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Abstract: Direct Numerical Simulations have been performed for turbulent flow in circular pipes

with smooth and corrugated walls. The numerical method, based on second-order finite discretiza-

tion together with the immersed boundary technique, was validated and applied to various types

of flows. The analysis is focused on the turbulence kinetic energy and its budget. Large differences

have been found in the near-wall region at low Reynolds number. The change in the near-wall turbu-

lent structures is responsible for increase of drag and turbulence kinetic energy. To investigatselinae

the effects of wall corrugations, the velocity fields have been decomposed so as to isolate coherent

and incoherent motions. For corrugated walls, we find that coherent motions are strongest for walls

covered with square bars aligned with the flow direction. In particular, the coherent contribution is

substantial when the bars are spaced apart by a distance larger than their height. Detailed analysis

of the turbulence kinetic energy budget shows for this set-up a very different behavior than for the

other types of corrugations.

Keywords: wall roughness; wall turbulence; pipe flow; direct numerical simulation; immersed-

boundary method

1. Introduction

Wall turbulent flows past smooth and rough walls have been investigated in bound-

ary layers and in two-dimensional channels. For boundary layers, the effects of the inlet

conditions make it difficult to reach universal consensus on the results. The unsteadiness
of the outer flow, and the impossibility of eliminating external fluctuations, introduce fur-

ther uncertainties. These are eliminated in two-dimensional channels, a set-up which is
however difficult to reproduce in laboratory experiments. In order to achieve fully devel-

oped flow, Hussain and Reynolds [1] had to build a channel with a large ratio between

the length L and the distance H between the two walls. Even more important is the aspect
ratio W/H, with W the distance of the side walls. In numerical experiments of bound-

ary layers, the difficulties of real experiments persist. In time-developing simulations of
channels, the assumption of streamwise and spanwise periodicity reduces the complexity

of calculations both in physical and in wavenumber space. However, the length and the

width of the channel still play a role. In the paper of Hoyas and Jimenez [2], for the first
time, it was pointed out that the size of the computational box should be large enough

to capture all the energy-containing structures. This requirement makes simulations at
high Reynolds number quite difficult, in fact, many years and efforts have been spent to

increase the Reynolds number in smooth channels from Reτ = 180 [3]) to Reτ = 5200 [4].

The flow in circular pipes is a canonical wall-bounded flow in which only the stream-
wise length of the domain should be (more or less arbitrarily) decided in numerical sim-

ulations. The realisation of a laboratory experiment is also less complicated than for two-
dimensional channel flow. This is the main reason why circular pipe flow was initially

considered as a main representative of wall-bounded flows. Using flow visualizations,
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Reynolds [5] emphasised differences between laminar and turbulent flows. Later on,

Laufer [6] performed measurements, and (incredibly at that time) he was able to provide
radial profiles of each term of the turbulence kinetic energy budget, observing large dif-

ferences between the near-wall and the outer region. Therefore, it was conjectured that
it is quite difficult to develop robust and efficient Reynolds-averaged turbulence closures

(RANS) for wall bounded flows, and in particular to reproduce the distribution of each

term in the near-wall region.
In the present paper, we focus on the near-wall coherent structures, which affect the

azimuthal distribution of the turbulence statistics, and as a consequence each term in the
turbulence kinetic energy budgets. The flow structures in plane channels were analyzed

through pre-multiplied spectral densities by Hoyas and Jimenez [7]. Lee and Moser [8]

presented a detailed analysis of each term contributing to the budgets of the two-point cor-
relation tensor in wavenumber space. This comprehensive analysis provided insight into

transfer among turbulent scales at any distance from the wall. However, spectral analysis
does not allow for identifying shape and localization of the turbulent structures in phys-

ical space, and to analyze interactions between near-wall and outer structures. A simple

type of physical space analysis, which is especially appropriate for corrugated ducts, re-
lies on use of phase averages, which highlight the onset of secondary flows [9]. Phase

averages can also be performed in smooth ducts. In that case, in principle, turbulence
structures should randomly drift in the spanwise direction, thus their imprinting should

vanish if sufficiently long averaging times are considered. However, real and numerical

experiments have limited duration, and spanwise non-uniformities of any statistics have
a sizeable impact on the budget of the turbulence kinetic energy. This kind of averaging

is in similar to the triple decomposition suggested by Hussain and Reynolds [10], to ex-

tract ’coherent’ from ’incoherent’ fluctuations of a signal. Whereas those authors applied
the decomposition to time signals, here we apply it to the azimuthal direction, in order

to split the radial profiles of any correlation into coherent and incoherent contributions.
This approach was used by Yuan and Piomelli [11] in DNS of turbulent channel flow over

sand-grain roughness in the transitionally and in the fully rough regime. They evalu-

ated the profiles of the Reynolds stresses and the form-induced stresses, and found that
the latter are weaker than the former. Chan et al. [12] used the same decomposition for

flows inside circular pipes with rough wavy walls, observing similar behavior. These two
papers considered three-dimensional rough surfaces, whereas the surfaces studied nu-

merically and experimentally by Anderson et al. [13] had large-scale disturbances, with

streamwise coherence superimposed to small-amplitude three-dimensional disturbances.
Those authors evaluated the budgets of turbulent kinetic energy in planes normal to the

flow, detecting mean-flow heterogeneity in the form of spanwise-alternating regions with
high streamwise momentum separated by regions with momentum deficit, the former

embedding regions with more intense turbulent kinetic energy. To understand in greater

detail the effect of flow heterogeneity, Vanderwel and Ganapathisubramani [9] introduced
longitudinal disturbances through Lego bricks with different spacings. They found that a

necessary condition for the development and persistence of secondary currents is that the
wall roughness spacing is comparable to the boundary layer thickness. On the other hand,

when the roughness spacing is small, spanwise variations are confined to the roughness

sublayer. Starting from lessons learned in these previous studies, here we consider flow
in a circular pipe whose wall is covered with structured roughness with various geometry,

to verify whether results similar to those in boundary layers are obtained.

Near-wall turbulence structures are generally more intense than outer-layer struc-
tures. Evidence for this may be drawn from the turbulence kinetic energy profile having

a maximum, independent of Re, at a distance of about ten wall units, and a weaker outer-
layer peak emerging at higher Reynolds number [14]. A clear picture of this scenario

can be drawn from pre-multiplied spectra [15]. The values of the near-wall peak of the

turbulence kinetic energy in wall units weakly depend on the Reynolds number, both in
two-dimensional channels and in circular pipes. Splitting of the turbulence kinetic energy
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into coherent and incoherent contributions then allows for establishing which of the two
depends most on the Reynolds number.

The scenario is different in roughened circular pipes. Rough pipes were considered

in laboratory experiments for the first time by Nikuradse [16], followed by innumerable
other studies, up to more recent times [17]. Nikuradse covered the pipe walls with sand-

grain roughness and measured wall friction and mean velocity profiles. He found that the
logarithmic velocity profile typical of smooth walls is also present in the case of rough sur-

faces, however with a downward shift that depends on the type of roughness and on the

Reynolds number, and which is referred to as roughness function (∆U+). He found that
this constant can be connected with an equivalent roughness height. To date, a satisfactory

universal representation of the roughness function has not been derived. However, based
on the large data-set of Nikuradse [16], Moody [18] obtained a chart of the friction factor

versus the Reynolds number for different equivalent roughness height. This diagram has

been widely used in practical applications.
At the times of Nikuradse’s experiments, measurements were limited to mean veloc-

ity profiles far from the wall, and it was impossible to have a clear idea about the effects of
the roughness on the turbulent fluctuations. Progress in measurement techniques made it

possible to obtain profiles of normal stresses and of pre-multiplied spectra in rough pipes

at high Reynolds number [17]. Comparison between the statistics of flows past smooth
and rough surfaces highlights substantial differences in the near-wall region. This behav-

ior, together with the formation of a wide logarithmic region, is a convincing proof of the

validity of Townsend’s similarity hypothesis [19]. This hypothesis was further supported
by Kunkel et al. [20] through comparison between the velocity spectra of smooth and

rough pipe in the logarithmic region. In the experiments of Kunkel et al. [20], the rough-
ness function was ∆U+ ≤ 3. Experiments carried out with commercial pipes [21] with

∆U+ up to six showed similar results.

The Princeton experiments in the Superpipe facility yielded reliable measurements at
high Reynolds numbers in the outer region. On the other hand, a clear picture of the com-

plex physics within the surface layer, and its dependence on the type of roughness could
not be established. The reasons residing in difficulties to measure velocity fluctuations

near the roughness, and in the unstructured shape of the sand-grain roughness. In order

to evaluate the dependence of the flow statistics on the roughness shape, it is preferable
to use structured roughness elements, as done by Schlichting [22] in a rectangular duct.

Starting from Leonardi et al. [23], these kinds of rough surfaces have been widely consid-
ered in direct numerical simulations (DNS) of rough channels [24]. DNS, while limited

to lower Reynolds numbers than in laboratory experiments, has the advantage of provid-

ing access to any kind of statistics. Assembling the results obtained for several kinds of
statistics, the complex physics of wall rough turbulence can then be unraveled.

Flack and Schultz [25] attempted to link the roughness function, that is, the shift of
the log-law intercept or equivalently the skin friction, to geometrical surface parameters,

rather than to an equivalent roughness height. Mainly based on laboratory experiments,

in the concluding remarks, the authors asserted that universality of the roughness func-
tion through surfaces parameters can be achieved in the fully rough regime, and that is not

possible in the transitional regime. Hence, achieving an accurate Moody diagram in this

regime which is accessible to DNS, appears to be highly unlikely. A different avenue to
achieve closures for flows past rough surfaces could be trying to relate the roughness func-

tion to statistics of the velocity fluctuations generated by the surface roughness. In DNS,
any statistics can be evaluated, in particular those related to the wall-normal velocity com-

ponent, which best characterizes the typical inhomogeneity of wall-bounded flows. Or-

landi et al. [26] verified that the wall-normal velocity distribution at the plane of the crests
is the driving mechanism for the modification of near-wall structures. Among normal

turbulent stresses, the wall-normal stress has received less attention, the reason being dif-
ficulty to obtain accurate measurements near the walls. Orlandi and Leonardi [24] found

a linear relationship between ∆U+ and the wall-normal stress at the plane of the crests.
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Introduction of this relationship into the log law for the mean velocity profile allows for
deriving a new type of Moody diagram [27], with the roughness correction to the fric-

tion factor parametrized with the vertical velocity variance. This result could be useful in

RANS, in which the wall-normal stress enters as a boundary condition in several types of
improved closures as those developed by Durbin [28]. Similarly, Orlandi [14] evaluated

the turbulence kinetic energy budgets in channels with two rough walls, and different
types of rough surfaces. For certain types of rough surfaces, the turbulent transfer term

due to the triple velocity correlations and to the pressure–velocity correlations was found

to be comparable or greater than the total dissipation. It was also stressed that the split-
ting of the total dissipation into isotropic and viscous diffusion contribution may lead to

difficulties in RANS closures. For several types of surfaces, the budget terms are not zero
at the plane of the crests, unlike at smooth walls. At low Reynolds numbers, the distur-

bances emerging from one wall could also have effect on the opposite wall. Hence, flows

in channels with roughness on both walls are closer to those in circular pipes with rough
wall. Numerical simulation of pipe flow also allows for performing direct comparison

with experiments. In rough plane channels, the sidewalls present in the real experiments
may affect the results, as well as the aspect ratio in the numerical simulations.

The normal turbulent stresses and hence the turbulence kinetic energy are generated

by coherent structures, which are mainly elongated in the streamwise direction. Three-
dimensional flow visualizations of DNS data and associated identification schemes [15]

emphasize the complex interaction among inner- and outer-layer structures. These coher-

ent structures may be regarded as secondary motions, similar to those analyzed in detail
by Pirozzoli et al. [29] in square ducts, and by Orlandi and Pirozzoli [30] in rectangular

ducts. In that case, near-wall secondary motions are mainly localized near the corners,
and their size scales in wall units. In the rest of the wall layer, coherent structures are

similar to those in two-dimensional channels.

To increase their strength and their spatial coherence, wall corrugations may be in-
serted [9]. Depending on their size and separation, drag reduction can also be achieved.

DiGiorgio et al. [31] found that enforcement of the impermeability condition at the edge of
roughness elements yields large reduction of friction. This artificial boundary condition

prevents the formation of the secondary flow, which is the key ingredient for drag increase.

Comparison between DNS results in circular pipes and in channels [32] has shown that
achieving drag reduction in circular pipes is quite difficult. This could be due to the dif-

ferent interaction between outer and near-wall structures in the two set-ups, especially at
low Reynolds number. Since channel flow has been extensively studied, it is worth mak-

ing an effort to analyse secondary motions in circular pipes, in which the outer structures

are not affected by artificial choice of the spanwise aspect ratio. Analyzing the spatial
distribution of each term of the turbulence kinetic energy budgets could lead to a better

understanding of the complex interaction between the near-wall structures generated by
the roughness, and the outer structures.

In this paper, we simulate turbulent flow in pipes with rough walls using a numerical

method based on discretization of the Navier–Stokes equations in cylindrical coordinates.
The original code, based on second-order finite discretization, was validated and applied

by Orlandi and Fatica [33] to study the effect of rotation on turbulent flows in smooth

circular pipes. The immersed-boundary technique herein used differs from that originally
proposed by Fadlun et al. [34], and based on evaluation of the velocity field at the first

grid point near a solid boundary through an interpolation procedure, as it may cause
problems in the enforcement the condition of constant mass flow rate. Following Orlandi

and Leonardi [24], we therefore use a different technique based on redefinition of the grid

metrics at the first grid point near the wall, as needed to discretize the viscous terms.

2. Flows Set-Up

Letting r = Rc be the radial coordinate at the plane of the crests, the DNS have
been carried out in a cylindrical computational domain with outer radius 1.2Rc, hence
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with a layer 0.2Rc thick enough to accommodate roughness using the immersed-boundary
method. In real and numerical experiments of duct flows, the mass flow rate is fixed.

In ducts with complex shape [35], or in circular pipes with roughness elements, the drag

should be compared with that of a smooth circular pipe of length Lz and volume VM =
πR2

c Lz. Hence, the same flow volume should be retained. In the present simulations,

the plane of the crests is held fixed. The wetted area and the flow volume (VR), and

hence the equivalent smooth pipe radius radius RE = (VR/VM)1/2, depend on the type

of roughness.
DNS of flows at bulk Reynolds number Re = 2UBRc/ν = 6534 (where UB is the

bulk velocity, and ν the fluid kinematic viscosity) past different deterministic roughness

geometries (corrugations) have been performed to investigate differences with respect to
the case of a smooth wall (SM). Referring to Table 1, three simulations have performed to

investigate the effects of the Reynolds number on the secondary motions in the presence of
smooth walls. Longitudinal square bars with near unity aspect ratio (s/h, with s = 0.2Rc

the height and h the width of each element) have been initially considered. In the case

labelled as SL (see Figure 1b), the bars are spaced by a distance w ≈ h with h+ ≈ 56. In
the SLL case (see Figure 1c), the spacing is w/h ≈ 5 with h+ ≈ 48. Triangular bars have

been considered, either with s/h ≈ 1 with h+ ≈ 49 (TL, see Figure 1d), and with s/h ≈ 2
with h+ ≈ 47 (TLS, see Figure 1e), thus modifying the flow intensity below the plane of

the crests. Three-dimensional corrugations, without longitudinal coherence, in the form

of arrays of staggered cubes have also been considered (labelled as CS in Figure 1f) with
h+ ≈ 101.
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Figure 1. Sketch of roughness geometries in a cross-stream plane with −1.2 < x < 1.2 and −1.2 < u < 1.2: (a) SM; (b) SL;

(c) SLL; (d) TL; (e) TLS; (f) the CS geometry is depicted in a z − θ (0 < x = θ < 2π and 0 < z < 8) shell at the plane of the

crests.

The total stress at the plane of the crests (r = RC, denoted with the W subscript)
is defined as τW = τR + τV , with τR = −v′rv′z|W and τV = 1

Re
dVz/dr|W denoting the

contribution of the turbulent and of the viscous stress, respectively. These values are

extrapolated from the profiles of v′rv′z and of dVz/dr for r < RC. The friction veloc-
ity is defined as uτ = τW

1/2RE/RC, and the friction Reynolds number in Table 1 is de-

fined as Reτ = uτRC/ν. In these expressions, the overline denotes averages in time and
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in the homogeneous directions, limited to the region above the plane of the crests, and
v′i = Vi − Vi.

Table 1. List of parameters for the flow cases herein considered. The subscripts (6K, 12K, 24K) indicate the values of

the bulk Reynolds number (Re), given in the second column. N f is the number of fields used to evaluate the statistics,

spaced one outer time unit apart. Nθ , Nr, Nz are the number of grid points in the azimuthal, wall-normal, and streamwise

directions. Lz is the streamwise domain length, and RE is the radius of the equivalent circular duct. Reτ is the friction

Reynolds number.

Flow Case Re −v′
rv′

r|w · 103
τV · 103

τR · 103 N f Nθ Nr Nz Lz/Rc RE/Rc Reτ

SM6K 6534 0 10.90 0 286 513 257 257 8 1.00 216
SM13K 12,290 0 9.36 0 159 513 193 513 12.5 1.00 376
SM24K 24,580 0 7.78 0 185 769 193 513 12.5 1.00 685
SL6K 6534 5.8 10.56 6.22 166 513 129 257 8 1.10 281

SLL6K 6534 7.4 3.24 8.65 151 513 129 257 8 1.16 243
TL6K 6534 5.5 3.96 8.61 116 513 129 257 8 1.11 245

TLS6K 6534 5.1 5.96 5.81 117 513 129 257 8 1.10 235
CS6K 6534 42.9 12.98 39.36 117 513 129 801 8 1.15 505

3. Results

3.1. Turbulence Kinetic Energy

This paper is mainly focused on the analysis of the turbulence kinetic energy and on

the terms contributing to its balance. A first indication of the radial distribution of the

energy-containing scales can be drawn by inspecting the profiles of the turbulence kinetic
energy (K = v′ iv′i/2). Similarly, the distribution of the dissipative scales is inferred from

the profiles of the enstrophy, O = ω′
iω

′
i/2. Figure 2 shows that roughness causes large

modifications on both the dissipative and the energy-containing scales with respect to the

case of smooth walls. In the latter case, K has a maximum at y+d ≈ 15 (where yd is the
distance from the plane of the crests), and it is zero at the wall, whereas large values are

observed at the plane of the crests for rough surfaces. In the case of the TLS triangular

bars and of three-dimensional corrugations (CS), K increases slowly with the distance

from the wall. In the case of the TL bars, K
+

is nearly constant near the plane of the crests.

On the other hand, in the case of square bars, the maximum of K is at the plane of the
crests, and K decreases moving towards the interior of the pipe. In the case of the SLL

corrugations, intense velocity fluctuations in the wide groove between the two bars yield

large value of the maximum of K.

 0

 4

 8

 12

 1  10  100

SM
SL

SLL
TL

TLS
CS

K
+

y+d

 0

 0.04

 0.08

 0.12

 0.16

 1  10  100

O
+

y+d
(a) (b)

Figure 2. Inner-scaled profiles of turbulence kinetic energy (a) and enstrophy (b) at Re = 6534, for the roughness geome-

tries given in the legend of panel (a).

The size, location, and shape of the energy-containing scales cannot be appreciated

from the radial profiles only. However, all profiles in Figure 2a, with the exception of the

CS case, are superposed in the outer region. The same coincidence is observed for the
profiles in outer units only for corrugations with similar values of wall friction, namely
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SM, TL, and TLS. Some small difference is observed for the SL corrugation, whereas for
the CS geometry, which has large drag, K in the outer region is higher that for the smooth

case. At low Reynolds number, the good collapse in wall units indicates strong connection

between friction and turbulence. Details on the shape, and on the interaction among the
energy-containing structures, may be inferred by large-scale eduction procedures, as those

introduced by Jimenez [15]. The eduction of the coherent structures is rather complex in
two-dimensional channels, and the computational effort in circular pipes and in the pres-

ence of rough walls further increases. Preliminary insight into the interaction among the

flow structures may be obtained through contours plots of K̂ = v̂′′i v′′i /2 in planes orthogo-

nal to the flow direction, with v′′i = Vi − V̂i. The hat symbol here indicates averages in the

streamwise direction, and in time.
Before analyzing the distribution of the energy-containing scales, it is worth showing

the radial distributions of the dissipative scales, depicted through O
+

in Figure 2b. For

all kinds of surfaces, the maximum of O
+

occurs at the plane of the crests and O
+

decays
moving towards the central part of the pipe. The bump occurring y+d > 8 for the smooth

pipe case, and due to the interaction between ribbon- and rod-like structures, is barely

appreciable for the TLS geometry. Letting S = s′ijs
′
ji, it is worth recalling that, if S > O,

the small-scale structures are ribbon-like, whereas rod-like structures are found in the
opposite case. For all the other corrugations, the enstrophy decays monotonically, starting

from y+d ≈ 20, at different rates. With the exception of the CS case, the profiles of O
+

collapse in the core region. For the CS geometry, large values of O our at any wall distane

(as for K), whereas values for the SL geometry are slightly higher than for the other geometries.

The large values of O for the CS, SL, and SLL geometries are assoiated with intense vortiity

generation at the orners of the longitudinal bars or of the ubi elements. The formation of

high values of K and of O for CS an be appreiated from the plots in Figure 2 by onsidering

that, in Table 1, Reτ for the CS case is three times higher than for the other corrugations.

3.2. Budgets of Turbulence Kinetic Energy

The budget of the turbulence kinetic energy highlights the contribution of produc-

tion, rate of dissipation, and transfer in space. In the presence of smooth walls, the effect
of the first two terms is felt in all regions of the duct, whereas transfer is only comparable

in the near-wall region. In two-dimensional rough channels, Orlandi [14] showed depen-

dence of each term on the type of surface. It is then worth establishing whether the same
behavior also holds in circular ducts. In this respect, we wish to recall that budgets are tra-

ditionally obtained from the Navier–Stokes equations, by averaging along the streamwise
and spanwise directions and in time, leading to the equations for the mean velocity com-

ponents Vi, the subscript i indicating the radial (r), azimuthal (θ), and axial (z) directions.

Transport equations for the fluctuating velocity components v′ i are then obtained by sub-
tracting from the equations for the instantaneous velocity field Vi = Vi + v′ i the Vi equa-

tions. Summing the equations for v′i multiplied by the respective velocity fluctuations

yields a transport equation for the squared velocity fluctuations K′ = (v′r
2 + v′θ

2 + v′z
2)/2,

which averaged in time and in the homogeneous directions yield the transport equation

for K = (v′rv′r + v′θv′θ + v′zv′z)/2,

0 =− CK −v′rv′z
dVz

dr︸ ︷︷ ︸
PK

−
dv′rK′

dr︸ ︷︷ ︸
TK

−v′r
∂p′

∂r
+

︸ ︷︷ ︸
ΠK

(1)

1

Re

[
v′z∇

2v′z + v′θ∇
2v′θ + v′r∇

2v′r +
1

r2

(
−v′θv′θ − v′rv′r + 2

(
v′θ

∂v′r
∂θ

− v′r
∂v′θ
∂θ

))]

︸ ︷︷ ︸
DK

(2)
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The condition Vr = 0 sets the convective term CK = Vr
∂K
∂r to zero. The turbulent

transfer term TK accounts for the triple velocity correlations, ΠK for the pressure–velocity

gradient correlations, PK is the production term and DK is the total dissipation. Note that

here the latter term is not split into viscous diffusion and isotropic dissipation, as tradi-
tionally done. Orlandi [14] pointed out that this simplification may lead to advantages in

RANS closures for flows past smooth and rough walls. Qualitative comparison between
the budgets in Figure 12 of Orlandi [14] for channels and those in Figure 3 shows similar

trends, with the exception of the TLS geometry, which in the case of channels yields slight

drag reduction, whereas here it yields a slight drag increase.

 0
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Figure 3. Terms in the turbulence kinetic energy budget (Equation (2)): (a) production (P+
K ), (b) total dissipation (D+

K ),

(c) turbulent transport (T+
K ), and (d) pressure transport (Π+

K ), for the corrugations given in the legend of panel (a). CHtls

refers to data for the TLS geometry in channel flow.

In the case of a smooth pipe, all the terms (black solid circles) in Figure 3 are zero at
the wall, and dissipation nearly balances production everywhere in the pipe. The energy

transfer term TK marks the imbalance between PK and DK in the buffer layer, with a pos-

itive maximum in the region where ribbon- and rod-like structures interact. Orlandi [14]
stressed that the prevalence of one on the other kind of structure may be detected in the

profiles of d2v′rv′r/dr2, which change signs almost at the same distance from the wall as TK.
In the case of rough surfaces, the production term is approximately constant in a thin

layer near the plane of the crests, with values between 0.15 and 0.22, which do not differ

much from the smooth wall case. Hence, it may be stated that proportionality between
production and friction holds. For instance, the peak production for the CS case would

be a factor twenty higher than the smooth case, which is close to the ratio of the scaling
factors (1/(u4

τRe)) for the two surfaces. For the SL geometry, production is 2.7 times that

of the smooth case, again close to the ratio between the scaling factors. For the other

types of corrugations, the occurrence of similar values of Reτ implies that the maximum
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production at the plane of the crests equals the peak value in the smooth case. For the TLS
geometry, the different behavior of production in pipe (solid magenta circle), and channels

flow (solid magenta line) allows for understanding drag reduction in the channel. In fact,

Pk = τVτRRe, and in pipe at the plane of the crests, we have τR ≈ τV , whereas in the
channel flow (see Table 1 in Orlandi [14]), one has τR < τV . In addition, the maximum

of PK does not occur at the plane of the crests for the channel. To be more clear, drag
reduction is achieved when the velocities at the plane of the crests reduce τV more than

the increase of τR. This effect was investigated in detail by DiGiorgio et al. [31].

As previously mentioned for the SM geometry, the rate of total dissipation DK (see
panel (b)) balances production (PK) rather well. On the other hand, imbalance between

PK and DK is clear for the other corrugations, and in particular for the CS, SLL, and SL
geometries. The negligible contribution of ΠK (see panel (d)) implies that the imbalance

between PK and DK is equilibrated by TK. This is in fact conveyed in panel (c), which

shows large TK for SL, CS, and SLL, near the plane of the crests. In the case of triangular
bars, the intensity of the ejections from the interior of the corrugation, quantified in terms

of v′rv′r|w in Table 1, decreases, yielding small values of TK. In Table 1, one can see that
v′rv′r|w is almost ten times higher for the CS geometry than for any other surface, implying

large eruptions from the interior of the cubes, and large values of the budget terms, when

expressed in outer units. However, Figure 3 shows that, when expressed in wall units, all
budget terms for the CS geometry are comparable to the other geometries, implying that

the balance of the turbulence kinetic energy is strictly linked to drag mechanisms.

To appreciate the previous discussion in greater detail, it is worth analyzing the dis-
tribution of the turbulence statistics in the cross-stream plane, without averaging along

the azimuthal direction, which allows for uncovering the presence of secondary motions.

3.3. Definition of Secondary Flow

Secondary motions in time-developing flows are investigated here by evaluating the

statistics in terms of the triple splitting introduced by Hussain and Reynolds [10]. Those
authors applied the decomposition to the time signals of hot-wire probes. Here, coherent

motions are identified from averages of the flow variables in the streamwise direction

(denoted with the hat symbol, ·̂ ), and in time (denoted with angle brackets, 〈·〉), e.g., 〈v̂i〉.
Their azimuthal averages (denoted with the tilde symbol, ·̃) yield the standard Reynolds

averaged profiles, e.g., 〈v̂i〉. Deviations of the time and streamwise averaged fields with
respect to the Reynolds averages are denoted with the tilde symbol (·̃), and referred to as

coherent fluctuations, hence

ṽi = 〈v̂i〉 − 〈v̂i〉. (3)

Fluctuations with respect to the time and streamwise average fields are indicated

with a double prime and referred to as incoherent, such that

Vi = 〈v̂i〉+ v′i = 〈v̂i〉+ v′′i , (4)

The distribution of the Reynolds stresses in the r − θ plane can then be expressed as

Rij(r, θ) =
〈

v̂′iv
′
j

〉
=
〈

v̂′′i v′′j

〉
+
〈
̂̃viṽj

〉
= Rij(r, θ) + ρij(r, θ), (5)

where we have accounted for the fact that coherent and incoherent fluctuations are un-

correlated. In Equation (5), the stresses Rij account for the effect of incoherent motions,

and ρij account for coherent motions. In the absence of wall corrugations, secondary mo-
tions may still be present because of the coherence of the flow structures. In the presence

of wall corrugations, and, in particular for corrugations aligned with the flow direction,
space coherence is expected and in some sense enforced. The turbulence kinetic energy,

previously shown in Figure 2a, is split after (3), as K = K + χ, K = Rii/2, χ = ρii/2,

indicating the contribution of incoherent and coherent motions, respectively. Their az-
imuthally averaged profiles, shown in Figure 4, suggest a large dependence on the type of
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corrugation. For the CS, TL and TLS surfaces, the coherent energy (Figure 4b) is negligi-
ble, implying that the coherent disturbances ṽi are small, and the incoherent disturbances

emanating from the roughness are the main contributors to the turbulence kinetic energy.

In the case of the CS corrugation, this is true at any distance from the plane of the crests.
In the case of the triangular bars (TL, TLS), χ increases with the distance from the plane of

the crests, and it becomes larger than K near the center of the pipe. In the case of smooth
walls, ṽi reaches a maximum at a certain distance from the wall, implying that streamwise-

elongated structures are coherent in space and time. However, the incoherent contribution

is larger than the coherent one, at any distance from the wall. For the SLL corrugation, the
coherent energy overcomes the incoherent one. Later on, we will show that this is due

to the presence of intense coherent structures which are anchored to the longitudinal bars.
In particular, χ decreases near the wall, and it becomes comparable to K at y+d ≈ 20, which

shows that the size of these energy-containing scales is ≈ 0.1Rc, comparable to the size of

the corrugations. For SL corrugations, the peak of χ reduces with respect to the SLL case,
but it is still dominant over K. The two contributions are equal at y+d ≈ 5, to indicate that

the coherent structures generated near the corner of the corrugations are smaller than the
size of the square bars.
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Figure 4. Profiles of (a) turbulence kinetic energy (K); and (b) its coherent contribution (χ), for the wall corrugations given

in the legend (Re = 6534).

3.4. Visualization of Secondary Flows

3.4.1. Effect of Reynolds Number in Smooth Pipe

Before analyzing the effects of wall roughness on the distribution of the coherent and

incoherent statistics, it is worthwhile examining the influence of the Reynolds number in

the case of smooth pipe. Based on DNS data in plane channels [4,36], Orlandi [14] showed
strong variation of the peak of K at low Re, and tendency to saturation at higher Re. The

location of the peak of K ranges from y+d = 15 at Reτ = 78, to y+d = 18.65 at Reτ = 5200, im-
plying better scaling of the energy-containing wall structures with the wall friction at high

Re. Figure 5c shows that this Reynolds number dependence also holds for the circular pipe.

In this figure, the lines correspond to the data of Wu and Moin [37], whose DNS (denoted
as WM44 in the figure) was carried out in a Lz = 15 long domain, reaching Reτ = 1150.

Figure 5c shows good agreement between the open circles, (sum of the contributions in
Figure 5a,b), and the kinetic energy distribution of Wu and Moin [37]. Pirozzoli et al. [38]

carried out simulations at high Reynolds number, reaching Reτ = 6000 (denoted as P285

in the figure). As in channel flow [4], the peak of K
+

continues to grow with the Reynolds
number, whereas its location does not change, indicating that the size of the near-wall

energy containing structures scales with uτ . Figure 5a,b show the Reynolds number de-

pendence of the incoherent and coherent contributions on the turbulence kinetic energy.
The coherent part is less than the incoherent one at all Re, and it decreases with Re. This

splitting was not carried out for the simulations of Pirozzoli et al. [38], which would quan-
tify the coherent contribution of the large-scale structures in the outer region. From the
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present moderate-Re simulations, we may infer a tendency to saturation of χ+ with Re.
This observation might be of interest for LES, which should be able to accurately resolve

the coherent contributions. The decrease of the coherent contribution at high Re implies a

smaller effect of the near-wall structures. The oscillatory motion in the azimuthal direction
of the coherent structures causes slow convergence of the numerical simulations. At low

Re, the size of the coherent structures is comparable to the radius of the pipe, with an effect

on the entire flow. Figure 5b shows that, at Re = 6534, χ+ is one fourth of K
+

, and that

the contribution increases at Re = 4900. In Figure 5b, most coherent energy is distributed

within y+d < 100, with peak at a wall distance y+d ≈ 15.
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Figure 5. Flow in smooth pipes (SM): profiles of (a) incoherent turbulence kinetic energy (K), (b) coherent kinetic energy

(χ), and (c) their sum (K), at the Reynolds numbers in the legend.

3.4.2. Effect of Wall Corrugations

The profiles of the coherent and incoherent turbulent stresses allow for understand-
ing which of them contributes most to the turbulence kinetic energy, and in which part

of the duct. The prevalence of one normal stress on the others is strictly connected to the
type of corrugation. It should be pointed out that the normal stress in the flow direction

(v′zv′z) is largest, being directly generated from interaction between mean shear and fluc-

tuating statistics. The turbulent shear stress (v′rv′z) at the plane of the crests contributes
to the friction of rough walls, and its distribution accounts for the turbulence kinetic en-

ergy production. In all panels of Figure 6, the coherent contributions are denoted with
solid lines in the same color as in the main panel. In almost all cases, the incoherent part

of the stresses prevails over the coherent one. In particular, in Figure 6a, we see a large

increase of ρzz near the plane of the crests, for the longitudinal square bars, and in par-
ticular for the SLL corrugations. Velocity visualizations reveal penetration of the external

flow within the grooves, and acceleration over the bars. Near the plane of the crests, the
fluctuations of Ṽz are larger than v′′z , which yields ρzz > Rzz, as shown later on from their

distribution in the r − θ plane.

For all other normal stresses, the incoherent contribution prevails over the coherent
one. For SLL corrugations, Figure 6b shows that the coherent radial stress (ρrr) is larger

than for the other types of corrugations, although an order of magnitude smaller than

the incoherent contribution (Rrr). The latter remains constant up to y+d ≈ 30, implying

an increase of Ṽr in the region close to the bars. This figure also emphasizes the ejec-
tion of intense incoherent fluctuations from CS corrugations. The coherent contribution

is very small also as a result of larger friction in the case of staggered cubes. Figure 6c
shows that the lateral motion close to the wedges of triangular bars yields incoherent az-

imuthal stresses. In the presence of square bars, the lateral fluctuations are reduced, and in

the case of CS corrugations, the staggered arrangement of the cubes promotes large az-
imuthal fluctuations. Figure 6d shows a complex radial distribution of the shear stress

components (Rrz and ρrz) near the plane of the crests, and collapse of the profiles of Rrz

for yd > 0.4 for all corrugations. This is also the case of cubic corrugations (CS), despite

the presence of intense wall-normal ejections. This is a first hint of validity of Townsend’s

similarity hypothesis [19] for flows with moderate drag increase with respect to the case
of smooth wall.
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The large dependence of the coherent and incoherent components of turbulence ki-
netic energy on the type of surface corrugation noted in Figure 6 suggests closer inspection

of the stress components having the largest variations, namely ρzz, ρrz, Rzz, Rrz, for the

SLL, TLS, and CS surfaces, whose cross-stream contours are shown in Figure 7. In the
case of smooth pipe, the incoherent axial stress is larger than the coherent one, corrobo-

rating previous observations. However, also looking back at Figure 6a, the figure depicts
good spatial correspondence between the peaks of ρzz and Rzz. In addition, the figure

corroborates the discussion about Figure 5, showing that coherent structures promote the

azimuthal undulations of Rzz, and consequently of K, at y+d ≈ 15. In Figure 7a, contours
of of ρ+zz are visible up to a certain distance from the wall, hence it is clear that, in the

outer region, the axial stress comes entirely from the incoherent contribution. Undula-
tions also persist at the pipe centerline, however on a larger scale than near the wall. In

fact, the large mean axial velocity gradient near the wall yields stronger instability than

that in the outer region. Reduction of the coherent contribution in smooth pipe at increas-
ing Reynolds number was observed in Figure 5b. However, visualizations as in Figure 7b

at Re = 24,580 (not shown) reveal that azimuthal undulations of the incoherent stresses
do not disappear.
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Figure 6. Profiles of incoherent stresses Rij (symbols)(, and of the coherent stresses ρij (lines) in wall units versus distance

yd from the plane of the crests, for the corrugations indicated in the legend of Figure 4b: (a) axial, (b) radial, (c) azimuthal,

and (d) shear stress.

The contributions to the turbulent shear stress shown in Figure 7c,d are rather simi-
lar to the axial stresses, in particular regarding their coherent part. We previously noticed

that the azimuthal location of the respective peaks match quite well, whereas the peaks

of ρ+rz are at a greater distance than for ρ+zz. Here, we find better correspondence between
the contours of the turbulence shear stress in Figure 7c,d, with those of the normal stresses

(not shown), which further corroborates the importance of the wall-normal stress in turbu-
lent flows past smooth and rough flows [27]. The profiles of the coherent and incoherent

contributions for the TLS corrugations, in Figure 6 (magenta symbols), show a behavior

similar to that of SM (black symbols), and a large difference for the incoherent part. The
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visualizations in Figure 7e–h clearly highlight similarities and differences with respect to
the SM case (Figure 7a–d). It is important to note that, in the case of TLS corrugations,

the large number of wedges generate small-scale disturbances near the plane of the crests,

thus destroying the peaks of the coherent and incoherent turbulence kinetic energy found
in the smooth case. In addition, in the case of TLS corrugations, we find that peaks of the

turbulent shear stress are correlated with peaks of the wall-normal stress.
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Figure 7. Contour plots of inner-scaled coherent axial stresses ρ+zz (a,e,i,m), incoherent axial stresses R+
zz (b,f,j,n), coherent

shear stresses ρ+rz (c,g,k,o), and incoherent shear stresses R+
rz (d,i,l,p), for different types of wall corrugations (Re = 6534):

smooth pipe (SM): (a–d); triangular bars (TLS): (e–h); rectangular bars (SLL): (i–l); and staggered cubes (CS): (m–p).

Positive contours from blue to red, negative in black, with increment ∆
+ = 0.01 for ρ+rz and R+

rz, and ∆
+ = 0.1 for ρ+zz

and R+
zz.

The statistics for SLL corrugations reported in Figure 6a,d showed contributions of

the coherent stresses to be larger than for any other type of longitudinal corrugations. For

instance, at the plane of the crests, we find ρ+zz ≈ 30 for SLL, and ρ+zz ≈ 11 for SL. The
profiles in Figure 6 are given above the plane of the crests, hence the visualizations are

displayed in the same region. The contour plots in Figure 7i–l well explain the reasons
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for the peculiar behavior of SLL. In Figure 6a, we see that the coherent axial stress be-
comes of the same order as the incoherent one at yd ≈ 0.2, at which peaks are visible in

Figure 7i–j. Within this layer, coherent stresses are larger than incoherent ones, both above

the bars and within the groove. On the other hand, the incoherent axial stress contribu-
tion decreases above the center of the groove, explaining why in Figure 6a the values of

Rzz for 0.1 < yd < 0.2 are smaller for SLL corrugations than for the smooth case. Small
patches with negative coherent shear stress (black lines) are visible in Figure 7k, which

are more intense than the incoherent negative contributions in Figure 7l. In these figures,

it appears that the thin black contours are emerging from the interior of the cavity and,
in particular they are adjacent to layers with high Rrr close to the side walls of the bars. In

Figure 6d, the coherent shear stress (green line) decreases for 0.05 < yd, corresponding to
the location where the incoherent shear stress starts to increase. This is corroborated from

the observed prevalence of Rrz on ρrz in the central region of Figures 7k–l. In addition, it

may be appreciated that the peaks of Rrz occur above the bars, and they are located at a
distance yd ≈ 0.3 (corresponding to about 80 wall units), where ρrz is nearly zero.

Regarding the cubic obstacles (CS), which yield the largest flow resistance, Figure 6a
showed strong reduction of the coherent and incoherent axial stresses, which comes with

absence of yellow and red contour levels in Figure 7m,n. On the other hand, Figure 7p

shows accumulation of the incoherent shear stress in regions having the same size as the
cubes. Their large values at the plane of the crests implies that the high resistance is

mainly due to the incoherent shear stresses. It should be recalled that, in Figure 7, stresses

are expressed in wall units, and the value of uτ for CS corrugations is approximately two
times higher than for the other corrugations. Returning to the case of the longitudinal

square bars, we have noted that increased coherence is due to organized wall-normal
disturbances taking place near the walls of the cavity. For the SLL corrugations, the dis-

turbances are so strong as to generate wall structures larger than the height of the bars

(Figure 7j,l). Similar figures for the SL corrugations (not reported) indicate that distur-
bances normal to the wall affect a layer of thickness ≈ h near the plane of the crests. The

distributions of the stresses for yd > 0.2 are similar to those in the smooth pipe. For tri-
angular bars, wall-normal disturbances reduce in amplitude, and the wall structures are

similar to those found in the smooth case.

The wall-normal velocity disturbances were mentioned in the discussion of Figure 7,
for their action of driving coherent and incoherent turbulent stresses near the plane of

the crests. Hence, in Figure 8, we analyze the distributions of the coherent wall-normal
velocity (V̂r) for the same wall corrugations. To better understand the influence of the cor-

rugations, in Figure 8, the contours are also shown below the plane of the crests. From a

first inspection, one can identify a region with large values of V̂r inside and near the plane
of the crests, with the latter linked to the type of surface. In the central region, with the

exception of SLL, the flow structures are similar to those found in the smooth case. This
is well depicted for the TLS corrugations in Figure 8b by the thin blue region with nega-

tive radial velocity near the edge of the triangles, and positive radial velocity inside the

grooves. For CS corrugations, the radial velocity is non-zero at all points under the plane
of the crests, on account of motion within the staggered cubes. For the SLL corrugations,

the distance between any two bars is comparable to the pipe radius, hence the size of

the patches with non-zero radial velocity is comparable to that in the central region. This
figure may be regarded as a visual proof of Townsend’s similarity hypothesis, previously

discussed in Figure 6. In fact, disturbances emerging from the wall corrugations affect a
layer of about one or two roughness thicknesses. In the outer region, the flow structures

are similar to the smooth case, and their size is of the order of the pipe radius.
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Figure 8. Contour plots of inner-scaled coherent wall-normal velocity fluctuations (V̂r
+

), for smooth pipe SM (a); trian-

gular bars TLS: (b); rectangular bars SLL: (c); and staggered cubes CS: (d). Positive contours are in red, negative in blue,

with increment ∆
+ = 0.01.

3.5. Budgets of Secondary Turbulence Kinetic Energy

The geometry of the wall corrugations affects the coherent and incoherent contribu-
tions to the turbulence kinetic energy in the wall region, as shown in Figure 4. The effect

of the type of wall corrugation can then be further explored by evaluating the budgets
of K and χ. For that purpose, a transport equation for the incoherent kinetic energy (K)

is derived,
∂K

∂t
= Ĉrθ + P̂rθ + T̂rθ + Π̂rθ + D̂rθ, (6)

where ∂K/∂t = 0 if the average is done over a sufficient number of flow samples. The

convective term is

Ĉrθ = v̂r
∂K

∂r
+

v̂θ

r

∂K

∂θ
, (7)

and the production term is

P̂rθ = −

{
Rrz

∂v̂z

∂r
+Rrr

∂v̂r

∂r
+Rrθ

∂v̂θ

∂r
+

1

r

[
Rθz

∂v̂z

∂θ
+Rθr

∂v̂r

∂θ
+Rθθ

∂v̂θ

∂θ

]
+ v̂θRθr + v̂rRθθ

}
, (8)

turbulent diffusion due to the triple correlation is

T̂rθ =
1

2r

[
∂r(v̂′′r v′′r v′′r + v̂′′θ v′′θ v′′r + v̂′′r v′′z v′′z )

∂r
+

∂(v̂′′θ v′′r v′′r + v̂′′θ v′′θ v′′θ + v̂′′z v′′z v′′θ )

∂θ

]
, (9)

turbulent diffusion due to the pressure–velocity correlation is

Π̂rθ =
1

r

[
∂ p̂′′v′′r r

∂r
+

∂ p̂′′v′′θ
∂θ

]
, (10)

and the total dissipation is

D̂rθ =
1

Re

{
̂v′′θ ∇

2v′′θ −
Rθθ

r2
+

̂2v′′θ
r2

∂v′′r
∂θ

+ ̂v′′r ∇
2v′′r −

Rrr

r2
−

̂2v′′r
r2

∂v′′θ
∂θ

+ ̂v′′z ∇
2v′′z

}
, (11)

each of these terms varying both in θ and r. Averaging along the azimuthal direction

yields

∂K

∂t
= Ĉrθ + P̂rθ + T̂rθ + Π̂rθ + D̂rθ. (12)

A budget equation for the azimuthally averaged coherent turbulence kinetic energy

χ (shown in Figure 4b) is also derived, by expressing each term in Equation (2) in terms
of the v′′i velocity fluctuations, after Equation (4), thus obtaining

∂χ

∂t
= C̃rθ + P̃rθ + T̃rθ + Π̃rθ + D̃rθ. (13)
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As an example, the procedure applied to the production term, PK = −v̂′iv′ j
∂V i
∂x j

in Equa-

tion (2) yields

v̂′iv′ j
∂V i

∂xj
= Rij

∂V̂i

∂xj
+Rij

∂Ṽi

∂xj
+ ρij

∂V i

∂xj
+ v̂′′i Ṽj

∂V i

∂xj
+ v̂′′j Ṽi

∂V i

∂xj
. (14)

The azimuthal average of the last two terms is zero, hence the coherent component of
the production term comes from the second and third terms on the right-hand side of

Equation (14). The same procedure allows for evaluating the coherent contribution to

each term of the budget.
The profiles of each term of the budget in Equation (2), split into incoherent (Equa-

tion (12)) and coherent (Equation (13)) parts are depicted in Figure 9, for the wall corru-
gations discussed in Figure 7. In Figure 9, the solid red lines indicate the profiles of each

term in Equation (2), the solid black points to those of Equation (12), and the blue solid

circles those in Equation (13). The sum of the latter two contributions, indicated with the
open circles, indeed coincides with the solid line. The same vertical range is used for all

corrugations, to better appreciate the impact of the wall geometry. The top row shows that
the convective term is nearly zero for all corrugations, due to the balance between the in-

coherent (Ĉrθ) and the coherent (C̃rθ) contributions. For the smooth pipe, the peak location

of the latter term is close to the point of maximum production, which coincides with the
center of the structures, as shown in Figure 7c. The peaks occur at the plane of the crests

for the SLL (Figure 9ab), and for the TLS corrugations (Figure 9ac), and are much larger

than for a smooth pipe. In the case of triangular bars and staggered cubes Ĉrθ, and hence

C̃rθ decays sharply to low values, implying the formation of small secondary structures,

as is clear in Figures 7 and 8. The larger number of contour levels of V̂r
+

in Figure 8b with

respect to Figure 8d (the same also holds for V̂θ
+

, not shown) explains why the maximum

in Figure 9ac is larger than in Figure 9ad. For the SLL corrugations, the two contributions
have a cross-over farther from the plane of crests than for any other surfaces, which is

also linked to the shape of the coherent structures. This is corroborated by comparing the

maps of Rrz in the fourth column of Figure 7.
The panels in the second row of Figure 9 show a modest contribution of ΠK to the

turbulence kinetic energy budget. For all types of corrugations, the coherent contribution
is negligible with respect to the incoherent one, implying rather good correlation between

incoherent pressure and vertical velocity fluctuations. Hence, we may argue that in RANS

closures it is reasonable to neglect this term, or incorporate its contribution into the tur-
bulent transfer term. The profiles of TK, shown in the third row of Figure 9, highlight

different behavior of smooth and corrugated pipes, as in the latter case turbulent trans-
fer may become of the same order of magnitude as production. Looking at Equation (9),

we see that turbulent transfer includes derivatives of triple correlations in the azimuthal

direction, which yield zero contribution when averaged in θ, and in the radial directions.
Among the first three terms on the right-hand side of Equation (9), the largest is associated

with the v̂′′r v′′z v′′z correlation, supporting the important role of the wall-normal velocity fluc-
tuations, which are most intense for the SLL corrugations, as shown in Figure 8. In that

case, the coherent contribution dominates over the incoherent one. In the case of stag-

gered cubes, Figure 9cd shows large values of the total T+
K as those for SLL corrugations.

The incoherent contribution prevails in the case of staggered cubes, whereas the coherent

contribution is dominant in the case of SLL corrugations. The magnitude of the turbulent
transfer is similar for triangular bars (Figure 9cc) and smooth pipes (Figure 9ca), the co-

herent transfer is negligible for the TLS corrugations, whereas coherent and incoherent

contributions do not differ much in the smooth case.
The incoherent production term as defined in Equation (8) accounts for interaction

between the velocity gradients associated with large flow scales, and the fluctuating ve-
locity correlations associated with small turbulence scales. For rough walls, the overall
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production term (red in Figure 9) is different from the case of smooth walls, and it strongly
depends on the geometry of wall corrugation, with coherent and incoherent contributions

having much different relative importance. Similarity of coherent and incoherent contribu-

tions to production implies similarity of the shape of the wall structures, which however
differ in strength, as seen in Figure 7c,d. The relative magnitude of the coherent and inco-

herent production for triangular bars (TLS, see Figure 9dc) is similar to the smooth case
(see Figure 9da). However, their profiles differ, as for in the smooth case P+

K has peak at

y+d ≈ 15, and it is zero at the wall, whereas, in the TLS corrugations, the peak occurs near

the plane of the crests, in agreement with the visualizations in Figure 7h. The production
term for staggered cubes corrugations is similar and smaller than for the triangular bars,

but the coherent contribution is negligible for CS. In the case of the SLL corrugations (Fig-
ure 9db), coherent and incoherent production have opposite signs, the former being larger

than the latter in magnitude.
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Figure 9. Turbulence kinetic energy budgets for smooth pipe (SM, panels aa,ba,ca,da,ea); rectangular bars (SLL, panels

ab,bb,cb,db,eb); triangular bars (TLS, panels ac,bc,cc,dc,ec); and staggered cubes (CS, panels ad,bd,cd,dd,ed). Convection

terms: panels aa–ad; pressure-velocity turbulent: panels ba–bd; turbulent diffusion: panels ca–cd; production: panels da–

dd; total dissipation: panels ea–ed. The red lines denote terms in Equation (2); blue and black lines denote coherent and

incoherent contributions in Equation (6), and open circles their sum.
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As discussed in Figure 3a,b, production and dissipation are nearly locally balanced
for smooth pipes. The bottom panels in Figure 9 show that this is also the case for their

coherent and incoherent contributions. On the other hand, in the case of the SLL cor-

rugations, the profiles of production (Figure 9db)and dissipation (Figure 9eb) are quite
different, because of the relevant role of the turbulent transfer term (Figure 9cb). In that

case, dissipation is generally smaller than production, and Figure 9eb shows that the inco-
herent contribution is larger in magnitude than the coherent one, which yield a negative

contribution. Hence, we may argue that the coherent contribution generates coherent en-

ergy that is transferred into the interior of the pipe through coherent turbulent diffusion.
The profiles of the turbulence kinetic energy budget terms in Figure 9 highlight a

more complex behavior for the SLL corrugations than for the other types of corrugations.
Hence, in Figure 10, we show in detail the behavior of each term of the total, incoherent,

and coherent contributions. The data reported in Figure 3 are repeated in Figure 10a to

better understand the relative contribution of the various terms. Figure 10a shows that the
convective term and the pressure–velocity transfer term do not contribute to the budget.

The production term in the wall region is transferred to a large extent towards the outer
region through turbulent transport. The local rate of dissipation is rather small in the wall

region, and it tends to balance production in the outer region. The terms of the incoherent

kinetic energy budget shown in Figure 10b are smaller than the respective terms in the co-
herent budget, shown in Figure 10c. Transfer, convective, and the pressure–velocity terms

are negligible in the incoherent budget. Near the plane of the crests production is nega-

tive, and it removes the same amount of incoherent energy as directly dissipated. The two
terms together yield a negative imbalance (black line), which is also reported as the red

line in Figure 10d. This imbalance is compensated by positive imbalance in the budget
of the coherent kinetic energy energy, namely the blue line in Figure 10d. The latter term

comes from the budget profiles in Figure 10c, where it is interesting to notice a peculiar

positive dissipation.
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Figure 10. Inner-scaled profiles of terms in the turbulence kinetic energy budget for SLL corrugations: (a) total, (b) inco-

herent part (solid symbols), (c) coherent part; (d) sum of all terms (the blue line is the sum of terms in (c)), and the red is

the sum of terms in (b)). The legend of symbols is provided the inset of panel (a).
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In the SLL corrugations, the roughness elements are spaced a distance w/k ≈ 5 apart,
hence flow around any longitudinal bar does not directly affect the other. The formation

of intense coherent structures allows for understanding the flow modifications near one

element, leading to the azimuthal non-uniform distribution of the coherent and incoher-
ent contributions to each term of the budgets. In the first column of Figure 11, we show

the distributions of the turbulence kinetic energy K (Figure 11a), and of its incoherent K
(Figure 11e) and coherent χ (Figure 11i) contributions. The latter two fields are similar

to those of the streamwise stress reported in Figure 7i,j, as the axial stresses dominates

over the radial and azimuthal ones. The budgets in Figure 10 showed dominant contribu-
tion of production and turbulent transfer to the coherent budget. The contour plots of the

total dissipation distributions in the cross-stream plane (not reported) indicate that they
are mainly concentrated in thin layers near the plane of the crests, with values smaller

than the production terms. Strong azimuthal non-uniformity of the terms in the budget

of coherent turbulence kinetic energy and dissipation terms (P̃ + D̃) in Figure 11k, and
the other terms (T̃ + C̃ + Π̃) in Figure 11j. In Figure 11j, we see that the negative contri-

bution in proximity of the grooves cavities prevails over the positive contribution near
the bars, with the final result of transfer of coherent kinetic energy from the plane of the

crests towards the central region. This is corroborated by the contours of the coherent

radial velocity in Figure 8c, which indicated organized radial flow towards the center of
the pipe. The sum of all terms in the coherent kinetic energy budget (shown in Figure 11l)

is generally positive, to indicate that the positive transfer around the bars prevails on the

negative contribution from production and dissipation, and vice versa in the region above
the cavity. Azimuthally averaging the budget sum in Figure 11l yields the positive profile

(blue line) in Figure 10d. The distribution of the overall incoherent budget in Figure 11h is
negative almost everywhere, with the exception of a small positive region above the bars.

Despite large differences between Figure 11l and Figure 11h, their azimuthal averages

have similar radial distribution, with the opposite sign as reported in Figure 10d. The con-
tours of the incoherent kinetic energy production (not shown) depict two negative patches

near square bars, and positive values above. The incoherent rate of dissipation is negative
in any region, hence in Figure 10d the sum of production and dissipation becomes more

negative close to the bars. Dissipation is rather small above the bars, hence positive pro-

duction is responsible for the observed positive patches above the bars. The azimuthal
average of the positive and negative transfer terms in Figure 11f leads to the small values

in Figure 10b. The red spot of the transfer term above the bars is a magnitude larger than
the sum of production and dissipation (which is negative), hence red spots are also visible

in the budget sum in Figure 11h. The visualizations of the coherent and incoherent bud-

gets distributions and of the coherent and incoherent components of the turbulence kinetic
energy allow for understanding the dominance of either term in the budget of the overall

kinetic energy, which are shown in the top panels of Figure 11. It may be concluded that,
for SLL corrugations, the coherent contribution prevails over the incoherent one. This is

particularly true for the turbulent transfer, as inferred from similarity between Figure 11b

and Figure 11j. Local imbalance between production and dissipation is affected by the
roughness elements, which leads to zones with production locally exceeding dissipation,

and regions near corners with dissipation excess. Turbulent transfer is the dominant term

in the overall budget, and in fact its distribution in Figure 11b is similar to the budget
sum in Figure 11d. The turbulence kinetic energy produced in the center of the grooves

is transferred towards the corners, where it is dissipated, and part of the energy residing
above the bars is transferred towards the central region.
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Figure 11. Contour plots of turbulence kinetic energy (K+, panel a), its incoherent contribution (K+, panel e); its incoherent

contribution (χ+, panel i), for SLL corrugations, in increments ∆
+ = 0.01, in a blue to red scale, up to K+ = 5. In the second

column (panels b,f,j), we show the respective TK + CK + ΠK budget terms, in the third column (panels c,g,k), the PK + DK

budget terms, and in the fourth column (panels d,h,l) the sums of all terms. Positive contours are shown in red, and

negative ones in blue, in ∆
+ = 0.003 increments.

4. Conclusions

We have performed DNS of turbulent flow in circular pipes with smooth and corru-

gated walls, with the size of the roughness elements one order of magnitude less than the
pipe radius. Fully rough flows are then generated with a structure much different than

in smooth pipes. In the past, large efforts were directed to studying similar corrugations

in channels, where spanwise confinement may have an influence on the large structures
residing away from the wall. In addition, geometry dictates differences between the large

turbulence structures in the pipe core, and those close to the centerline of channels with
rough elements on both walls. In circular pipes, the domain size in the azimuthal direction

is natural, hence outer structures only change as a result of the imposed Reynolds num-

ber. Hence, it may be asserted that this is the most suitable set-up to analyze interactions
between the near-wall structures and those occurring at the center of the pipe. In plane

channels, one-dimensional spectra have been used to gain information regarding the flow
structures above the plane of the crests, and to describe the complex turbulence kinetic

energy budget [8]. Extension of that analysis to circular pipes would be rather complex,

due to the appearance of several extra terms. Here, the analysis is carried out in physical
space, leveraging on decomposition of the velocity field to isolate coherent and incoher-

ent motions, defined in terms of their persistence in the axial direction. This procedure

has been seldom used, and we believe it to be particularly appropriate in the presence of
wall corrugations.
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In the case of smooth walls, we have found that coherent motions are especially sig-
nificant in the wall region at low Reynolds numbers, whereas their amplitude increases

far from the wall at a higher Reynolds number. This is an important point to be investi-

gated, and we plan to use recent DNS data [38] to investigate the growth of the amplitude
of the coherent structures in the outer region. This would allow for shedding some light

on the still open debate about the connection and interaction between near-wall and outer-
layer structures.

All terms in the turbulence kinetic energy budget have been evaluated for several

types of wall corrugations, and we have found that those are distributed quite differently
than in flows past smooth walls. In particular, three-dimensional corrugations made up of

staggered cubes can generate strong disturbances which affect a fluid layer with thickness
similar to the size of the cubes. For this type of corrugations, coherent motions are weaker

than incoherent ones. Irrelevance of the coherent motion is also observed for contiguous

triangular corrugations, due to small-scale disturbances generated inside the grooves. Co-
herent motions in the presence of square bar corrugations are found to dominate over in-

coherent ones, owing to strong disturbances created by the flow in the groove between ad-
jacent bars. Increasing the gap between the bars, coherent motions become relatively even

more important than the incoherent ones. This kind of corrugation has been investigated

in detail, leading to the conclusion that, near the plane of the crests, the production of in-
coherent turbulence kinetic energy is negative, whereas the coherent dissipation is locally

positive. For this type of corrugation, turbulent transfer is found to be comparable with

production. We have also observed that imbalance of the coherent budget terms is per-
fectly compensated by imbalance of the incoherent budget terms. The above conclusions

have been verified under low Reynolds number conditions, hence it would be important
to verify whether our conclusions can also be extended to higher Reynolds numbers.
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