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Abstract: A new model of axially symmetric concentrated vortex generation was developed herein.
In this work, the solution of a nonlinear equation for internal gravity waves in an unstable stratified
atmosphere was obtained and analysed in the framework of ideal hydrodynamics. The related
expressions for the velocities in the inner and outer regions of the vortex were described by Bessel
functions and modified zeroth-order Bessel functions. The proposed new nonlinear analytical model
allows the study of the structure and dynamics of vortices in the radial region. The formation of jets
(i.e., structures elongated in the vertical direction with finite components of the poloidal (radial and
vertical) velocities that grow exponentially in time in an unstable stratified atmosphere) was also
analysed. The characteristic growth time was determined by the inverse growth rate of instability. It
is shown that a seed vertical vorticity component may be responsible for the formation of vortices
with a finite azimuthal velocity.
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1. Introduction

The existence of vortex structures in the atmosphere is one of the main factors that
determine the weather and climate, as a result of the interaction of vortices of different
topology and scale. In the variety of atmospheric vortex motions, mesoscale concentrated
vortices are clearly defined and attract a lot of interest in both fundamental research
and practice. Concentrated vortices (CVs) are non-stationary, vertically elongated vortex
structures localised in space with a characteristic transverse scale from a few meters to
hundreds of meters. CVs include dust devils (DDs), tornadoes (more intense and larger-
scale vortices) [1-8], water jets (or waterspouts) which can be observed in the sea or large
lakes [9-11] and fire tornadoes (fiery devils or fire whirls) which may suddenly appear in
fires during calm weather [12-14]. In contrast to DDs, which carry dust particles, water jets
involve water droplets into the vertical vortex motion. Despite the fact that vortices of this
class arise in different media and are generated by different natural mechanisms, they all
experience ascending helicoidal motion. The rotational speed in a CV reaches its maximum
value at the characteristic radius of the vortex and tends towards zero at its periphery. DDs,
as the simplest and easily observed CVs, are of particular interest for studying the entire
class of CVs in the atmospheres of the Earth and Mars.

By analysing DD observational data, Sinclair [15,16] suggested that the necessary
conditions for their occurrence are the presence of dust in the near-surface atmospheric layer
and anomalously high ground temperatures. This is consistent with recent models [8,17,18]
in which DDs are formed from convective cells (jets) in an unstable near-surface layer
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with a super-adiabatic temperature gradient. A number of observations [8,14] have shown
that the generation of clockwise (anticyclonic) and counter-clockwise (cyclonic) eddies
in an open area is equally probable. From the observed lack of correlation between the
external vorticity, the generation time, and the vortex diameter, it follows that the external
vorticity in the atmosphere alone is insufficient for the generation of DDs. Meteorological
observations [16,19] served as the basis for the creation of the first thermodynamic model of
DDs generation [20-22]. In this model, the warm air in a convectively unstable atmosphere
rises and, later, undergoing cooling, descends. The proposed model is an analogue of a
heat engine that draws energy from a hot surface layer.

Despite a substantial number of previous studies, the mechanism of generation and
interpretation of the observed vortical structures remains uncertain. Recently, [23] proposed
a hydrodynamic model for axially symmetric convective vortices (by assuming weak
disturbances) in a convectively unstable atmosphere at the initial stage of generation. In the
studies by, e.g., [24-29], this model was further developed for finite amplitudes of velocities
with two-dimensional helical motion and different cases of stream functions and seed
azimuthal velocities. However, these models were still restricted to the analysis of the
radial and vertical velocity components of poloidal motion either in a very narrow central
part or far at the periphery of the convective cell. The purpose of the current work was to
expand the analytical model used to describe the dynamics of an axially symmetric vortex
to an arbitrary radial distance from the centre. To achieve this, a solution was obtained
in the form of Bessel functions (instead of power and exponential functions) using the
method employed to find stationary large-scale dipole vortices of Rossby waves in a neutral
atmosphere [30].

The paper is organised as follows: in Section 2, we derive the simplified equations
for nonlinear internal gravity waves (IGWs) in an unstable stratified atmosphere; Section 3
discusses a new model of jet generation, and Section 4 examines the proposed model. In the
conclusions, the main results of our study are discussed.

2. Reduced Equations

Meteorological observations were served as the foundation for the creation of the
first thermodynamic models of vertical streams (convective cells) generation [18,22,31].
Currently, modern concepts of the generation of vertical streams are associated with
unstable stratified atmospheres. The atmosphere is considered unstably stratified if the
square of the Brunt-Vaisild or buoyancy frequency:

2_ (Y-l 1dT
wg—g< H t 5 ) (1)

characterising the IGWs is negative. Here, g is the gravitational acceleration, -y, is the ratio
of specific heats, H is the local scale of height of the atmosphere, T and dT/dz are the
fluid temperature and temperature gradient in the vertical direction, respectively. Owing
to the solar heating of the soil, the vertical temperature gradient (the second term in the
Brunt-Viisild frequency) is negative and its magnitude exceeds the first term. The latter
corresponds to the famous Schwarzschild criterion for convective instability. In this case,
the IGWs change to unstable, exponentially growing cells.

When deriving the governing equation, we will follow the works of [23,32]. As an
initial set of equations, we used the ideal momentum Equation (neglecting viscosity) that

can be written as P .

A%
—_— = — — 2
T pVP+g 2)

and the transport equation for the potential temperature, 8, that is a unique function of
entropy which can be written as
dae

= =0 @3)
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where we neglected non-ideal effects such as thermal conduction and any additional
heating/cooling processes. In the above equations, p and p denote the density and pressure,
respectively, v is the velocity of the matter, d/dt = 9/dt + v - V is the Euler (convective)

time derivative, g = —gZ is the gravitational acceleration, Z is the unit vector along the
vertical axis, and § = p'/72 /p. To complete our set of equations, we used the ideal gas law
p/pT = const.

Following the procedure developed by [27,32-34], we can derive a reduced equation
for nonlinear IGWs. To do this, we introduced a cylindrical coordinate system (7, ¢, z) with
the z axis in the vertical direction and assumed that 0/9d¢ = 0. The most general divergence-
free flow velocity v = (v, vg,v;) can be decomposed into its poloidal v, = (v;,0,v;)
and azimuthal vyéy parts, i.e., v = v, + vy&p. Here, v) = V x (yVo), &y is the respective
unit vector and ¢ is the angle of the cylindrical set. The poloidal components of the velocity
are related to the stream function (¢, 7, ¢, z) by means of the relations:

1oy 19y
R T

4)

According to [23-25,27,34], the reduced equation describing the evolution of nonlinear
internal gravity waves (IGW) is given by

LaNprAVe + 19 p,amp) =0 (5)
o2 "V 4 r ot pAp) =0
where J(a,b) = (da/0dr)ob/dz — (da/9dz)0ob/dr is the Jacobian and the operator A* is de-

fined as 5 /13

The Jacobian in Equation (5) corresponds to the so-called vector nonlinearity:

J(, A 9) = [V x VATYl,.

If w§ < 0, Equation (3) describes nonlinear dynamics IGW in unstably stratified
atmosphere. Note that an equation similar to Equation (5) was previously obtained by [34]
for the interpretation of behaviour of acoustic gravity vortices.

3. Jet Generation

The scalar stream function that can generate the components of the velocity will be
chosen in the form
W(t,1,2) = vor*(z/L) exp(vt)¥(6R), (7)

where vy = const is the characteristic vortex velocity; v = |wg| ; R=r/rg, L = constis
the characteristic spatial scale in the vertical direction such that L < H; ¥ is a function
that depends on the radial distance (subsequently determined) and é = const. Of course,
the choice of the stream function in this form is not unique, however, the function has
to satisfy the conditions that the three components of the velocity as well as pressure are
regular on the symmetry axis of the vortex. Moreover, for analytical progress, we also
require that the function has a separable form. With this stream function, Equation (5) is
reduced to:

J(y, A"y) = 0. ®)

The nonlinear solution of Equation (8) can be reduced to the linear solution of the form

ANy = Ay, )
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where the quantity A is a constant. The stream function considered here has to remain
localised in the radial direction, therefore, it must satisfy the conditions:

<1/J, a;f) —0 (10)

when 7 — 0 and r — o, i.e., the function has to be regular along the symmetry axis of the
cylinder and vanish at infinity. To find a solution to Equation (8) satisfying these boundary
conditions, we used the method proposed by [30,33] to study large-scale stationary vortices.
Applying the A* operator on the stream function given by Equation (7), we obtain:

2
42y d‘I’>. )

o 2 22
A*p = vory(z/L) exp(yt) (5 R 2 + 3§Rﬁ
Making use of Equations (9) and (11), this results in the following linear equation for

the function ¥: 2y .
2p2 2p2
0“R W—i—%Rﬁfié R7Y. (12)
The solution of the above equation can be given in terms of Bessel functions. It can be
easily shown that regular solutions at R = 0 can be obtain only when § = 3. In this case,
Equation (12) reduces to the Bessel or modified Bessel equations of zeroth order. In order
to satisfy conditions (10), we seek a solution for Equation (12) by means of the method
of joining two continuous solutions in the internal ¥;,; (r < ) and external ..; (r > 1)
regions. On the boundary of the vortex at r = rg, the continuity condition:

o\ _ Iy
<1P/ ar>int B <¢, ar)ext’ (13)

must be satisfied. In the external region, we seek a solution to Equation (12) in the form:

Ko(3R)
Ko(3)

¥ext(R) = (14)
that satisfies the conditions (10). In the internal region, the solution will be sought in
the form:

Ih(3R)
In(3) ’

where [j(z) and Ky(z) are the Bessel and modified Bessel functions and m is a constant
parameter. Hence, the solutions (14) and (15) satisfy the condition ¢yt = ;s when r = ry.
From the second continuity condition given by Equation (13) for diy/dr at the interface
r = rg, we have:

Yint(R) =m — (m —1)

(15)

K1(3) 5L(3)

%) " VL6

This equation allows us to determine the value of the constant m, so that:

(16)

~—

Ki(3) Ib(3
—— ~24271.
Ko(3) I;(3

~

m=1+

~—

The spatial dependence of ¥(R) and its “smoothness” at the boundary R = 1 are
shown in Figure 1.
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Figure 1. The variation of the stream function ¥(R) with the dimensionless radial distance, R.

Then, making use of Equations (4), (7) and (14) or (15), the radial velocity in the
internal (0 < R < 1) and external regions (1 < R < oo) take the form:

int _ 10 . . Ib(3R)

ol = UO—LReXp('yt) m— (m—1) 03 |’ (17)
ext 7;0 KO(3R)
vt = voLRexp('yt) %0) (18)

The radial variation of v, in the internal and external regions (in units of vp) is shown in
Figure 2 for different values of the exponential increment term, ¢, for the particular value of
ro/ L = 0.1. This demonstrates that the solutions and their derivatives are continuous at the
boundary and v, is regular at the symmetry axis and vanishes far away from the structure.
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Figure 2. V;/Vy(R). Solid, dot and dash-dot lines correspond to yt = 1,2, 3, respectively. ro /L = 0.1.

Similarly, the expressions for the vertical velocity in the internal (0 < R < 1) and
external regions (1 < R < o) can be written as

I(3R)
(3)

—3(m— 1)R11(3R)}, (19)

int __ E . .
ve =0y exp(7t) {Zm 2(m—1) 1003)

S

ext Ko <3R> —3R K3 (3R):| ) (20)

vg = o exp(7t) [2 Ko(3) Ko(3)
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Such a structure of the poloidal fluid motion of convective cells describes exponentially
growing vertical streams (or jets) in time. The variation of the vertical component of the
velocity component (in units of vy with respect to the dimensionless radial distance from the
centre, R = r/rp) is illustrated in Figure 3 for three values of the exponential increment *y¢.

/

'ollllllllllll

0.5 1.0 1.5 2.0 25

o

Figure 3. The variation of the dimensionless vertical component of the velocity, V,/V}, in terms
of the dimensionless radial distance R = r/rg. The solid, dot, and dash—dot lines correspond to
yt=1,2,3,and z/L = 0.1, respectively.

4. Vortex Model Generation

To study the generation of the vortex motion, we used the azimuthal component of
the momentum Equation (taking into account the fact that d/d¢ = 0):
3"04;
ot

vy 0 vy
+ (rvg) + v = 0, (21)
where the radial and vertical components of the velocity are given by Equations (17-20).
To determine the temporal and spatial evolution of the azimuthal component of the velocity,
we provided a seed azimuthal velocity of the form:

r
vgo(t =0,7,2) = Voo (22)

Here, vyoo and a are the characteristic azimuthal velocity and spatial scale of the
seed azimuthal velocity. Using Equation (21), the expression for azimuthal velocity in the
internal (0 < R < 1) and external (1 < R < o0) vortex region become:

Ih(3R)

int __ 204700 o

(s va exp(vt) |(m— (m—1) 03 |’ (23)
20 Ko(3R)
ext $00 7o 0
= ———R . 24

Figures 2—4 demonstrate the exponential localisation of the flow in the radial direction.
In particular, Figure 2 shows the dependence of the radial component of the normalised
flow velocity (v,/vp) as a function of the dimensionless quantity R for three different
values of 4t and ry/L = 0.1. The radial velocity converges at the axis of symmetry and
reaches the maximum value at a radial distance of R ~ 0.8. Figure 3 shows the depen-
dence of normalised axial flow velocity (v;/vg) with respect to the same dimensionless
quantity R for z/L = 0.1 and different values of vt which increment in accordance with
Equations (19) and (20). It can be seen that v, /vy reaches its maximum value at the centre
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of the jet. In the region R ~ 0.8, the axial velocity component vanishes, and at the region
R > 0.8, the ascending flow in the centre of the jet transforms into a descending one,
reaching maximum values at R = 1. Figure 4 illustrates the dependence of the azimuthal
velocity component vy /vy with respect to R for three different values of the -yt increment
at accepted values of vgoo/ya (as can be seen, e.g.,in Equations (23) and (24)). It can be seen
that the azimuthal velocity reaches its maximum values at R ~ 0.8.

0.20
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V¢/V0

0.10

0.05 /

~
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T T 1

00— e STiTimemoio
0.0 05 10 15 20 25

Figure 4. V;,/Vp. Solid, dot, and dash—dot lines correspond to vt = 1, 2, 3, respectively, 2Vp00 /ya=01,
ro/L = 0.1.

5. Conclusions

In the present study, we obtained a nonlinear equation for IGWs in an unstable
stratified atmosphere for axially symmetric structures exponentially growing in time in
the framework of ideal hydrodynamics. It was shown that this equation can be reduced
to a simpler equation that still contains a vector nonlinearity. However, the proposed
stream function, ¥(R), allows the reduction in the nonlinear equation to a modified Bessel
equation. By matching solutions at the boundary of the convective cell, separating the
internal and external regions with their own dynamics, an analytical solution was obtained
for the entire radial distances R. Therefore, the proposed model makes it possible to analyse
exponentially localised structures of poloidal fluid motion, e.g., exponentially growing
vertical jets in time, for any value of R. The region of applicability of the proposed model
is only limited to a relatively thin atmospheric layer, where convective instability develops
but can be expanded to explain the generation of high-speed astrophysical jets or jets in the
solar corona; however, this will be the subject of future research.
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