AIAD) model is presented in combination with different
models for the drag force acting on a sheared gas–liquid interface. In the case of free surface flows,
those closure laws are often based on experimental correlations whose applicability is limited to
certain flow regimes. It is investigated here whether the implementation of the modified blending
functions in ANSYS CFX avoids this limitation. The influence of the new functions on the prediction
of turbulence parameters in free surface flows is also examined quantitatively for the k-ω and k-ε
two-equation turbulence models. Transient simulations of the WENKA counter-current stratified
two-phase flow experiment were performed for validation. A prediction of the correct flow pattern as
observed in the experiment improved dramatically when a turbulence damping term was included
in the standard two-equation models. Using the k-ω and a modified k-ε turbulence model with
damping terms close to the interface, better agreement with the experimental data was achieved.
The morphology detection mechanism of the unified blending functions within the AIAD is seen as
an improvement with respect to the detection of sharp interfaces. Satisfactory quantitative agreement
is achieved for the modified free surface drag. Furthermore, it is demonstrated that turbulence
dampening has to be accounted for in both turbulence models to qualitatively reproduce the mean
flow and turbulence quantities from the experiment.

Keywords: two-phase flow; Computation Fluid Dynamics (CFD); Algebraic Interfacial Area Density
(AIAD); horizontal flow; turbulence

1. Introduction

The term “two-phase flow” refers to a flow in which two different physical states of a substance
or two different substances exist next to each other. The possible phase combinations are gas/liquid,
solid/gas and solid/liquid.

Two-phase flows are common in nature, such as the movement of water droplets in the air or air
bubbles in water up to the formation of waves on water surfaces [1].

The occurrence of such flows in industrial processes, for example, in the wave-like flows
in pressurized water reactors, makes their exact prediction and phase distribution by means of
computational fluid dynamics (CFD) very relevant for the safety and efficiency of such processes.

Only horizontal two-phase flows with phase interfaces are considered here. In particular, a liquid
and a gaseous flow phase, which flows in opposite directions. The phases are separated from each other
and do not mix. The simulation of such flows with phase interfaces is carried out here based on the
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Reynolds-Averaged Navier–Stokes (RANS) equations. Two approximate models can be distinguished
here for better representation.

Within the framework of the Euler–Euler approach or the two-fluid model [2,3], there is one set of
balance equations for each phase of the two-phase flows, which depend on the phase fraction. Currently,
the detection of phase interfaces at the Helmholtz–Zentrum Dresden–Rossendorf (HZDR) is carried
out using both the AIAD (Algebraic Interfacial Area Density) [4–6] and the GENTOP (GENeralized
TwO-Phase flow) model [7].

The AIAD model is based on exponential weighting functions over the phase fraction in order to
detect the flow morphology (free surface, bubble or drop flow). These functions have an asymptotic
behaviour of 0 < f < 1 and are based on the phase fraction. In scenarios with a sharp jump of volume
fraction across the interface, the detection of phase interfaces may not work properly. For this reason,
Gauss and Porombka [8] have developed a common approach to the weighting functions in AIAD,
which takes into account the phase fraction as well as its gradient and which allows for the detection of
the flow morphology and the phase boundary in two-phase flows with two continuous and more than
one disperse phase. The description of the AIAD model with the uniform weighting functions and the
mass and momentum exchange within the two-fluid model is dealt with in Section 2.

The validation of the uniform weighting functions for modeling momentum exchange and
turbulence in the two-fluid model is the subject of current research and is examined in this paper.
This section also describes the modelling of the momentum exchange of two-phase flows in the
two-fluid model and the use restrictions depending on the flow regime. This is considered from the
perspective of the local shear stresses [5,6] at the phase boundary.

For the simulation of two-phase flows, the Large Eddy Simulation (LES) and the Direct Numerical
Simulation (DNS) provide the highest level of detail [9,10]. Due to the high computational effort,
these methods are mainly used for model development. In the two-fluid model, the influence of
turbulence must be completely modelled using a suitable turbulence model. The accuracy of the
simulation thus depends on the turbulence modeling. Analogous to the turbulence modelling for
single-phase flows, the turbulent viscosity model for turbulent two-phase flows is used in this paper.
Here the k-ω and k-ε two-equation turbulence models were applied in the context of the two-fluid
model [11,12]. The turbulence modeling for two-phase flows is dealt with in Section 3. Here, the use of
a damping term according to [13,14] in theω and ε transport equation is examined. The experimental
results of a suitable validation experiment at the WENKA test facility [15] are used to validate the drag
and turbulence modelling in connection with the uniform weighting functions in the AIAD model.
The configuration of the test rig and the performance of the simulations are described in Section 4.
Finally, the results of the validation calculations are presented and discussed in Section 5.

2. The Algebraic Interfacial Area Density Model

In the following section, a short description of the “Algebraic Interfacial Area Density (AIAD)
Model” is given, which is used to detect different surface shapes. The AIAD model was developed for
two-phase flows of Egorov [13] and further developed by Höhne [5,6] and Porombka [8,10,15].

In two-phase flows, different local flow morphologies—such as bubble flows, droplet formations
and separated flows—can exist next to each other. These can be thought of as being canonical in
the sense that complex two-phase flow patterns, such as the slug flow, are composed of these local
morphologies. The latter strongly influences the mass exchange Γk and the momentum exchange Mk

i
between both phases. Physical parameters used to quantify a change in the local flow morphology
include the interfacial area density ai as well as the drag coefficient CD. The modelling of both
parameters is locally adapted in the AIAD model.

Three different flow regimes are distinguished in the AIAD model: bubbly flow, droplet flow
and separated flow. The corresponding models for ai and CD are given in Table 1. The special
model term for bubbles, droplets and interfaces is correlated by weighting functions of the three flow
morphologies [5,7,15].
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Table 1. Flow morphologies and modeling terms Algebraic Interfacial Area Density (AIAD) Model.

Regime Drag Coefficient Area Density

Bubble Regime CD,b ai,b = 6αG

db

Droplet Regime CD,d ai,d = 6αL

dd

Interfacial Regime CD,fs ai,fs =
∣∣∣∇αG

∣∣∣
The variable ai is defined as the instantaneous phase boundary interface Ai in the control volume V

ai =
Ai

V
(1)

For spherical bubbles and droplets ai,b and ai,d is determined with the mean bubble or droplet
diameter db, dd.

The gas–liquid phase boundary in the phase interface is characterized by a change 0 ≤ αG
≤ 1.

Therefore, the interfacial area density of the phase interface is:

ai,fs =
∣∣∣∇αG

∣∣∣ = ∂αG

∂n
(2)

with the integral condition according to [13].∫ +∞

−∞

ai,fsdn = 1 (3)

The modelling of the model terms for bubbles CD,b, droplets CD,d and free surface CD,fs is described
in Section 2.

The correlations for CD result from the weighted sum of the individual model terms from Table 1.

ai = fb ai,b + fd ai,d + ffs ai,fs (4)

CD = fb CD,b + fd CD,d + ffs CD,fs (5)

So far, two different formulations of the weighting functions for bubble fb , droplets fd, and free
surface ffs have been further developed at the HZDR using the AIAD model:

• The AIAD 1, whose weighting functions are based on the behavior of exponential functions.
These are correlated via the gas or liquid phase fraction αG,αL as independent variables [5].

• The AIAD 2, which also uses exponential functions as a pattern for the weighting functions.
These are correlated via the gradient of the phase fraction |∇α| as independent variables [7].

For the detection of bubble, droplets or interface regimes, these two formulations were applied to
the AIAD model. Both (AIAD 1) and (AIAD 2) show deficiencies in the process [11]:

• an asymptotic behaviour 0 < f < 1.
• in AIAD 1, the interface could not always properly detect in the case of jumps of αG.
• in AIAD 2, the interface could possibly not be detected if the change of the |∇α| at the phase

boundary comprises several cells (n > 4).

For these reasons, a new approach for the formulation of the weighting functions of Gauss and
Porombka [8] was developed, so that the above-mentioned limitations of the AIAD model can be
avoided. In addition, the new weighting functions are applicable for the simulation of multi-phase
flows with two continuous and more than one dispersed phase.
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2.1. Uniform Weighting Functions based on the Volume Fraction

The new uniform weighting functions are based on the form of the cosine function via αG

for bubbles fb and droplets fd and via |∇α| for the free surface ffs. To avoid asymptotic behavior,
the functions are formulated in a scaled and truncated form. A plot of fb , fd and ffs against the gas
volume fraction dimension is given in Figure 1.

Fluids 2020, 5, 102 4 of 25 

2.1. Uniform Weighting Functions based on the Volume Fraction 

The new uniform weighting functions are based on the form of the cosine function via α  for 
bubbles f   and droplets f  and via |∇α| for the free surface f . To avoid asymptotic behavior, the 
functions are formulated in a scaled and truncated form. A plot of f  , f  and f  against the gas 
volume fraction dimension is given in Figure 1. 

 
Figure 1. Weighting functions f  and f  [8]. 

The formulation of f  and f  is described below as f = 12 1 + α − (α , − )2  (6) 

        f = 12 1 + α − (α , − )2        (7) 

In Table 2, the parameters for the equations according to Equations (6)–(7) are described and 
determined according to [5,8] 

Table 2. Weighting functions. 

Parameter Description Value 
 Intermediate zone of the transition area 0.05 α ,  Critical gas phase fraction of the bubbles at the transition area 0.3 α ,  Critical liquid phase fraction of the droplets at the transition area 0.3 

Note that the blending functions have a well-defined transition region 0 , 1. A phase is 
considered a disperse phase if α  is below a critical value α  within the transition range. Thus, as 
shown in Figure 1, the transition region of the bubbles or droplets at ,  and , within the 
interval 2 is defined as α − ; α + . In the case of a multi-field simulation (GENTOP, [7]) 
the continuity condition has to be extended to   α + α = 1 − α − α  (8) 

where α  and α  represent the void fraction of additional dispersed gas and dispersed liquid fields, 
respectively. To apply the blending functions to multi-field simulation they are based on the scaled 
phase fractions α and α  

Figure 1. Weighting functions fb and fd [8].

The formulation of fb and fd is described below as

fb =
1
2

1 + cos

π α̃G − (αb,crit − δα)

2δα


 (6)

fd =
1
2

1 + cos

π α̃L − (αd,crit − δα)

2δα


 (7)

In Table 2, the parameters for the equations according to Equations (6)–(7) are described and
determined according to [5,8]

Table 2. Weighting functions.

Parameter Description Value

δα Intermediate zone of the transition area 0.05
αb,crit Critical gas phase fraction of the bubbles at the transition area 0.3
αd,crit Critical liquid phase fraction of the droplets at the transition area 0.3

Note that the blending functions have a well-defined transition region 0 < fb, fd < 1. A phase
is considered a disperse phase if αG is below a critical value αcrit within the transition range. Thus,
as shown in Figure 1, the transition region of the bubbles or droplets at αb,crit and αd,crit within the
interval 2δα is defined as [αcrit − δα; αcrit + δα]. In the case of a multi-field simulation (GENTOP, [7])
the continuity condition has to be extended to

αG + αL = 1−αdg
−αdl (8)
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where αdg and αdl represent the void fraction of additional dispersed gas and dispersed liquid fields,
respectively. To apply the blending functions to multi-field simulation they are based on the scaled

phase fractions α̃Gand α̃L

α̃G = min
(
max

(
αG

1− αdg − αdg
, αb,crit − δα

)
, αb,crit + δα

)
(9)

α̃L = min
(
max

(
αL

1−αdg −αdl
, αd,crit − δα

)
, αd,crit + δα

)
(10)

However, in the two-fluid simulations presented here, αdg = αdl = 0 everywhere. According to
the above definitions, the weighting functions fb, fd give zero or one outside the transition range.

2.2. Uniform Weighting Functions Based on the Volume Fraction Gradient

With the new approach of the weighting functions the detection of large scale interfaces is carried
out via a critical gradient of the phase fraction ∇αcrit. The corresponding weighting function of the
phase boundary ϕfs is formulated similar to fb and fd in the form of the cosine function according to
Equation (8) and is shown in Figure 2.

ϕfs =
1
2

1 + cos

π ∇̃α− (∇αcrit − δ∇)

2δ∇

 (11)
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Table 3 shows the parameters for ϕfs according to [8].

Table 3. Parameter of the weighting function ϕfs.

Parameter Description Value

δ∇ Intermediate zone of the transition area 0.1∆∇αG
crit

∇αcrit
Critical gradient of the bubbles at the

transition area 1/(n·∆x)

n cell number n ≥ 5
∆x cell size 3√V
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As with the weighting functions fb and fd, the normalized form of the cosine function is represented
at the transition area 2δ∇ as [∇αcrit − δ∇; ∇αcrit + δ∇] . The limited gradient of the phase fraction ∇̃α in
within the transition area is formulated below.

∇̃α = min
(
max

( ∣∣∣∇αG
∣∣∣ , ∇αG

crit − δ∇
)
, ∇αG

crit + δ∇
)

(12)

For the detection of a single phase boundary by the criteria of the phase fraction and the gradient
of the phase fraction, the weighting function of the phase boundary is called

ψfs = ϕfs(fb − fd) (13)

Additionally ψfs contains information on the flow regions:

ψfs =


1 bubbles
0 inter f ace
−1 droplets

(14)

As described above, the correlations for CD and ai result from the weighted sum of the individual
model terms depending on ψfs).

ai =
(
1−

∣∣∣ψfs
∣∣∣)ai,fs + asign ψfs ai,b +

(
1− asign

) ∣∣∣ψfs
∣∣∣ ai,d (15)

CD =
(
1−

∣∣∣ψfs
∣∣∣)CD,fs + asign ψfs CD,b +

(
1− asign

) ∣∣∣ψfs
∣∣∣ CD,d (16)

With

asign =

{
1, if sign (ψfs) = 1
0, else

(17)

2.3. Modelling the Drag

Two variants are possible for modeling the scalar resistance coefficients CD,b and CD,d :

• Assuming that the bubbles and droplets are spherical, a constant resistance coefficient of
CD,b = CD,d = 0.44 according to [16] is used. This assumption applies to a large range above the
subcritical Reynolds number regime [17].

• The application of correlations as a function of the Reynolds number according to the Schiller
Naumann resistance model of ANSYS CFX [18].

In case the bubbles and droplets are not spherical, more complex empirical correlations for the
resistance coefficients CD,b and CD,d exist in the literature [7].

For the modelling of the resistance coefficient at the phase interface CD,fs three variants
are investigated.

A general resistance model at the phase interface was originally developed by T. Höhne and C.
Vallée [3,6] and further developed by Porombka and Hoehne [10]. In the following, only the most
important steps are summarized.

Firstly, a formulation for CD,fs based on the tangential fraction of the stress vector tk at the phase
boundary is used. Here, the mixture density is used as a reference value. Thus, the calculation of the
drag coefficient at the phase boundary is based on

CD,fs =
αL

∣∣∣tL
fs

∣∣∣+ αG
∣∣∣tG

fs

∣∣∣
ρm
2 u2

slip

(18)
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Secondly, more complex modeling of CD,fs can be used according to [14], which takes normal and
tangential shear stress into account. Finally, a constant drag coefficient of CD,fs = 0.01 is investigated
in this work for comparison [10].

All these approaches are user-coded in ANSYS CFX using the “CFX Expression Language” [18].

3. Turbulence Modelling for Two-phase Flows

Two-equation turbulence models are some of the most common types of turbulence models.
The k-epsilon model and the k-omega model have become industry standard models and are generally
used for most types of engineering problems. Two-equation turbulence models are also very much still
an active area of research and new refined two-equation models are still being developed. The starting
point for the turbulence modeling of two-phase flows within the Euler–Euler approach is represented
by the time-weighted averaging of local conservation laws for mass and momentum. The number
of turbulent terms to be modelled depends on the averaging used in the balance equations [19].
In this work, first, a phase averaging and then a second time averaging is carried out. The Reynolds
Stress Tensor in the averaged momentum balance equation. This requires the application of a closure
approach. In analogy to the turbulence modelling for single-phase flows, it is assumed that the stress
tensor τk

T,i j is comparable to the viscous stress tensor, i.e., the Boussinesq hypothesis is assumed to
hold [20]. Therefore, in this paper only two-equation turbulence models are considered. Analogous to
single-phase flows, it is assumed that the Reynolds stress tensor is in the form

τk
T,i j = µk

T

∂ûk
i

∂x j
+
∂ûk

j

∂xi
−

2
3

∂ûk
k

∂xk

− 2
3
δi jρ

kkk (19)

Here, kk denotes the turbulent kinetic energy within phase k and the Eddy viscosity µk
T describes

the increase in momentum diffusion due to turbulent fluctuations [1,21–23]. This is determined from
two turbulence parameters. For each turbulence parameter, the corresponding transport equation must
be calculated. In the context of the two-fluid model, the mentioned transport equations can be derived
exactly from the averaged conservation laws for mass and momentum according to [24] and [11].
However, for some of the terms occurring in this process, there are no closure approaches available [25].
Therefore, the transport equations of the turbulence models for two-phase flows are postulated in
ANSYS CFX, starting from the formulation for single-phase flows. The two-equation turbulence
models of k-ω and k-ε, which are used in this work, are described in detail in the literature [23,26] and
are only given schematically here.

Furthermore, the signs for the temporal mean values of all variables are omitted here [16].
The k-ω turbulence model [12] is formulated according to the Euler–Euler approach, whereby the

Eddy viscosity µk
T is determined for each phase k.

µk
T = ρk kk

ωk
(20)

where k is the turbulent kinetic energy andω is the turbulent dissipation rate of k [27]. The transport
equations for the corresponding turbulence parameter k andω, also for each phase k are

∂αkρkkk

∂t
+
∂αkρkuk

j kk

∂x j
= αkPk

k − α
kρkDk

k +
∂
∂xJ

Gk
k (21)

∂αkρkωk

∂t
+
∂αkρkuk

jω
k

∂x j
= αkω

k

kk
αPk

k − α
kρkDk

ω +
∂
∂xJ

Gk
ω + Sk

D (22)

with the source terms from Table 4 and the closure constants from Table 5.
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Table 4. Source terms of k-ωModel.

Production term Dissipation Terms Diffusion Terms

Pk
k Dk

k Dk
ω Gk

k Gk
ω

τk
T,i j

∂uk
i

∂x j
β∗kkωk β

(
ωk

)2
αk

(
µk +

µk
T
σ∗

)
∂kk

∂x j
αk

(
µk +

µk
T
σ

)
∂ωk

∂x j

Table 5. Source terms k-εmodel.

Production term Dissipation Terms Diffusion Terms

Pk
k Dk

k Dk
ε Gk

k Gk
ε

τk
T,i j

∂uk
i

∂x j
ε Cε2

(εk)
2

kk
αk

(
µk +

µk
T
σk

)
∂kk

∂x j
αk

(
µk +

µk
T
σε

)
∂εk

∂x j

In the literature [9], it is shown with a DNS of two-phase flows that, analogous to a solid wall,
the movement of the phase boundary leads to a reduction of the shear rates and a general damping of
the turbulence at the phase boundary. Furthermore, the application of a damping function within a
modified fine structure model for a LES of stratified flows [17] led to a successful calculation. For the
Euler–Euler approach, a symmetrical damping function [13] was proposed for the k-ω turbulence
model and validated qualitatively according to [6]. This same damping term Sk

D is introduced at the ω
transport equation from Equation (22) to adapt the k-ω turbulence model.

Sk
D = ai∆yβρk

(
B·

6νk

β∆n2

)2

(23)

Here, the kinematic viscosity is denoted by ν, the phase interface ai, ∆y is the vertical grid width
to the phase boundary by, ∆n is the characteristic size of a grid cell at the phase boundary and a model
coefficient B = 100 is chosen according to [13].

The introduction of the interfacial area concentration ai in Equation (23) limits the effect of Sk
D to

the vicinity of the phase boundary and leads to an increased dissipation rate ω, which results in a
reduction of the Eddy viscosity and a damping of the turbulence there according to Equation (19).

The used k-ε turbulence model determines the Eddy viscosity according to

µk
T = Cµρk

(
kk

)2

εk
(24)

with the turbulent dissipation ε of k and the constant Cµ from Table 6. The transport equation for k
corresponds from Equation (21) with the source terms from Table 5 and the closure constants also from
Table 6. The transport equation for the corresponding turbulence parameter ε in phase k is formulated
in the following.

∂αkρkεk

∂t
+
∂αkρkuk

j ε
k

∂x j
= αkCε1

εk

kk
Pk

k − α
kρkDk

ε +
∂
∂xJ

Gk
ε (25)

Table 6. Constants k-ε and k-ωmodel in ANSYS CFX [2].

Cµ Cε1 Cε2 σk σε σ* σ β β* α

0.09 1.44 1.92 1.0 1.3 2.0 2.0 0.075 0.09 5/9
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In the context of this work, a modified k-ε turbulence model was used. The ω transport equation
from (22) is transformed into the ε-formulation. For this purpose, the turbulent viscosity equations
from (20) and (24) are linked together by µk

T. This results in the turbulent dissipation

εk = Cµωk kk (26)

with the model constant Cµ = 0.09. The Equation (26) is implemented in ANSYS CFX using CCL in
the ε transport equation.

The transformed formulation of the damping term Sk
D,ε in the ε transport equation is then

Sk
D,ε = CµkkSk

D (27)

whereas the k transport Equation (25) remains unchanged in the modified k-ε turbulence model.

4. Simulation Setup

The experimental validation data used in this work originate from the WENKA facility at
KIT [15]—an air–water stratified flow experiment in a horizontal rectangular channel. The structure of
the test rig with the corresponding components is shown in Figure 3.Fluids 2020, 5, 102 9 of 25 
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water. An extension of both the air inlet and the air outlet section of about 500 mm is located 
downstream. The displayed measuring coordinate system is adopted in the simulations, with the y-
axis indicating the vertical direction and the x-axis indicating the running length direction. The z-axis 
as well as the components in the z-direction are neglected in this work because of the quasi 2D-
simulations. In the x-direction, there is the measuring section with of approx. 470 mm. The 
measurement lines from the experiment are marked with MP3 and MP23 and correspond to 
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The ensemble averaged velocities u , v , the square-averaged rates of fluctuation u , v  and 
the mean Reynolds shear stresses −  u v  are available for validation at both measurement lines from 
2D PIV measurements. The measurement of the phase fraction k with k = G,L in the gas and liquid 
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Figure 3. WENKA experimental plant, from [15] with permission of the author. 1—Water pump, 2—Air
inlet section, 3—Honeycomb rectifier, 4—Water outlet, 5—Water tank, 6—Water inlet, 7—Cyclone,
8—Measuring section, 9—Air outlet and 10—Blower.

The system consists of two independently controllable water and air circuits. The stratified
two-phase flows are directed counter currently in the horizontal measuring section under ambient
conditions. Varying the water inlet height y0 and the inlet flow velocities makes it possible to set
different flow regimes.

Measurement uncertainties are discussed in [15]. In the discussed experiment, the measurement
uncertainty is smaller than 1%.
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The calculation area of the WENKA unit used in this paper is shown in Figure 4 in side view.
It includes the measuring section with the measuring positions as well as the inlet plates for air
and water. An extension of both the air inlet and the air outlet section of about 500 mm is located
downstream. The displayed measuring coordinate system is adopted in the simulations, with the y-axis
indicating the vertical direction and the x-axis indicating the running length direction. The z-axis as
well as the components in the z-direction are neglected in this work because of the quasi 2D-simulations.
In the x-direction, there is the measuring section with of approx. 470 mm. The measurement lines
from the experiment are marked with MP3 and MP23 and correspond to measurement lines 3 and 23
(Figure 4) from the experiment [15].
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The ensemble averaged velocities
=

uk,
=

vk, the square-averaged rates of fluctuation uk
rms, vk

rms

and the mean Reynolds shear stresses are available for validation at both measurement lines
from 2D PIV measurements. The measurement of the phase fraction αk with k = G,L in the gas and
liquid phase was performed using a resistance probe. With the assumption of isotropic turbulence [15],
the turbulent kinetic energy is calculated from:

k =
3
4

(
uk

rms
2 + vk

rms
2
)
=

3
4

(
uk′2 + vk′2

)
(28)

A detailed description of the boundary conditions in the experiment can be taken from [15],
therefore the necessary values are summarized in Table 7.

Table 7. Boundary conditions from the experiment according to [15].

UL
in [m/s] UG

in [m/s] y0 [mm] ReL
d ReG

d Fr0

0.7 4.44 9 1.2× 104 2.7× 104 2.36

The experimental flow parameters correspond to small-amplitude wavy stratified flow.
Consequently, no data for droplet and bubble diameters are available and these model parameters are
set to default values of db = dd = 0.001 m.

Figure 5 shows the block-structured hexahedral grid used in the simulations of the WENKA test
rig in an x,y plane. In order to achieve a higher resolution of the turbulent velocity profile at the water
inlet, the grid is denser in the y-direction in the range y < y0 than in the range y > y0. The cells here are
stretched by a factor of 1.3. For the same reason, the grid is locally refined by a factor of two in the
y-direction in the area of the water inlet.
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The flow was calculated by means of quasi 2D and transient simulations. In Table 8 the numerical
parameters of the calculations are summarized. This includes the spatial and temporal discretization
parameters as well as the time step procedures in ANSYS CFX.

Table 8. Numerical parameters for the simulation.

Simulation Parameters Selection

Type of analysis Transient

Total simulation time 10 s

Inital time step 10−4 s

Time step Adaptive

Time step adjustment max(CFL) < 1

Maximum time step 1 s

Minimum time step 10−6 s

Advection Scheme High Resolution

Transient Scheme Second Order Backward Euler

Time step initialization Automatic

Turbulence numerics First Order

Coeff. Loops Number of iterations per time step 1–30

Termination criterion RMS

residual target 10−4

conservation target 10−4

5. Results

In this section, the results of the simulations performed are presented and validated by the
experimental data from [15].

Calculations with the two-fluid model from Section 2 were performed. For the simulation of
stratified two-phase flow, the detection of phase boundaries of the different flow morphologies was
necessary. For this reason, the AIAD model [7,14,16] with the uniform weighting function from
Equation (13) was used.
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For all simulations, the calculation area corresponds to the WENKA test rig with the
block-structured grid according to Figure. 5. The boundary conditions correspond to the values from
Tables 7 and 8; the velocity profiles were set according to [15].

Figure 6a shows still images from the experiment, illustrating the flow regime in the test section.
Figure 6b shows the liquid volume fraction from a simulation with the k-ω turbulence model including
the damping term from Equation (23). Figure 6 also shows in Figure 6c the weighting functions ffs
(AIAD 1) and Figure 6d Ψsurf (AIAD 3) for the detection of the flow regimes in an x,y-section through
the measuring section.

Table 9 indicates the mean liquid levels ym from the simulation and the measured data for MP3
and MP23.

Table 9. Mean liquid levels MP3 and MP23

Test. Inlet Conditions MP3ym [mm] MP23ym [mm]

Experiment [15] – 10.24 11.88
Simulation Profiles 10.17 11.45

The table shows that the liquid level ym obtained in the simulation agrees well with the measured
data. With MP3, ym is slightly overestimated and with MP23 slightly underestimated. All simulations
were calculated according to the numerical parameters in Table 8. For the results, the so-called
“superficial velocity” is determined and shown here, which is defined by the product of phase fraction
and velocity αG

·u .

5.1. Mesh Sensitivity Study

For simplicity in the following sections, only comparisons of experimental data and numerical
results at measurement position MP3 are shown.

To estimate the influence of the mesh on the results, with the guidelines [23] were followed
and three different mesh resolutions have been compared. Starting from the coarsest grid, two
higher-resolution grids were created by global refinement by a factor of two and four, respectively.
These are referred to as “coarse”, “medium” and “fine”. The grid parameters can be found in Table 10.
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Table 10. Mesh parameter.

Mesh Nodes ∆x [mm] ∆y [mm] ∆z [mm]

coarse 2.0168 ×104 7.52 2.22 0.05
medium 5.94 ×104 4.46 1.29 0.05

fine 1.93 ×105 1.94 0.69 0.05

The transient test calculations carried out for the sensitivity study use the resistance formulation
at the phase interface CD,fs, which was proposed by Porombka and Hoehne [10]. The k-ω turbulence
model with damping term according to Equation (23) is also used in connection with the subgrid
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wave turbulence “SWT” according to [4]. The results for all mesh resolutions are listed in Table 11.
The standard deviations σ

(
uk

)
were determined at a monitor point with MP3 within the respective phase.

Table 11. Standard deviations of the velocities uG und uL for the Mesh sensitivity study.

Mesh σ (uG) σ (uL)

Coarse 0.538% 0.6357%
Medium 0.0158% 0.0114%

Fine 0.0035% 0.0047%

It can be clearly seen that the smallest fluctuations in speed uk result with the finest mesh.
The results of the calculations are shown in Figure 7. The obtained profiles of the horizontal and
vertical components of the velocities uk and vk as well as the gas phase component αG for MP3 for the
three different meshes “coarse”, “medium” and “fine” are considered in the following. The calculations
were performed with the uniform weighting functions (AIAD 3) and are compared to the measured
values (Exp) according to [15].
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From the results it can be observed that uG, uL and αG for all three meshes at MP3 are close to
the measured values (Figure 8). Here emerges a dominant influence of the weighting functions of the
AIAD 3.

On the other hand, it can be seen in Figure 7b that the profile of vG shows no physical fluctuation
for all three grids.

With vL a good agreement with the measured values can be achieved for all meshes on the duct
wall at y = 0 mm. However, the divergences increase near the phase boundary at ym, as shown in
Figure 9b. This could be due to the inlet conditions from Section 4 or a greater degree of turbulence at
the water inlet in the experiment.
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In summary, the results of the fine, medium and coarse meshes show no qualitative approximation
to the measured profiles with increasing mesh resolution.

All calculations in this work were carried out with the medium mesh according to the mesh
parameters from Table 11.
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5.2. Influence of Weighting Functions

Three comparative calculations were performed to validate the uniform weighting functions in
the AIAD model. The first contained the weighting functions 1 in the AIAD model according to [14],
which is referred to as “AIAD 1”. The second one contained the weighting functions 2 also in the
AIAD model according to [12], which is designated “AIAD 2” and a third calculation with the current
uniform weighting functions according to [8], which is designated “AIAD 3”.

All transient calculations here use the two-fluid model and the drag formulation at the phase
interface CD,fs according to [6]. The turbulence model is, in all cases, the k-ωmodel with the damping
term from Equation (23) and is used in connection with the subgrid wave turbulence according to [4].
The boundary conditions are selected according to Table 7 and the simulations use the grid parameters
from Table 11 and the numerical parameters from Table 8.

The mean liquid level ym does not change for MP3 and MP23 for the three simulations. It remains
stable compared to the data shown in Table 10.

To validate the uniform weighting functions, the following figures show the profiles of the
horizontal and vertical components of the velocities uk and vk as well as the turbulent kinetic energy
kk of the two phases and the gas phase fraction αG for MP3 for the three different weighting functions
“AIAD 1”, “AIAD 2” and “AIAD 3” respectively. These can be seen in comparison to the measured
values according to [15] “Exp” (Figures 10–13).
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Figure 13. Gas phase fraction in MP3 for three different weighting functions of the AIAD model
according to Section 2; measured values from [15].

In general, the results of “AIAD 2” and “AIAD 3” show good agreement for all parameters
investigated for both the gas and liquid phases. Most of the deviations with respect to “AIAD 1” are
particularly noticeable here near the phase boundary at ym.

In the profiles of uG, uL, kG and kL for the three weighting functions in both measuring points,
a similar course can be observed to the measured values in the regions near the channel wall at
y = 0 mm and y = 90 mm respectively.

The profiles of the vertical velocity component vG for the three weighting functions for MP3 do
not show good agreement with respect to the measured values. In Figures 10b and 11b a non-physical
spatial variation can be seen in “AIAD 1” which differs from the other weighting functions.

The profile of the gas phase fraction αG in both measuring points shows a good agreement for the
three different weighting functions and an asymptotic approximation to the measured values at ym .

In conclusion, the results show no significant differences, as can be seen in the simulations of the
weighting functions of the AIAD model “AIAD 2” and “AIAD 3” for the respective parameters.

5.3. Influence of Turbulence Modeling

For the evaluation of the effect of the turbulence modeling at the phase boundary interface of
the flows in connection with the uniform weighting functions of the AIAD model, two comparative
calculations were carried out with the two-equation turbulence models from Section 3. The transient
calculations use the k-ω and k-ε turbulence models with a damping term according to Equation (27).
The simulations of both turbulence models are performed with the resistance formulation at the phase
boundary interface CD,fs according to [6].

Furthermore, the configuration of the calculations corresponds essentially to the description in
Section 4.

The following figures show the parameters uk, vk, kk, αG and the modeled Reynolds shear stress
τk

T,i j at the MP 3 for the validation of the turbulence modeling. The simulations show the results
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with the k-ω model “AIAD 3 k-o” and with the k-ε model “AIAD 3 k-e” and they are set up with
the measured values “Exp” and the standard profiles of the k-ωmodel without turbulence damping
“Standard” according to [6] (Figures 14–18).
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Figure 14. (a) horizontal and (b) vertical velocity component of the gas phase at MP3 for the investigated
turbulence models according to Section 3; measured values and standard k-ωmodel from [15].

The comparison with the measured data shows a large deviation of the liquid level for the k-ω
without damping function (Table 12). This is due to a flow regime deviating from the experiment.
The liquid level of k-ω and k-εmodels with turbulence damping corresponds to the measured data.

In comparison to the measured values as well as to the results of the standard k-ωmodel without
turbulence damping, a clear influence of the turbulence damping can be seen in most cases.

The results of uG, uL and αG (Figures 14 and 15,18) show no significant divergence between
the k-ω and k-εmodels with turbulence damping and a good agreement with the measured values.
A good agreement of the profile of vG with the measured values is shown in Figure 14b. In contrast,
the profile of vL in Figure 15b shows a non-physical local variation.

In Figure 16 a,b the turbulent kinetic energy is shown. This shows a slight improvement in the
convergence of kG with the measured values for the k-ε model with turbulence damping near the
phase boundary. In addition, the profiles with “Standard” were scaled by a factor of 1/10 at both
measuring points, since the profile of kG differs from the measured values by more than one order
of magnitude.

When using the k-εmodel with turbulence damping in relation to the k-ωmodel with turbulence
damping, the following can be seen here:

The Reynolds shear stresses are shown in Figure 17. The results are determined using the modelled
eddy viscosity µk

T,i j in Equation (19) for each phase. The evaluation of the Reynolds shear stresses in
view Figure 17a shows a slight convergence in both measurement points with the measured values for
the k-ωmodel with turbulence damping. In view Figure 17b, the simulation results of both turbulence
models with damping term show a non-physical local variation of the Reynolds shear stresses at MP3.
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The reason for this could not be clearly determined. In addition the gas phase fraction at MP3 for the
investigated turbulence models is shown in Figure 18.
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turbulence damping, the following can be seen here: 
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modelled eddy viscosity ,  in Equation (19) for each phase. The evaluation of the Reynolds shear 
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measured values for the k-ω model with turbulence damping. In view Figure 17b, the simulation 
results of both turbulence models with damping term show a non-physical local variation of the 
Reynolds shear stresses at MP3. The reason for this could not be clearly determined. In addition the 
gas phase fraction at MP3 for the investigated turbulence models is shown in Figure 18.  

The results of the calculations show a dominant influence of the turbulence damping at the phase 
boundary of the present flow regime. The use of the k-ε model with damping term S  provides a 
special convergence behaviour at some turbulence parameters such as G and vGcompared to the k-
ω model with turbulence damping. 

6. Summary and Conclusion 

The objective of the present work was the validation of the new uniform weighting functions in 
the AIAD model according to [8] for the modeling of horizontal two-phase flows with phase 

Figure 18. Gas phase fraction at MP3 for the investigated turbulence models according to Section 3;
measured values from [15].

The results of the calculations show a dominant influence of the turbulence damping at the phase
boundary of the present flow regime. The use of the k-ε model with damping term Sk

D provides a
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special convergence behaviour at some turbulence parameters such as kG and vG compared to the k-ω
model with turbulence damping.

Table 12. Averaged liquid level at MP3 and MP23.

Test. MP3ym [mm] MP23ym [mm]

Measurements 10.24 11.88
k-ωwith damping 10.17 11.45
k-εwith damping 10.14 11.39

k-ωwithout damping 23.52 18.68

6. Summary and Conclusions

The objective of the present work was the validation of the new uniform weighting functions in
the AIAD model according to [8] for the modeling of horizontal two-phase flows with phase interfaces
in the two-fluid model. For the simulation of stratified two-phase flows with different flow regimes,
the detection of phase boundaries of the different flow morphologies is required. For this reason,
the AIAD model according to [3,5,13] was used in this work with a new approach for the formulation
of the weighting functions.

The implementation of the new uniform weighting functions was suitable for the description
of the momentum exchange at the phase boundary in the AIAD model, and further in turbulence
modelling on two-phase flows with phase boundaries.

The validation of the simulations was carried out with experimental data from a suitable test case,
whose geometric boundary conditions and broad database were available.

In the first part of the work, some relevant publications on the topic of horizontal two-phase flows
were presented and subsequently the mathematical principles of the two-fluid model used and the
AIAD model were described in Section 2. Additionally, the description of the approach for modelling
the momentum exchange at the phase boundary interface in the AIAD model was dealt in this section,
where the drag modelling for different flow regimes was analyzed and the new approach for the drag
coefficient at the phase boundary was evaluated from the consideration of the shear stresses at the
phase boundary.

In Section 3, the turbulence modeling of horizontal two-phase flows with phase interfaces was
dealt with. In particular, the adaptation of the k-ω turbulence model by means of a damping term was
described in theω transport equation. Theω transport equation was transferred to the formulation
for ε transport equation in order to be able to use a modified k-ε turbulence model.

The WENKA test facility was selected to simulate a suitable test case. The configuration of
the test facility and the execution of the experiment were described in Section 4. It is an air–water
circulation channel with a rectangular cross-section of the test section for the investigation of horizontal,
stratified and opposing two-phase flows. By means of PIV measurements and ensemble averaging,
the time-resolved velocity fields were recorded. The measurement of the phase fraction in both phases
was performed by a resistance probe.

In previous work, the flow regime was not correctly reproduced from the experiment with a
simple homogeneous modeling of the two-phase flow.

The results of the validation calculations were shown and discussed in Section 5. The simulations
with the uniform weighting functions in the AIAD model resulted in an improvement for the detection
of the phase boundary.

In the comparative calculations with the turbulence models, a dominant influence of the turbulence
modeling on the two-phase flow was found. When using the k-ω turbulence model without damping,
flow regimes deviated from those of the experiment. Parameters such as the turbulent kinetic energy
were overestimated by more than one order of magnitude in these cases.

By using a damping term according to [4] in theω transport equation, the measured turbulence
parameters could be reproduced much better by the k-ω and k-ε turbulence models.
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In addition, the adaptation of the model constants of the weighting functions could better reflect
the phase boundary even with sharp jumps of the phase fraction. In subsequent simulations, the results
should be compared with various other experimental data.
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Nomenclature

Latin Symbols Description Unit

A area m2

ai interfacial area density m−1

CD drag coefficient −

Dk, Dε, Dω dissipation terms in k, ε,ω-equations m2 s−3, m2 s−4, s−2

dh hydraulic diameter m
fb, fd bubble, droplet regime blending functions −

Fr Froude number −

Gk,Gε,Gω diffusion terms in k, ε,ω-equations
g gravitational acceleration s−2

k specific turbulent kinetic energy s−2

l length m
lT turbulent length scale m
n interface-normal coordinate m
n cell number -
Pk production of turbulent kinetic energy kg m−1 s−3

p pressure Pa
Re Reynolds number −

SD damping source term s−2

t stress vector Pa
U bulk velocity m s−1

u, v, w Cartesian velocity components s−1

uslip slip velocity s−1

V volume m3

x, y, z Cartesian coordinates M
y0 liquid level at inlet m
ym time-averaged liquid level m

Greek Symbols Description Unit

α volumetric phase fraction −

δi j Kronecker symbol −

ε dissipation of k s−3

ϕfs interface regime blending function −

Γ Mass exchange term m−3s−1

µ dynamic viscosity kg m−1 s−1

µT dynamic Eddy viscosity kg m−1 s−1

ν kinematic viscosity s−1

νT kinematic Eddy viscosity s−1

Mi interfacial momentum transfer s−2

ρ density m−3
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τT,i j Reynolds stress tensor kg m−1
·s−2

Ψsurf morphology blending function
ω dissipation rate of k s−1

Indices, Superscripts Description

0 at the inlet
amb ambient conditions
b bubble
d droplet
fs separated
G gas phase
i interface
i, j, k tensor indices
k phase index
L liquid phase
m mixture
rms root-mean-square
T turbulent

Further Symbols Description

() phase average
(̂) mass-weighted average
() temporal average
(′ ) fluctuation

Abbreviation Description

AIAD Algebraic Interfacial Area Density
CCL CFX Command Language
CFD Computational Fluid Dynamics
CFL Courant–Friedrichs–Lewy number
DNS Direct numerical simulation
HZDR Helmholtz–Zentrum Dresden–Rossendorf
KIT Karlsruhe Institute of Technology
LES Large Eddy Simulation
MP3, MP23 Measuring position 1 and 2
RANS Reynolds-Averaged Navier–Stokes
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