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Abstract: In this manuscript, the injection of a homogeneous jet in a numerical tank is considered
to revolve around discussing the limitation of the direct numerical simulation (DNS), to resolve
the equations governing the problem of a jet emitted from the bottom of a numerical tank. The
investigation has been made in the context of an unsteady, viscous, and incompressible fluid. The
numerical resolution of the equations governing the problem is made by the compact Hermitian finite
differences method (HFDM) high accuracy O

(
h2, h4) First, the numerical code used in this work is

validated by comparing the profiles of the velocity components at the median of the lid-driven cavity
with the results of the literature. Furthermore, to confirm the validity of the present numerical code,
an evaluation of mesh domain sensitivity is assessed by comparing the numerical vertical velocity
profiles for different steps of y-direction (flow direction) with the analytical solution. Afterward, the
aim is to perform the nonlinear simulations of the Navier–Stokes equations in a large computational
domain. Next, the goal is to characterize the instabilities associated with high Reynolds numbers
when a jet is emitted from the bottom of the numerical tank.

Keywords: Navier–Stokes equations; bottom jet; moderate Reynolds number; nonlinear equations;
Hermitian finite differences method

1. Introduction

The importance of the numerical studies of the dynamics of jets for many industrial
applications, has been attracting many engineers and researchers to investigate the instabil-
ities of jet flows. Many issues are of interest to the original appearance of the excitability
of turbulent structures. This is the reason why, researchers and engineers are classified
into three main groups: first, are in interest to study the effect of nozzle geometry that
has been paid attention, and proven significant influence on the jets profiles [1–4]. The
second group focuses on discussing the effect of the initial conditions on the behavior
of the flow of jets [5–10]. The third categories give importance to the effect of Reynolds
number investigations. Based on the state-of-the-art, the study of the effect of the geometry
of nozzles, and initial conditions on the stability of jets, are still lacking conversely to the
investigations on the Reynolds number effects.

The Reynolds number which is a number that measures the ratio between convection
and diffusion can characterize the nonlinearity of the equations governing the jet flows.
Numerous studies that have substantially explored the influence of Reynolds number on jet
instabilities. From the work of Reynolds [11], Crow and Champagne [12], O’Neill [13] have
been in interest to investigate the onset of instability and the growth of structures in the
shear layer. Further, many authors have shown that numerical instabilities are associated
with increasing the Reynolds number. In the case of round jets, Bogey and Bailly [14]
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showed the appearance of vertical structure closer to the nozzle as Reynolds number
increases, Dimotakis [9] studied the effect of Reynolds number on the flow structures,
and investigate the critical value of Reynolds number which makes the flow properties a
weak function of Reynolds number. Experimentally, Ricou [15] has shown that the weak
dependence of Reynolds number is related to the nozzle exit diameter. Furthermore, the
square jet flow characteristics have been investigated by Grinstein et al. [16], Grinstein
and DeVore [17], Quinn and Militzer [18], Sankar et al. [19], Tsuchiya et al. [20] and more
recently by Ghasemi et al. [21,22], proved that the initial vortex structures are the main
difference between round and square jets.

Additionally, it is worth pointing out the methods used to resolve equations governing
jet flows. First, the Reynolds Averaged Navier Stokes (RANS) approach may be the most
employed approach for the reason of considerable turbulent models within the formulation
of turbulence equations. Even though, in all engineering applications, it is necessary to
validate at the first the turbulence models used to guarantee accurate solutions [23]. Even
though, RANS mode is insufficient to predict transition flow behavior. In the second
place, an alternative approach contains most of the turbulent energy and responsible for
most of the momentum transfer was adopted, this approach called; large-eddy simulation
(LES) is more accurate than the RANS approach. Nevertheless, the most expensive one
for simulating the jet flows even it is applied only to low Reynolds number flows, is the
direct numerical simulation (DNS) in which the full Navier–Stokes equations are solved
numerically [24].

In light of the state-of-the-art above, the evolution and the distribution of the concen-
tration of jets flows have been attracting attention in many engineering applications [25–29].
For this reason, the objective at first and foremost is to study accurately the dynamic phe-
nomenon of jet with a concentration C emitted from the bottom of the numerical tank.
Second, the goal is to perform to the nonlinear resolutions of the Navier-Stokes equations
in the case of high recirculation of the velocity field inside a large geometric area using a
direct numerical simulation (DNS). The numerical resolution of the equations describing
the phenomenon is made by the Hermitian finite differences method (HFDM) with higher
accuracy [30–33]. Our choice is based on the high resolution of this method for the dis-
cretization of evolution equations and has better computational performance than classical
schemes. Finally, we assess the capability and limitations of the numerical method used in
this work to treat the jet flows.

This manuscript is organized as follows. After discussing the goal behind our research
in the first section, Section 2 is dedicated to the position of the problem. Afterward, the
numerical method used to resolve the Navier–Stokes equations is clearly described in
the third section. Next, we validate the numerical method used to resolve the equations
governing the problem of this work. Shortly after, the ambition is to characterize the
instabilities when a jet of concentration C is emitted from the bottom of the numerical
tank and to act on the nonlinear resolutions of the Navier–Stokes equation in a large
computational domain. Before finishing, an evaluation of mesh domain sensitivity is
presented to confirm the validity of the present numerical scheme, by comparing the
numerical vertical velocity profiles for different steps of y-direction (flow direction) with
the analytical solution. Finally, the paper is finished by conclusions and perspectives.

2. Problem Formulation

In the present study, the analysis is focused on studying the injection of homogeneous
jet emitted from a bottom of numerical tank by considering an unsteady, incompressible,
and viscous fluid in a numerical tank. The schematic diagram of the numerical tank setup
is shown in Figure 1. The numerical tank consists of a rectangular domain with length
L = 7 m and height H = 5 m. The jet is emitted via an orifice posed at the central zone of a
flat bottom having the width e = 1.62 m, the injection is assumed uniform in the y-direction
from an unsteady source of concentration C. The Reynolds number Re = eUm

υ which is the
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key parameter of this study is calculated using the exit velocity (Um) at the nozzle, width
of nozzle (e), and kinetic υ viscosity of the fluid motion.

Figure 1. Sketch of the numerical tank.

The formulation of this problem is described by the Navier–Stokes equations along
with the mass transport equation, in terms of vorticity function ω, stream function ψ, and
concentration C, these equations are written in the dimensionless form as:

∂ω

∂t
+

(→
U.
→
∇
)

ω =
1

Re
∆ω +

1
Fr2

[
→
∇C ∧

→
g

‖ →g ‖

]
.
→
k (1)

∆ψ = −ω (2)

→
U =

→
∇∧

(
−ψ
→
k
)

(3)

∂C
∂t

+

(→
U.
→
∇
)

C =
1

Re Sc
∆C (4)

To achieve a complete formulation of the problem, it is necessary to set the initial and
boundary conditions that are defined as:

- At the initial instant, all variables are zero except on the diffuser where C = 1;
- The conditions on lateral boundaries ΓU and ΓD are expressed as:

∂C
∂n

= 0,
∂

(→
U ·→n

)
∂n

= 0,
→
U ·→τ = 0,

∂ω

∂n
= 0

- The free surface ΓF is assumed to be flat, and therefore the condition is written as:

∂C
∂n

= 0;
∂

(→
U ·→τ

)
∂n

= 0,
→
U ·→n = 0, ω = 0

- On the bottom ΓB of the numerical tank, two conditions are defined:

• At the nozzle ΓE, the conditions are expressed as:

→
U ·→n = 1; C = 1. ω = 0

• Aside from the nozzle ΓB, the conditions are expressed as:

∂C
∂n

= 0,
→
U =

→
0 ,

∂2ψ

∂n2 = −ω
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3. Solution Procedures

In this section, we present the numerical method used to resolve the Navier–Stokes
equations and the transport equation. Our choice fell on the compact Hermitian method
O
(
h2, h4) to resolve the equations describing the flow considered in this work [30–33].

Consequently, the O
(
h4) scheme combined with a scheme of implicit alternate direction

methods (ADI) is used to resolve the Poisson equation of the stream function, and O
(
h2)

scheme combined with a scheme of implicit alternate direction methods (ADI) is used to
resolve the transport equations.

First, to use the O
(
h4) scheme combined with the scheme of implicit alternate direction

methods (ADI) to resolve the Poisson equation, it is necessary to transform the elliptic
equation of the stream function into a parabolic equation by introducing a fictitious time
τ. For that, a term ∂ψ

∂τ is added to the second member of the Poisson equation. Hence, the
equation rewrites as:

∂2ψ

∂x2 +
∂2ψ

∂y2 = −ω +
∂ψ

∂τ
(5)

considering τ = k∆τ, and designating ψ
n+ 1

2
i,j and ψn+1

i,j the values of the stream function ψ

at each fictitious half step, where i and j denote respectively the x and y-direction indices,
and n is the time step. The discrete scheme of Equation (5) is treated in two half steps: the
first step in x-direction and the second step in y-direction

(
∂2ψ

∂x2

)n+ 1
2

i,j
+

(
∂2ψ

∂y2

)n

i,j
= −ωi,j +

1
∆τx

(
ψ

n+ 1
2

i,j − ψn
i,j

)
(6)

(
∂2ψ

∂x2

)
i,j

n+ 1
2 +

(
∂2ψ

∂y2

)
i,j

n+1= −ωi,j +
1

∆τy

(
ψn+1

i,j − ψ
n+ 1

2
i,j

)
(7)

at the first step following the x-direction, the value of
(

∂2ψ

∂y2

)n

i,j
in Equation (8) is assumed

to be known, and hence we can write:

(
∂2ψ

∂x2

)n+ 1
2

i,j
= Si +

1
∆τx

ψ
n+ 1

2
i,j (8)

where

Si = −ωi,j −
(

∂2ψ

∂y2

)n

i,j
− 1

∆τx
ψn

i,j (9)

Taking account, the Hermitian formula [30–33] following the x-direction, that is written as:(
∂2ψ

∂x2

)
i+1,j

+ 10
(

∂2ψ

∂x2

)
i,j
+

(
∂2ψ

∂x2

)
i−1,j

=
12

(∆x)2

(
ψi+1,j − 2ψi,j + ψi−1,j

)
(10)

and the Equations (11)–(13) that are deduced by induction from the Equation (8)

(
∂2ψ

∂x2

)n+ 1
2

i−1,j
= Si−1 +

1
∆τx

ψ
n+ 1

2
i−1,j (11)

10
(

∂2ψ

∂x2

)n+ 1
2

i,j
= 10Si +

10
∆τx

ψ
n+ 1

2
i,j (12)

(
∂2ψ

∂x2

)n+ 1
2

i+1,j
= Si+1 +

1
∆τx

ψ
n+ 1

2
i+1,j (13)
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We can simply write the discrete set of Poisson equation at the first half-step, following
the x-direction is written as:(

12

(∆x)2 −
1

∆τx

)
ψ

n+ 1
2

i−1,j −
(

24

(∆x)2 −
10

∆τx

)
ψ

n+ 1
2

i,j +

(
12

(∆x)2 −
1

∆τx

)
ψ

n+ 1
2

i+1,j = Si−1 + 10Si + Si+1 (14)

Thereafter, the x-direction allowed us to know ψ
n+ 1

2
i,j and

(
∂2ψ

∂x2

)n+ 1
2

i,j
for the use case in

the second half-step following the y-direction. Hence, from the Equation (7) we can deduce
the formula: (

∂2ψ

∂y2

)n+1

i,j
= Sj +

1
∆τy

ψn+1
i,j (15)

Sj = −ωi,j −
(

∂2ψ

∂x2

)n+ 1
2

i,j
− 1

∆τy
ψ

n+ 1
2

i,j (16)

Taking account, the Hermitian formula [30–33] following the y-direction, that is written as:(
∂2ψ

∂y2

)
i,j+1

+ 10
(

∂2ψ

∂y2

)
i,j
+

(
∂2ψ

∂y2

)
i,j−1

=
12

(∆y)2

(
ψi,j+1 − 1ψi,j + ψi,j−1

)
(17)

and the Equations (18)–(20) that are deduced by induction from the Equation (15):(
∂2ψ

∂y2

)n+1

i,j+1
= Sj+1 +

1
∆τy

ψn+1
i,j+1 (18)

10
(

∂2ψ

∂y2

)n+1

i,j
= 10Sj +

10
∆τy

ψn+1
i,j (19)

(
∂2ψ

∂y2

)n+1

i,j−1
= Sj−1 +

1
∆τy

ψn+1
i,j−1 (20)

Simply, the discrete set of Poisson equation at the second half-step, following the
y-direction is written as:(

12

(∆y)2 −
1

∆τy

)
ψn+1

i,j−1 −
(

24

(∆y)2 −
10

∆τy

)
ψn+1

i,j +

(
12

(∆y)2 −
1

∆τy

)
ψn+1

i,j+1 = Sj−1 + 10Sj + Sj+1 (21)

Moreover, based on the first-order derivatives of the Hermitian formula [30–33], the
calculation of ψ allowed us to calculate the components u and v of the velocity, for the sake
of clarity:

- The definition ∂ψ
∂x = v, is used to calculate the component v using the formula(

∂ψ

∂x

)n

i+1,j
+ 4
(

∂ψ

∂x

)n

i,j
+

(
∂ψ

∂x

)n

i−1,j
=

3
∆x

(
ψn

i+1,j − ψn
i−1,j

)
(22)

- The definition ∂ψ
∂y = −u, is used to calculate the component u using the formula(

∂ψ

∂y

)n

i,j+1
+ 4
(

∂ψ

∂y

)n

i,j
+

(
∂ψ

∂y

)n

i,j−1
=

3
∆y

(
ψn

i,j+1 − ψn
i,j−1

)
(23)

Furthermore, to resolve the transport equations in C and ω, we have chosen the
(
h2)

scheme combined with the implicit alternate direction method (ADI), the precision at the
order 2 is applied to space variables and the order 1 to time variables. For more details, the
transport Equations (1) and (4) are expressed in ϕ variable that is written in a conservative
form as:

∂ϕ

∂t
+

∂(uϕ)

∂x
+

∂(vϕ)

∂y
= K

(
∂2 ϕ

∂x2 +
∂2 ϕ

∂y2

)
+ S (24)
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where ϕ ≡ C or ω:

- in the case of ϕ = ω, this satisfies S = 1
Fr2

[→
∇C ∧

→
g
g

]
.
→
k , and K = 1

Re ,

- in the case of ϕ = C, this satisfies S=0 and K = 1
Re Sc .

Let:

δx denotes the discretized operator corresponding to ∂
∂x

δy denotes the discretized operator corresponding to ∂
∂y

δ2
x denotes the discretized operator corresponding to ∂2

∂x2

δ2
y denotes the discretized operator corresponding to ∂2

∂y2

The variable ϕ is calculated in two half steps, we denote by ϕn+ 1
2 the value of the

variable calculated at the half step, and ϕn+1 the value of the variable in the second half
step. Based on ADI scheme, the discrete set of Equations (24) is written as:

• at the 1st half step:

ϕn+ 1
2 − ϕn

∆t/2
− δx

(
un ϕn+ 1

2

)
+ δy(vn ϕn) = K

(
δ2

x

(
ϕn+ 1

2

)
+ δ2

y(ϕn)
)
+ S (25)

• at the 2nd half step:

ϕn+1 − ϕn+ 1
2

∆t/2
− δx

(
un ϕn+ 1

2

)
+ δy

(
vn ϕn+1

)
= K

(
δ2

x

(
ϕn+ 1

2

)
+ δ2

y

(
ϕn+1

))
+ S (26)

For greater clarity, the diffusion terms are discretized using central differences scheme,
and the convection terms are treated by forward-backward differences method according
to u and v velocities sign, this procedure ensures the preponderance of the main diagonal
of the resulting matrices, for that matter we define

vi,j=

(
∂ψ

∂x

)n

i,j
αi,j = 1 if vi,j > 0 and 0 elsewhere (27)

ui,j = −
(

∂ψ

∂y

)n

i,j
βi,j = 1 if ui,j < 0 and 0 elsewhere (28)

The discretization of the convection and diffusion operators are written as:

• at the 1st half step:

δx

(
un ϕn+ 1

2

)
=

βi,j

(
ui,j ϕ

n+ 1
2

i,j − ui−1,j ϕ
n+ 1

2
i−1,j

)
∆x

+

(
1− βi,j

)(
ui+1,j ϕ

n+ 1
2

i+1,j − ui,j ϕ
n+ 1

2
i,j

)
∆x

(29)

δy(vn ϕn) =

(
1− αi,j

)(
vi,j ϕ

n
i,j − vi,j−1 ϕn

i,j−1

)
∆y

+
αi,j

(
vi,j+1 ϕn

i,j+1 − vi,j ϕ
n
i,j

)
∆y

(30)

δ2
x

(
ϕn+ 1

2

)
=

ϕ
n+ 1

2
i+1,j − 2ϕ

n+ 1
2

i,j + ϕ
n+ 1

2
i−1,j

∆x2 (31)

δ2
y(ϕn) =

ϕn
i,j+1 − 2ϕn

i,j + ϕn
i,j−1

∆y2 (32)

• at the 2nd half step:

δx

(
un ϕn+ 1

2

)
=

(
1− βi,j

)(
ui,j ϕ

n+ 1
2

i,j − ui−1,j ϕ
n+ 1

2
i−1,j

)
∆x

+

βi,j

(
ui+1,j ϕ

n+ 1
2

i+1,j − ui,j ϕ
n+ 1

2
i,j

)
∆x

(33)
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δy

(
vn ϕn+1

)
=

αi,j

(
vi,j ϕ

n+1
i,j − vi,j−1 ϕn+1

i−1,j

)
∆y

+

(
1− αi,j

)(
vi,j+1 ϕn+1

i,j+1 − vi,j ϕ
n+1
i,j

)
∆y

(34)

δ2
x

(
ϕn+ 1

2

)
=

ϕ
n+ 1

2
i+1,j − 2ϕ

n+ 1
2

i,j + ϕ
n+ 1

2
i−1,j

∆x2 (35)

δ2
y

(
ϕn+1

)
=

ϕn+1
i,j+1 − 2ϕn+1

i,j + ϕn+1
i,j−1

∆y2 (36)

Furthermore, the source term poses difficulties associated with gradient term, for that
reason, the source term is treated by the expression giving the concentration using Green’s
function, that is written as:

C
(→

x , t
)
=

x

sup(C)

Re
4πt

C
[→

x
′
, t
]
exp

(
−Re

4t

(→
x −→x

′)2
)

d
→
x ′ (37)

where: [
→
∇C ∧

→
g
g

]
.
→
k =

∂C
∂x

(→
x , t
))

(38)

→
x = x

→
i + y

→
j (39)

After derivation of the expression giving the concentration using Green’s function

∂C
(→

x ,t
)

∂x = ∂
∂x

s
sup(C)

Re
4πt x′C

[→
x
′
, t
]
exp

(
− Re

4t

(→
x −→x

′)2
)

d
→
x
′

=
s

sup(C)
Re

4πt C
[→

x
′
, t
](
− Re

2t (x− x′)
)

exp
(
− Re

4t

(→
x −→x

′)2
)

d
→
x
′

= − Re x
2t

s
sup(C)

Re
4πt C

[→
x
′
, t
]
exp

(
− Re

4t

(→
x −→x

′)2
)

d
→
x
′

+ Re
2t

s
sup(C) C

[→
x
′
, t
](

Re x′
4πt

)
exp

(
− Re

4t

(→
x −→x

′)2
)

d
→
x
′

(40)

Namely, we write:

∂C
∂x

= −Re
2t

xC
(→

x , t
)
+

Re
2t

x

sup(C)

Re
4πt

x′C
[→

x
′
, t
]
exp

(
−Re

4t

(→
x −→x

′)2
)

d
→
x
′

(41)

The passage to the discretized form is done by supposing that the particles cover the
entire field, reads than for a particle i:

(
∂C
∂x

)
i
=

x

Pi

∂C
∂x

ds ≈ − xiRe|Pi|
2t

Ci +
Re
2t
|Pi|

Np

∑
j=1

Re xjCj

4πt
exp

(
−Re

4t

(→
xi −

→
xj

)2
)

(42)

where Supp(C) stands for the support of the concentration function, |Pi| is the surface of
the particle with i index,

→
xi is the position of the particle,

→
xj and support particles, and Np

is the total points number.
For more clarity, the Poisson equation and transport equations are constructed as

linear systems, the associated matrices are written as [A]{ψ} = {B}, and [C]{ϕ} = {D},
these algebraic systems are resolved by the application of the successive over-relaxation
(SOR) iterative method [34] taking into account the convergence criterion∣∣∣ψ̃k+1 − ψ̃k

∣∣∣ ≤ 10−4 (43)
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∣∣∣ϕ̃k+1 − ϕ̃k
∣∣∣ ≤ 10−4 (44)

where ψ̃k and ϕ̃k represent unknown vectors at kth iteration associated with (SOR) method.

4. Results and Discussion
4.1. Validation Test

The objective of this subsection is to validate the numerical method used in this work.
For that, we consider a viscous, unsteady, incompressible fluid in a lid-driven cavity. For
the sake of clarity, all walls are considered with no-slip or impervious boundary conditions,
except the velocity at the upper wall set to unity (see Figure 2). To verify the validity of our
results, we compare the profiles of the velocity components with the reference [35] at the
median of the cavity, for different Reynolds numbers: 100, 400, and 1000.

Figure 2. Geometric configuration of the lid-driven cavity with boundary conditions.

The Figures 3 and 4, outline the results respectively of the velocity profiles: u-
components as a function of y by fixing the x-axis in (x = 0.5), and v-components as a
function of x by fixing the y-axis in (y = 0.5) for the Reynolds numbers Re = 100, 400, 100,
and 2000.

Figure 3. Cont.
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Figure 3. Profile of the horizontal velocity (u) along y with (x = 0.5), for (a) Re = 100, (b) Re = 400, (c) Re = 1000, and (d)
Re = 2000.

Figure 4. Cont.
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Figure 4. Profile of the vertical velocity (v) along x with (y = 0.5), for (a) Re = 100, (b) Re = 400, (c) Re = 1000, and (d)
Re = 2000.

Based on the visualization of the velocity profiles presented in Figures 3 and 4, we
confirm that the results have shown a good agreement with the results obtained in the
literature [36], which confirm the validation of the accuracy of the numerical code used in
this work.

4.2. Jet Emitted from the Bottom of the Numerical Tank

The intention in this subsection is to analyze the dynamic properties of jet type
flow, and to assess on the limitation of the compact Hermitian finite differences method
(FDM) higher accuracy, to resolve the problem of jet with a concentration C emitted from
a bottom of numerical tank (see Figure 1), For that, the Equations (1)–(4) are resolved
using the Hermitian finite differences method in a dimensionless rectangular domain sized
Ω = (0, 7) × (0, 5).

First, in Figures 5 and 6 we present the velocity fields, and the iso-contours of con-
centration for the different instant of time, by fixing the dimensionless numbers: Re = 100,
Fr = 10, and Sc = 0.7, these results are presented for two reasons; in the first place, to assess
the capability of the direct numerical simulation (DNS) to describe the evolution of jet
flow in terms of concentration and velocity fields for low Reynolds number. In the second
place, the objective is to analyze the validity of the proposed numerical approach and also
for refining the description of the flow, particularly in the vicinity of the diffuser as the
significance of this problem for many industrial applications.

Second, the goal is to assess the limitation and the response of the numerical code
used in this work for high Reynolds number. For that, we present in the Figures 7 and 8
the results respectively obtained by the stream function, and iso-values of vortex function
by fixing the time at t = 1s, and varying Reynolds numbers from Re = 100 to Re = 1000.
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Figure 5. Velocity fields at: (a) t = 1 s, (b) t = 5 s, (c) t = 7 s, (d) t = 10 s.
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Figure 7. Streamlines at instant of time t = 1 s, for Reynolds number: (a) Re = 100, (b) Re = 1000.

Figure 8. Iso-value of vortex function at instant of time t = 1 s, for Reynolds number: (a) Re = 100, (b) Re = 1000.

The results presented as a form of velocity fields in the Figure 5, show the appearance
of symmetrical vortex cells located on either side of the axis of jet for different instant of
time. Further, the Figure 6 shows also symmetrical profiles of iso-contours of concentration
function according to the axis of the jet over the time. Next, the results of the Figures 7 and 8
show a dissymmetry of profiles of streamlines, and iso-vortex with respect to the axis of the
jet at Reynolds number Re = 1000. In addition, our numerical experience show that flow is
weak function of Reynolds number, when Reynolds number is higher than 1000. Further,
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the present numerical results have efficiently provided information about the associated
eddy structures in the near-wall or impact region. Hence, it is quite possible to point out the
influence of Reynolds number on eddy structures. In addition, the kinematic description
of the impact region of the jet has not been the subject of many studies although significant
transfers (heat/mass) occur only in this region. It is characterized by a significant vertical
diffusion of momentum for the mean flow.

Furthermore, to check the accuracy associated with Reynolds number, it is worthy to
present the mean absolute error (MAE) for different Reynolds numbers, these errors are
given by the following formula:

MAEω =
∑N

i=1|ωi+1 −ωi|
N

(45)

MAEC =
∑N

i=1|Ci+1 −Ci|
N

(46)

MAEψ =
∑N

i=1|ψi+1 − ψi|
N

(47)

In the Table 1 we present the mean absolute error (MAE), for vortex function ω, concentra-
tion function C, and stream function ψ, for Reynolds numbers Re = 100, 400 and Re = 1000.

Table 1. Mean absolute error (MAE) for different Reynolds numbers.

Mean Absolute Error (MAE)
Reynolds Numbers

100 400 1000

MAEω 4 × 10−5 3 × 10−4 5 × 10−3

MAEC 5 × 10−5 2 × 10−4 7 × 10−3

MAEψ 2 × 10−5 4 × 10−4 9 × 10−3

The results illustrated in the Table 1 that represents the mean absolute error for stream
function, vortex function, and concentration function, show the onset of the numerical
instabilities at Re = 1000, these instabilities come from the ill-conditioning effects of the
algebraic systems when Reynolds number increases. For further clarity, the presented
results show that the Hermitian finite differences method is suited to the problem of jet up
to Reynolds number Re = 1000. Otherwise, in the case of Reynolds number higher than
Re = 1000, the method appears inappropriate. Furthermore, the DNS using the Hermitian
finite differences method allows us to find satisfactory results and a good representation of
the jet flow but requires a refined mesh.

4.3. Evaluation of Mesh Domain Sensitivity

To ensure the validity of the present numerical scheme, in Figure 9 we provide a
valuable insight into the grid domain sensitivity of the jet flow, by presenting the vertical
velocity profiles for different steps of y-direction (direction of the jet flow), and compare
them with the analytical solution of Bradbury (1965), these comparisons will be presented
for different Reynolds numbers. To assess the grid sensitivity and evaluating mesh de-
pendence to the accuracy of the jet flow, we use different two-dimensional grids mesh(

Nx × Ny
)
, and adopting a systematical increase of mesh points in y-direction, the step in

y-direction is defined as ∆y = H
Ny−1 , where H is the height of computational domain. The

different finite grids used in this validation test are 26 × 61. 26 × 75, and 26 × 90, leading
respectively to different steps in y-direction ∆y1 = 0.0847, ∆y2 = 0.0676, and ∆y3 = 0.051.
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Figure 9. Vertical velocity profiles at the nozzle exit for (a) Re = 300, (b) Re = 1000.

The numerical simulations of vertical velocity profiles, using the different steps of y-
direction ∆y1, ∆y2, and ∆y3, have shown a good agreement with the analytical solution for
different Reynolds numbers, which confirm the accuracy of the numerical procedure used
in this work. Further, the proposed study shows that the center line velocity is independent
of Reynolds number as pointed in the references [36,37].

5. Conclusions

In this paper, a numerical approach was proposed to resolve equations that have
strong nonlinearities because of the high recirculation of the velocity in the vicinity of
the boundary layers. The fluid flow is described by the Navier–Stokes equations that
are resolved by finite difference method (FDM) high accuracy. First, the validation tests
are ensured by comparing the profiles of the velocity components at the median of the
lid-driven cavity with previous works of the literature, and assessing the mesh domain
sensitivity by comparing the numerical velocity profiles for different steps of y-direction
(flow direction) with the analytical solution. The presented numerical profiles have proven
a good agreement with reference results, which confirm the validity of the numerical
method used in this work.

Second, the objective was to revolve around discussing the behavior and the dynamic
properties of jet type flow. The phenomena studied locally in terms of velocity fields and
concentration made it possible to realize the importance of the interaction and the evolution
of the flow over the time. Further, the instabilities mechanism of the flows associated with
high Reynolds number are detected by the numerical simulations. Furthermore, finite
differences method showed that it is well suited to the problems of jet flows at moderate
Reynolds number. Moreover, the results of this work prove that the velocity profiles does
not show any variation with the Reynolds number which confirms that the development
of the jet is not affected by the Reynolds number.

To sum up, this research describes the limitation of the DNS using the HFDM to treat
the problem of jet emitted from a bottom of numerical tank, the results presented in this
research have made it possible to find satisfactory results, but there are difficulties related
to the numerical instabilities associated with high Reynolds numbers. As a perspective, we
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endeavor to investigate the limitation of the Hermitian finite differences method to treat
the 3D jet flow simulation. Besides, to inspect the capability of spectral methods [38], and
meshless methods [39–43] to deal with the jet problem at higher Reynolds number.
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Abbreviations

→
g Acceleration due to gravity

x, y
Cartesian coordinates (x-axis is aligned along the stretching surface and y-axis
is normal to it)

C Concentration function
Fr Froude number
→
∇ Gradient operator
∆ Laplace operator
→
n Normal vector
∧ Outer product operator
→
x
′

Position of support particles
Re Reynolds number
Sc Schmidt number
ψ Stream function
∆x Step in the x-direction coordinate
∆y Step in the y-direction coordinate
→
τ Tangent vector
t Time
∆t Temporal interval
u Velocity in the x-direction
v Velocity in the y-direction
U = (u, v) Velocity vector

ω Vorticity function, such
→
ω = ω

→
k =

→
∇Λ

→
U
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