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Abstract: The unsteady Ekman problem involves finding the response of the near-surface currents to
wind stress forcing under linear dynamics. Its solution can be conveniently framed in the frequency
domain in terms of a quantity that is known as the transfer function, the Fourier transform of the
impulse response function. In this paper, a theoretical investigation of a fairly general transfer
function form is undertaken with the goal of paving the way for future observational studies.
Building on earlier work, we consider in detail the transfer function arising from a linearly-varying
profile of the vertical eddy viscosity, subject to a no-slip lower boundary condition at a finite depth.
The horizontal momentum equations, rendered linear by the assumption of horizontally uniform
motion, are shown to transform to a modified Bessel’s equation for the transfer function. Two
self-similarities, or rescalings that each effectively eliminate one independent variable, are identified,
enabling the dependence of the transfer function on its parameters to be more readily assessed. A
systematic investigation of asymptotic behaviors of the transfer function is then undertaken, yielding
expressions appropriate for eighteen different regimes, and unifying the results from numerous
earlier studies. A solution to a numerical overflow problem that arises in the computation of the
transfer function is also found. All numerical code associated with this paper is distributed freely for
use by the community.

Keywords: Ekman currents; ocean surface currents; wind stress forcing; transfer function; wind-

driven response

1. Introduction

An important problem in physical oceanography involves understanding the relation-
ship between the wind stress forcing and the near-surface currents. An ability to accurately
predict the currents given the wind is central to numerous practical applications, such as
navigation, spill and debris tracking, and monitoring microplastic distributions, as well as
being essential for estimating the contribution of wind forcing to the ocean’s mechanical
energy budget [1-3]. Consequently, this topic has been one of ongoing interest since the
pioneering paper of Ekman [4] over a hundred years ago.

Because the wind-driven response depends upon the details of momentum mixing
within the surface mixed layer, an important line of research has been understanding the
dependence of the near-surface currents on the assumptions regarding the profile of vertical
eddy viscosity, denoted here K(z), together with the lower boundary conditions [5-16].
Recent work on the wind-driven currents has focused on the impacts of diverse phenomena,
including Stokes drift and wave breaking [11,14,15,17-19], realistically structured mixed
layer turbulence [20-22], diurnal cycling [23,24], stratification and buoyancy gradient
effects [25-28], instabilities of the Ekman solution itself [15,29-31] arising from various
mechanisms [32,33], and the impact of more general variations of the eddy viscosity with
depth [10,13,14] and possibly also with time [9,15,22].
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This goal of this paper is to contribute to obtaining the best possible estimate of the
near-surface currents given the wind stress, by unifying and refining existing linear theories
of the wind-driven response. Specifically, we show that numerous previous solutions for
the wind-driven currents [4-8,11,12] can be combined into a single form, that due to a
general linear profile for the eddy viscosity with currents vanishing at the bottom of a
finite-depth boundary layer. The potential for a still more general theory, encompassing
higher-order [14,15] or time-dependent [15] forms for the eddy viscosity, is also discussed.
Additional effects such as those due to waves, buoyancy, or diurnal cycling could also
be incorporated by combining the results of the present paper with those of the studies
cited above. Our motivation is the desire to test predictions for the near-surface currents
based on the transfer function against observations in order to determine which postulated
form, and which choices of parameters, yield the optimal predictions of the currents.
Doing so first requires a sufficient understanding of the theoretical transfer function itself,
and consequently this paper focuses on theoretical considerations, leaving comparisons to
real-world data to the future.

In the linear theory, the equations of motion lead to a relationship between the wind
stress and the wind-forced currents that can be expressed as a linear time-invariant filter.
The wind-driven near-surface currents are then given by a time-domain convolution
between the depth-dependent impulse response function (a.k.a. the Green’s function) and
the surface wind stress forcing. Alternatively, the problem may be cast into the frequency
domain, where a linear time-invariant filter becomes a multiplication between the Fourier
transform of the forcing and the Fourier transform of the impulse response function,
a quantity known as the transfer function. While the two formulations are equivalent,
there are numerous reasons to prefer working in the frequency domain. The action of a
multiplication is more straightforward, as well as more computationally efficient, than that
of a convolution. Moreover, physical phenomena—such as inertial oscillations, tides,
and eddies—are often more distinct and more readily discernible in the frequency domain
than in the time domain. Finally, for many of the cases studied herein, there exist analytic
solutions for the transfer function for which no comparable expressions can be found for
the impulse response function. For all of these reasons we will focus almost entirely on the
transfer function formulation.

Linear theories of the wind-driven response can be categorized according to their
assumptions regarding the vertical profile of the vertical eddy viscosity K(z), as well as the
lower boundary condition. Ekman [4] derived a solution for the steady-state response—the
famous Ekman spiral—for a constant eddy viscosity, K(z) = Ko, with the lower boundary
condition of velocity vanishing at infinite depth. Time-dependent solutions to the Ekman
problem were found by Fredholm (reported in Ekman’s original paper [4]), Gonella [5,6],
and Krauss [7], with the latter author incorporating the effects of a finite boundary layer
depth h. Madsen [8] argued based on boundary layer theory that an eddy viscosity linearly
increasing from zero, K(z) = Kz, is more appropriate than a constant value, and found the
time-dependent solution for a flow that vanishes at infinity. Lewis and Belcher [11] later
found a number of special solutions for time-dependent problems, including the effects of
either a general linear viscosity profile of the form K(z) = Ky + Kjz or a finite boundary
layer depth h, but not both. All of the various Ekman- and Madsen-type solutions were
effectively consolidated and generalized by Elipot and Gille [12], who derived six different
analytic solutions for the transfer function corresponding to a constant, linear, or offset
linear eddy viscosity profile, and with no-slip lower boundary conditions applied either
at infinity or at the bottom of a boundary layer of finite thickness /. Elipot and Gille [12]
also found the solutions with a free-slip lower boundary condition for a constant, linear,
and offset linear eddy viscosity profile; however, as described later, the free-slip solutions
appear to be unphysical and therefore are only treated here in passing.

Here we extend and refine the work of Elipot and Gille [12] in a number of ways.
The equations of motion are found to yield an equation for the transfer function that can
be converted into the modified Bessel’s equation, streamlining the derivation. A subtle
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numerical issue is uncovered, wherein evaluation of the transfer function can lead to
spurious results due to numerical overflow or underflow arising from the modified Bessel
function terms in the solution; this problem is solved with the help of a series representation.
Self-similarities are found that effectively eliminate two degrees of freedom in the transfer
function’s dependence on its parameters, allowing the span of its possible forms to be
more clearly examined. Finally, we find that all six no-slip transfer functions presented by
Elipot and Gille [12] are nested, in the sense that they are all derivable as the asymptotic
behaviors under suitable limits from the most general form.

The establishment of nestedness provides a unifying conceptual simplification, be-
cause it means that the most general solution of Elipot and Gille [12]—for an offset linear
viscosity K(z) = Ky + Kjz and a finite boundary layer depth h—either explicitly reduces
to, or is equivalent to, the solutions of Fredholm, Krauss, Gonella, Madsen, and Lewis
and Belcher, as well as the associated steady-state responses or generalized Ekman spirals.
Nestedness is also of practical importance for the use of transfer functions in observational
studies. Transfer functions depend upon physical parameters, such as the Ekman depth
and the roughness length, the most appropriate values of which are not always known.
A theoretical transfer function can be used to infer the best values of unknown parameters
through the optimization of a predicted versus observed response, as was done by Elipot
and Gille [12] for the Southern Ocean. In such a optimization, it is far more convenient to
employ a single transfer function form that can be varied as a function of its parameters,
than to deal with individual discrete solutions. The results obtained here are thus directly
relevant for observational studies.

An important question concerns the realism of the linear model for the eddy viscosity.
It has long been known that the constant eddy viscosity employed by Ekman [4] is an
oversimplification. Krishna [34] cites a study by Ellison more than 60 years ago as the first
application of the linear viscosity profile K(z) = Kjz to a planetary boundary layer study,
while the first uses of a quadratic profile in that context appears to be those of Yokoyama
etal. [35] and Baker and Jordan [36]. O’Brien [37] proposed a cubic profile of eddy viscosity,
increasing from zero to an intermediate maximum before decreasing again. The cubic
profile was later incorporated into the widely-used K-profile parameterization (KPP) model
of Large et al. [38], see also the recent review in Van Roekel et al. [39]. Numerical modeling
studies with large eddy simulations (e.g., [20,40]) confirm that the general shape of the
effective eddy viscosity in a turbulent boundary layer is to initially increase with depth,
and then to decrease again, supporting the notion of a cubic profile with an intermediate
maximum. That the eddy viscosity profile is well approximated by a cubic function appears
to be broadly accepted. It is worth pointing out, however, that this conclusion appears to
be based on scant direct observational evidence.

Although not framed as such, a transfer function solution for the case of a cubic eddy
viscosity profile, proportional to (z/h)(1 — z/h)?, was recently found by Song and Xu [14].
This profile, which vanishes both at the surface and at z = , is of the form commonly used
in the KPP model of Large et al. [38], where the constant term in a cubic polynomial is set
to zero as discussed in Appendix B1 of [39]. The solution of Song and Xu [14] is given in
terms of the Gaussian hypergeometric function, see their Equations (29) and (47). While
this transfer function is definitely worth investigating, a limitation with respect to the
type of observational study we envision is that the cubic form is fixed. Simpler solutions
are not nested within it, and as such it cannot be used to test hypotheses regarding the
eddy viscosity form. Inspired by the work of those authors, we sketch out an avenue in
the Discussion for obtaining an analytic solution to the transfer function with a general
quadratic eddy viscosity profile, which like the cubic profile can exhibit an intermediate
maximum, but within which both the Ekman- and Madsen-type solutions would be nested.
Several other recent studies employ eddy viscosity profiles that are more realistic than the
linear profile, either for the steady [16,41] or unsteady Ekman problem [15]; the relationship
of our results to those works is also addressed in the Discussion.
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Although the realism of the linear eddy viscosity profile is admittedly imperfect, there
are nevertheless several factors motivating its further investigation. Most directly, the linear
profile could be seen as containing the first two terms in a Taylor-series approximation to an
arbitrary eddy viscosity profile K(z), and in particular to the near-surface portion of a cubic
profile that increases with depth. As shown in the Discussion, Section 5, an examination
of published estimates for the Ekman depth scale, in the context of the results of the large
eddy simulation study of Zikanov et al. [20], indicates that global observations of the ocean
currents at 15 m depth—such those obtainable from the surface drifter database of the
Global Drifter Program [42]—are likely, over much of the ocean, to be well within the depth
range over which the eddy viscosity profile is expected to be increasing with depth. This
suggests that the transfer functions based on the linear viscosity profile are likely relevant
to the global drifter dataset, which is our primary expected application.

Beyond that application, we see the present work as a stepping stone towards a long-
term goal, rather than as an endpoint, and in this regard our results serve two functions.
Firstly, by consolidating previous results, we set the stage for a subsequent simplification
through a data analysis that identifies which terms may be safely neglected in which
parameter regimes. Secondly, the mathematical foundation laid out in this paper may be
built upon in order to derive still more general and realistic transfer function solutions,
such as that using the quadratic eddy viscosity profile mentioned above. Thus, regardless
of whether or not transfer functions based upon a linear profile ultimately prove to be
satisfactorily realistic, we feel this work is valuable as an intermediate step.

The structure of the paper is as follows. In Section 2, the general no-slip transfer
function is derived. Self-similarities of the transfer function are identified in Section 3,
allowing its behavior to be examined as a function parameter space. An asymptotic analysis
in Section 4 systematically identifies reduced forms that occur in limiting regimes of the
controlling parameters, recovering the results from a number of earlier studies within a
unifying framework. A discussion of the results is given in Section 5. All numerical code
associated with this paper is freely distributed for use by the community, as described in
Section 6.

2. Derivation of the Wind-to-Current Transfer Function

In this section the transfer function for the response of the near-surface currents to a
wind stress is derived for a general linear profile of the vertical eddy viscosity, building on
simplifying Elipot and Gille [12].

2.1. Transfer Function Fundamentals

Letv(t,z) = vx(t,z) +ivy(t, z) be the wind-driven portion of the currents as a function
of time t and depth z, and let T(t) = 7y(t) + ity (t) be the surface wind stress, both
represented in complex-valued notation withi = \/—1 where the real parts are the eastward
components and the imaginary parts are the northward components. If the currents can be
taken to be the result of a linear time-invariant filter acting on the wind stress, then one
may write (see e.g., [43], Chapter 5)

[e0]
u(t,z) = / g(t—s,z)t(s)ds 1)
for some function g( t, z), called the Green’s function or impulse response function. The lat-
ter term is used because, if the wind stress takes the form of an impulse or Dirac delta
function, T(t) = J(t), then the convolution in Equation (1) gives v(t,z) = g(t,z). By con-
vention g(t, z) is defined to vanish for t < 0, implying that future values of the wind field
do not affect the present value of the currents, and that the response at time ¢ is due to the
integrated effects of all forcing prior to this time.
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It is assumed that the wind stress 7(¢) and the wind-driven currents v(t, z) can both
be considered to be stationary stochastic processes. It follows that these may be expressed
in terms of their spectral representations ([44], Equation (4.11.4))

1>
T(t) = e /_Oo edT (w) +7T )
o(t,z) = % /_0:0 e“'dV(w,z) +7(2) 3)

where d7 (w) and dV (w, z) are the corresponding Fourier-domain increment processes.
These equations state that the time-domain processes 7(t) and v(t, z) are aggregations of
uniformly rotating components from different frequencies, together with their mean or
expected values 9(z) = E{v(t,z)} and T = E{7(t) }. Here E{-} is the expectation operator,
or average over a statistical ensemble. Stationarity of the mean implies that E{d7 (w)} and
E{dV(w, z)} both vanish for w # 0—meaning that the complex-valued Fourier coefficient
of the oscillatory component el“’! vanishes in an ensemble average—and the explicit use
of 7(z) and T lets us set these expectations to vanish at w = 0 as well. Second-order
stationarity implies that E{d7 (w)d7*(v)} = 0 for w # v, and similarly for dV (w, z).

The reason for the perhaps unfamiliar notation d7 (w) in Equation (2) is that 7(f),
being a stochastic process with a non-finite time-integrated magnitude, [~ _|7(t)|dt, does
not have a Fourier transform in the usual sense, and similarly for v(t,z). However, these
processes do have spectral representations, Equations (2) and (3), given in terms of stochas-
tic Riemann-Stieltjes integrals, see e.g., Sections 1.4 and 4.11 Priestley [44] or Section 4.1
of [43]. For this reason, the spectral representations are our starting point for expressing
dynamics in the frequency domain, rather than attempting to take the forward Fourier
transforms of 7(t) and v(t,z). The quantities d7 (w) and dV(w, z) are also known as the
generalized Fourier transforms of the corresponding time-domain processes.

The impulse response function g(t, z) is assumed to be absolutely integrable, such
that [~ _|g(t,z)|dt is finite, and as such it has a Fourier transform in the usual sense,
G(w,z) = [7 e @Wg(t,z)dw, a quantity known as the transfer function. The impulse
response function may be represented as the inverse Fourier transform of the transfer

function,
1 [ .
g(t,z) = Eﬁm e“'G(w,z)dw. 4)

The solution, Equation (1), is then given in terms of the transfer function, as shown in
Appendix A, by

o(t,2) = 5 | 6 (w,2)dT (@) +76(0,2) 5)

where the first term is the transient response, while 7(z) = TG(0, z) is the steady response.
Note that the linear time-invariant filter, expressed in the frequency domain, is simply
a multiplication.

Several other important solutions can be derived immediately from the transfer
function formulation. Firstly, the steady response portion of the wind-driven currents,
representing a generalized Ekman spiral, is given by 7(z) = G(0,z) T and is thus found by
simply evaluating the transfer function at the zero frequency. Secondly, the solution for
monochromatic wind stress forcing, d7 (w) = ae'?6(w — w,)dw with forcing amplitude
« > 0, phase ¢, and frequency w,, is

o(t,z) = a|G(w, z) [ (PTP(W3) giwot ©

where we have written G(w,z) = |G(w,z)]e®(“?), expressing the transfer function in
terms of an amplitude and a phase. As was also noted by [12], the wind-driven velocity
vector at a fixed z, like the wind stress, thus rotates uniformly at frequency w,, with the
transfer function magnitude |G(w, z)| acting as a gain factor, and its phase ®(w, z) de-
termining the fixed angle in physical space between the rotating wind currents and the
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rotating winds. Finally, the “switch-on” problem, which we define as a steady forcing
that is turned on at time ¢ = 0 from a motionless initial condition, can be represented by
choosing the forcing as 7(t) = U(t) where U(t) is the unit step function. Its solution for
t >0is

v(t,z) = /oo g(t—s,z)U(s)ds = /Otg(s,z)ds

— i/ eith(.(U’Z)dw_ L/ G(wlz)dw (7)
27T J—oo iw 27T J—o W

where the final, time-independent term ensures that the initial condition v(0,z) = 0 is
satisfied. Thus G(w, z) / (iw) is the transient part of the switch-on solution expressed in the
frequency domain.

2.2. Equations of Motion for the Wind-Driven Flow

Following Ekman [4], it is assumed that the flow is horizontally uniform, and occurs
in a fluid of constant density in the absence of horizontal pressure gradients. Moreover,
the traditional approximation of neglecting the horizontal component of the Coriolis force
is made (see [33]). The vertical velocity then vanishes by continuity, and the horizontal
momentum equations become

2o(t2) +ifolt2) = = (K(z)aazv(t,z)> ®)

as expressed in complex-valued notation. Here K(z) is interpreted as a turbulent eddy
viscosity, f is the local Coriolis frequency, and the depth coordinate z is defined to be
positive downwards. Shrira and Almelah [15] point out that Equation (8) is the exact
form of the Reynolds-averaged nonlinear Navier-Stokes equations including the non-
traditional terms, under the assumptions of uniform density, horizontally uniform motion,
and vanishing horizontal pressure gradients, after the Reynolds stress terms are absorbed
into the eddy viscosity closure. This equation, sometimes referred to as the Ekman equation,
states that acceleration is generated by the vertical convergence of the turbulent flux of
horizontal momentum, together with rotation due to the Coriolis force. The term in
parentheses parameterizes the vertical flux of horizontal momentum as being down the
vertical gradient of horizontal velocity, with a proportionality coefficient K(z) that varies
in the vertical. As in Elipot and Gille [12], the form of the turbulent vertical viscosity will
be taken to be

K(z) = Ko+ Kjz )

with both Kj and K; being non-negative. While the solution does permit K; to be negative,
such that K(z) decreases to a non-negative value at the bottom of the boundary layer, this
possibility is not explored herein.

This form includes as special cases both a constant viscosity profile, K(z) = Kj,
assumed by Ekman [4], as well a viscosity linearly increasing from zero, K(z) = Kz,
as considered by Madsen [8]. The Ekman equation will be subject to the upper boundary
condition 3

T;t) = —K(O)Ev(t,O) (10)
meaning that at the ocean’s surface, the turbulent vertical flux of horizontal momentum
balances the wind stress. The lower boundary condition will be the no-slip condition of
vanishing flow at the bottom of a boundary layer of thickness h.

For future reference, we note that integrating Equation (8) over the depth of the bound-
ary layer i, and applying the upper boundary condition, leads to the Ekman transport
equation

h
| [ o2z =k oty + 2. ay
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Here, the vertical redistribution of momentum within the boundary layer has been removed,
so that the Ekman transport is forced only by the wind stress and the vertical flux of
turbulent momentum at the base of the boundary layer. For finite /, this stress will be
nonzero, implying that a momentum exchange will lead to the underlying fluid exerting a
force on the boundary layer. In the limit as / tends to infinity, if the solutions are decaying
exponentially in the vertical—as will prove to be the case—the no-slip condition would
imply that derivatives of all orders at the base of the boundary later also vanish as & tends to
infinity, and the first term on the right-hand-side of Equation (11) would be zero. A related
equation is the vertically-integrated kinetic energy equation

2
dz (12)

h h
%/0 %|0(trz)|2dz = o "R{t(t)v*(t,0)} _/0 K(z) a%v(t,Z)

which we obtain by multiplying Equation (8) by v*(t, z), integrating, applying the boundary
conditions, and taking the real part. This shows that the vertically-integrated kinetic energy
is modified by the surface forcing, which can increase or decrease the energy depending
on the relationship between the wind stress and the currents, together with dissipation of
kinetic energy occurring everywhere within the boundary layer and proportional to the
local vertical shear. A related frequency-domain energy equation was derived by Elipot
and Gille [45].

The response of the surface currents to the winds can be readily found using the
transfer function formulation. The Ekman momentum equation, Equation (8), and the
upper boundary condition, Equation (10), can be expressed respectively as

02 2 .
(K() + K]Z)@ +K1$ — l(w +f) G(OJ,Z) =0 (13)
d 1
EG((U'Z) = ok (14)

after substituting into these equations the solution v(t,z) expressed in terms of the transfer
function from Equation (5), together with the assumed form for the eddy viscosity from
Equation (9).

It is useful to recast the parameters Ky and K; controlling this system in terms of
length scales. We introduce

2K, 2Ky Ky &2
5 = Tl = 7 Zo = 75 = — (15)
TiTi ° T

which are the Ekman depth 6, what we will refer to as the Madsen depth y, and finally the
roughness length z,; note we refer to 6 as the Ekman depth, although Ekman defined his
“depth of the wind-currents” as 71. The first two of these will be seen to be the penetration
depths of the solutions of Ekman [4] and of Madsen [8] for K(z) = K and K(z) = Kz,
respectively. The three length scales J, p, and z, turn out to be more natural than working
with Ky and K directly. Note that only two of the three are independent. In terms of § and
Z,, the viscosity coefficients Ky and Kj can be written as

1, 142
Ko =50 Ifl,  Ki= 22, |1 (16)

such that the vertical eddy viscosity profile is given by
1, z
K(z)—E(S |f<1+20>. (17)

From this, we see that one interpretation of z, is the depth at which the viscosity has dou-
bled from its surface value. Equivalently, the roughness length expresses the contribution
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of the surface value of viscosity to the viscosity profile in terms of a vertical offset, since
K(z) = (z 4 z0)Kj. It will be seen that small z,, implying a strong gradient of the eddy
viscosity, corresponds to a more Madsen-like solution, whereas large z,, implying a weak
gradient, corresponds to a more Ekman-like solution.

2.3. Transformation to the Modified Bessel’s Equation

Inspired by the known form of the solutions to Equations (13) and (14) given in [12],
we define a function {,(w) as

_ /5% z\ilw+f)
Glw =2v2% (14 2 )1 18)

which captures important dependence on both frequency w and depth z, with the latter
being expressed as a subscript for later notational compactness. As this point a sign
function s(w, f) is introduced,

s = s(w, f) = sgn(f) sgn(1+ w/f) (19)

where sgn(x), the signum function, takes on the values —1, 0, or 41 according whether
its argument is negative, zero, or positive, respectively. The {,(w) function may then be
rewritten as

o sin/4zl i 8
7-(w) =2V2e 5\/<1+Z0)‘1+f‘ (20)

on account of the fact thatw + f = f(1+w/f) = s|f||1 + w/ f| together with \/si = esi/4,
The use of the latter form for {,(w) helps us to keep correct track of the complex phase.
Note that s changes sign across w = — f and across f = 0, leading to 90-degree phase shifts
in {;(w) across both the inertial frequency and across the equator.

The function {, (w) has been written in Equation (20) with z and w both appearing only
in their dimensionless forms z/z, and w/ f. This highlights the fact that the dependencies
on z and on w are closely related, though not identical. For cyclonic frequencies, those
with w/f > 0, an increase in w/ f—moving away from the inertial frequency toward more
strongly cyclonic frequencies—is the same as an increase in the dimensionless depth z/z,.
This symmetry of the frequency and depth dependencies breaks down for anticyclonic
frequencies, w/f < 0, as both z and z, are always positive.

Under a change of independent variable from z to {; (w), with G, (w, {z (w)) = G(w, z),
it may be readily shown (see Appendix B) that Equation (13) becomes

9
agz

omitting the frequency argument of - (w) for notational clarity. This equation is recognized
as the modified Bessel equation of order zero, see e.g., Equation (9.6.1) of [46]; we note that
since the frequency w can be treated as a parameter, Equation (21) may be regarded as an
ordinary differential equation. The general solution for G(w, z) is therefore given by

82
g%@G*(w, 02) + 0 Gy(w, ;) — ggG*(w, 7,)=0 1)

G(w,2) = c1(w)Zo(Gz(w)) + c2(w) Ko (Cz(w)) (22)

where 7, (x) and Ky, (x) are the nth-order modified Bessel functions of the first and second
kind, respectively, and c1(w) and cp(w) are functions of frequency chosen to match the
boundary conditions.

From this general solution, the transfer function for a turbulent vertical viscosity of
the form K(z) = Ky + K;z within a boundary layer of finite depth h, subject to a no-slip
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lower boundary condition and the upper boundary condition of Equation (14), is found
to be

V2esin/4 1 Zo(Gn(w))Ko(Gz(w)) — Zo(Gz(w)) Ko (Gn(w))
plflo /1 +w/fl]Zo(Cn(w))K1(Go(w)) + Z1(Zo(w)) Ko(Zh(w))

which is valid for z < h, with G(w, z) vanishing for z > h. That Equation (23) indeed
satisfies the boundary conditions is verified in Appendix C. Elipot and Gille [12] previously
derived this solution, although they did not explicitly transform the differential equation
for the transfer function, Equation (13), into the modified Bessel’s equation as has been
done here.

In the vicinity of the inertial frequency, in the limit as w — —f£, the transfer function
exhibits the asymptotic behavior, as will be shown later,

2 n<1+h/zo
plflu \1+2z/z

G(w,z) = (23)

G(w,z) ~ >, w— —f (24)
with the tilde notation meaning that the limit of the ratio of the left-hand side to the right-
hand is unity as w approaches —f. The transfer function is seen to be real-valued and
non-negative at the inertial frequency w = —f at all depths z, such that its phase is zero,
in agreement with the observational results reported in Elipot and Gille [12]. Physically
this means that the rotating wind-driven currents at inertial frequency are aligned with
the rotating component of the wind stress at that frequency. Note that while Equation (21)
appears to also have a singularity at f = 0, this is not the case, but rather is a consequence
of the choice of parameters that have been applied for convenience for the oceanographic
problem; in fact Equation (21) also solves the non-rotating equation.

If a free-slip lower boundary condition is used, the near-inertial behavior of the
transfer function is changed. As shown in Appendix D, and in agreement with the results
of [12], the free-slip transfer function exhibits a phase jump of £90° across the inertial
frequency regardless of the choices of 6 and z,. As this phase behavior is not at all in
agreement with observations, we conclude that the free-slip lower boundary condition is
unphysical and do not investigate it further.

At this point some further comments on the choice of lower boundary condition
should be made. The unphysical behavior of the free-slip transfer function for the unsteady
Ekman problem appears to contrast the results of Cronin and Kessler [47] and Wenegrat
and McPhaden [28] for the steady Ekman problem, as those authors find good performance
with a lower boundary condition of vanishing stress; the unphysical phase behavior at the
inertial frequency would not be apparent in such studies of the steady response, as this only
involves the transfer function at zero frequency. Meanwhile, Shrira and Almelah [15] show
that the vanishing stress boundary condition emerges from a system of two different eddy
viscosities in the limit as the lower layer viscosity tends to zero, their Section 3.2.1, providing
perhaps additional physical meaning to this condition. The reasons why the vanishing
stress boundary condition seems appropriate in some ways and inappropriate in others
is not yet clear. At the same time, the vanishing flow boundary condition employed here,
while traditional and widespread, could be improved by the suggestion of Kudryavtsev
et al. [48] that the flow evolves to maintain a critical Richardson number. These issues
relating the choice of lower boundary condition would be deserving of further attention,
but are outside the scope of the present work.

In applications it may be required to evaluate the transfer function over a very large
parameter space. For example, it will be shown later that the transfer function exhibits
simplifying behaviors—e.g., purely Ekman-like or purely Madsen-like—for extreme values
of its parameters. When computing the transfer function, one encounters a subtle but
nontrivial challenge. Numerical overflow may occur for parameter ranges where the argu-
ments to the Bessel functions become too large, causing the Bessel functions to obtain larger
values than can be represented in double-precision floating-point format. The evaluation
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of Equation (23) will then fail, even if the numerator and denominator would otherwise
cancel to produce a physically meaningful result. A solution to this problem is presented
in Appendix E through the use of a series expansion.

3. Behavior of the Transfer Function

Here the behavior of the general no-slip transfer function in Equation (23) is analyzed
as a function of parameter space. The key to understanding its behavior is recognizing that
two of the controlling parameters simply result in rescaling its amplitude and frequency.

3.1. Essential Behavior of the Transfer Function

In addition to being a function of frequency w and the observational depth z—what
we will call the observational parameters—the transfer function given in Equation (23) is a
function of four other parameters that we will call the structural parameters. These may
be taken as the local Coriolis frequency f, the Ekman depth J, the roughness length z,,
and the boundary layer thickness /. Examining the behavior of the transfer function is
complicated by the fact that the parameter space over which its form varies has so many
dimensions. However, self-similarities of the transfer function exists which allows us to
reduce the four-dimensional structural parameter space to just two dimensions.

The first self-similarity involves the dependence on f. Apart from the |f|~! in the
leading coefficient, G(w,z) depends on f only through the ratio w/f. This suggests
defining a rescaled version of the transfer function as

G(w,z) = p|f|G(w,z) (25)

which removes the explicit dependence of the transfer function amplitude on the Coriolis
frequency f. Dependence on f can then be absorbed into dependence on w, reducing the
structural parameter space from four dimensions to three. Note that G(w, z) has units of
m~ !, whereas G(w, z) has units of m?s kg’l. In all plots of the transfer function herein, we
will show this rescaled version. The second self-similarity will be presented after an initial
discussion of the transfer function form.

At this point, for orientation, we turn to Figure 1, which presents the dependence of
the transfer function amplitude as a function of both depth z and frequency w, with the
parameter choices 6 = 20 m, z, = 20 m, and /& = co or 1 = 50 m. For these same parameter
choices, the curves traced out by the transfer function on the complex plane as w varies are
shown in Figure 2. Here, as in subsequent figures, we choose f > 0, indicating a northern
hemisphere location. In both panels of Figure 1, we see a strong maximum centered on
the inertial frequency w = —f, the Fourier-domain manifestation of the fact that the wind
stress forcing excites weakly damped oscillations at that frequency.
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Figure 1. Examples of the transfer function for (a) infinite boundary layer depth & and (b) # = 50 m. In both panels,
the magnitude of the rescaled transfer G(w, z) = p|f|G(w, z) is shown. The parameter choices, chosen for display purposes
rather than for realism, are 6 = 20 m and z, = 20 m. The depth z = 20 m is indicated in both panels by a dotted black line,

while the curving white lines are curves of constant |{;(w)|. Roman numerals, shown here for future reference, refer to

the regimes enumerated later in (a) Table 1 and (b) Table 2. Areas where the various forms from Tables 1 and 2 apply are

schematically indicated by the regions separated by white lines together with the gray horizontal lines. See Section 4.4 for

further details regarding these regimes.
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Figure 2. The rescaled transfer functions G (w, z) from Figure 1, plotted on the complex plane. Curves are plotted every 5 m
from the surface to 45 m for (a) the 1 = o or (b) 1 = 50 m cases. In each panel, the transfer function at the surface is plotted

with the heavy solid line, while the transfer function at 45 m is plotted with the heavy dashed line. Note the difference in

axis limits between the two panels.
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Table 1. Parameter space behavior of the general no-slip transfer function in the limit of large boundary layer depth & as a function of the §/z, ratio and z/z,
ratio, numbered I-IX. Here K;(x) and 7, (x) are decaying modified Bessel functions of order # of the first and second kind, respectively, the Madsen depth
1#(8,2z0) = 02 /2, is regarded as a function of the Ekman depth & and roughness length z,, and s = s(w, f) = sgn(f) sgn(1 + w/ f) is a sign function. The functions
¢z(w) = Co(w) [1—1—%%],@2((4}) EZ\ﬁeSinﬂl%g (1+%)’1+% ,and ¢z (w) =2\/2esi7/4 %

functions that appear in the upper, middle, and lower rows, respectively; note {p(w) = ¢o(w). The boxed terms were previously presented by Elipot and Gille [12],

1+ % ‘ are three different versions of the arguments to the Bessel

with “EG” refers to the numbering nomenclature of those authors. The transfer functions for the Ekman [4] solution and Madsen [8] solutions are in the upper
right-hand corner and lower left-hand corners.

Strong Gradient/Near-Inertial Arbitrary Gradient/Any Frequency Weak Gradient/Far-Inertial
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Table 2. As with Table 1, the parameter space behavior of the general no-slip transfer function G(w, z), but now including the effects of the finite boundary layer

depth h and numbered I-h-IX-h. Again the functions ¢, (w) = {o(w) [1 + %%] , G (w) = 221/ % (1 + %) ‘1 + % ,and ¢;(w) = 2v/2e517/4 | /}27 1+ %‘ are

versions of the arguments to the Bessel functions appearing in the upper, middle, and lower rows. As before, 1i(,z,) = 6%/z, is regarded as a function of § and

zo,and s = s(w, f) = sgn(f) sgn(1 + w/f) is a sign function. The boxed terms were previously presented by Elipot and Gille [12]. Note that z < & in all regimes,

but only in the upper row, where h <«< z,, is there a required assumption for the size of 1 versus the other parameters.

Strong Gradient/Near-Inertial
Zops< dorw — —f

Arbitrary Gradient/Any Frequency

Weak Gradient/Far-Inertial
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Comparing the two panels of Figure 1, we see in both, the transfer function magnitude
decays away from the inertial frequency w = —f as well as away from the surface. There
are two main differences related to the effects of the finite value for #. Whereas for infinite
h, the transfer function is unbounded at the inertial frequency—as is most clear from the
open curves in Figure 2a—for finite / this singularity becomes smoothed into a finite
value. ( The importance of the finite depth boundary layer in damping the response to
forcing at the inertial frequency can be inferred from the vertically integrated momentum
equation, Equation (11), since the left-hand side must vanish for a strictly inertial response.)
Because such singularities are not observed in the real ocean, we expect the finite / transfer
functions to be more physically meaningful. A second obvious difference is that the rate
of decay of the transfer function with increasing depth seen in Figure 1a is heightened in
Figure 1b as z approaches the boundary layer depth /4, such that the transfer function tends
to zero there.

Another feature to note in Figure 2 is the difference in the transfer function curve on
the complex plane between the surface and at depth. For z > 0, the real part of the transfer
function crosses the line x = 0, and zooming in reveals that it continually circles the origin
as it decays; this occurs for both i = oo and & = 50 m, although it is more apparent in
the latter case. This implies that the phase angle of the transfer function is continually
increasing or decreasing as the frequency moves away from w = —f. By contrast, at the
surface, z = 0, the two sides of transfer function do not spiral, but rather each approach
the origin at a 45° angle to the positive x-axis. Thus, at the surface, there is a 90° phase
difference between large positive and large negative frequencies.

3.2. Comparison with the Impulse Response Function

It is useful to compare the finite-depth transfer function shown in Figures 1b and 2b
with its impulse response or Green’s function g(t, z), presented in Figure 3. Because an an-
alytic solution for the full impulse response function is not available, it has been computed
numerically as the inverse Fourier transform of G(w, z). As seen in Figure 3a, the am-
plitude decays both with time and with depth over most of the domain. For the chosen
parameter values, the impulse response function is very rapidly decaying in time, executing
little more than a single oscillation before essentially vanishing; this is a consequence of
the fact that parameters have been chosen for display purposes in the transfer function
schematic of Figure 1. The phase difference between the real and imaginary parts of the
transfer function shows a 90 degree offset. When the real part obtains a local maximum,
imaginary part will obtain a local minimum a quarter of an inertial period later. This is an
expression of the clockwise-rotating circular response expected for inertial oscillations in
the northern hemisphere.

At times very close to the origin, rather than decaying, the transfer function exhibits
a thin wedge of growing amplitudes that broadens with depth. Very near the surface,
the transfer function obtains its maximum value at time ¢ = 0, but at deeper depths it rises
from an initial value of zero to a maximum amplitude at an intermediate time, leading to
an apparent vertical propagation of the maximum response as the momentum of initial
impulse is diffused downward from level to level.



Fluids 2021, 6, 85

15 of 36

0 5 ' !

5 | |
5| | |
2 25
: . |
= 301 S
:

| S |

%t-;____;___

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
Time (Inertial Periods 27/ f)

Imaginary Part of g(f,z) (x1000/max{g}) Real Part of g(¢, z) (x1000/max{g})

Figure 3. The impulse response or Green's function g(t,z) corresponding to the transfer function
G(w, z) shown in Figures 1b and 2b. For display purposes, the impulse response function is divided
by its own maximum over all times and depths. Panel (a) shows the magnitude of g(¢, z) as a function
of time and depth with a logarithmic color scale, and with the white contours indicating marking
log(g(t,z)/max{g}) = 10" for n being a non-negative integer. Panels (b) and (c) respectively show
the real and imaginary parts of the transfer function at 5 m depth intervals, the same depths used
in Figure 2. Line styles are also as in that plot. The horizontal lines in (a) mark the depths of the
corresponding curves plotted in (b,c). Vertical dotted lines mark locations of the zero-crossings of the
real part of g(t,z), which we observe to occur at (1/4 + n/2) inertial periods at all depths.
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3.3. A Second Self-Similarity of the Transfer Function

A second-self similarity of the transfer function allows variations of the Ekman depth,
or equivalently of the inertial amplitude, to be absorbed into the frequency axis. To show
this we introduce Y(w) = 1 + w as a frequency deviation that can be used to replace the
frequency w. Next we define a version of the {,(w) function, expressed in terms of Y rather
than w, as

Z:(Y,6,2) zzxfzesi”/‘*‘%" (1+2/2)]Y| (26)

where we have written the dependence on z as a subscript, as with (;(w), and have
explicitly indicated the dependence on ¢ and z,. Similarly a new version of the transfer
function is defined as

V2e A 1 Toy(Zy)Ko(Z2) — To(Z2)Ko(Zn)

I(Y,z,6,2,,h) = ; VY1 Zo(Z) K1 (Zo) + T1(Zo) Ko (Z1)

(27)

omitting the arguments to Z; on the right-hand side for clarity, and again explicitly indicat-
ing the parametric dependencies on the left-hand-side. One finds that ;(w) and G(w, z)
are recovered by

C(w) =Z(Y(w/f),d,20), é(w,z) =T(Y(w/f),z,6,20,h) (28)

where the right-hand sides can be considered functions of the original parameter set
w,z,f,0,z,, and h. An important simplification now occurs. For some positive number &,
one finds

ZZ(Y,ms,zo):zz(or2Y,5,zo), F(Y,z,océ,zo,h):w_2F<uc_2Y,z,5,zo,h). (29)

Thus, a rescaling of the Ekman depth é can be absorbed into a rescaling of the frequency de-
viation Y, together with an amplitude rescaling of the re-parameterized transfer function I.

This self-similarity can be framed in an arguably more useful way. The most promi-
nent feature of the transfer function is its value at the inertial frequency, given earlier in
Equation (24). We define the amplitude of the rescaled transfer function at the inertial
frequency as

_ o 2z, 1+ h/Zo
A(Z,é,Zo,h) :p|f|G(—f,Z) - 521n<]m) (30)
The definition of A can be inverted to give é as a function of other parameters
_ ]2z, 1+h/z,
6=0NA(z,A, z0,h) = \/A ln<1+z/zo) (31)

and consequently one can replace 6 with A as a controlling parameter. Observe from
Equation (31) that multiplying A by a~2 is equivalent to multiplying & by &, which in turn
was shown in Equation (29) to be equivalent to multiplying both Y and T by a~2. Thus,
as with ¢, the inertial amplitude A can be absorbed into rescaling the frequency deviation
together with an amplitude scaling.

The four structural parameters f, § (or A), z,, and h have now been reduced to just
two parameters determining the transfer function shape, z, and h, together with two
rescalings. The first rescaling absorbs f into the frequency w, while the second absorbs
the Ekman depth J, or equivalently the inertial amplitude A, into the nondimensional
frequency deviation Y(w/f) = 1+ w/ f, with both rescalings also affecting the overall
transfer function amplitude.

3.4. Variability of Transfer Function Structure

The results of the previous section show that in order to investigate the behavior
of the transfer function as a function of the four structural parameters f, § (or A), z,,
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and h, we only need to vary z, and h. In Figure 4, the rescaled inertial amplitude A,
given in Equation (30), is presented for # = 1000 m as a function of 6 and y = §2/z,.
The depth of observation is chosen as z = 15 m, as this is the nominal observation depth
for surface drifters in NOAA'’s Global Drifter Program [42]. The inertial amplitude exhibits
a rectangular shape on the log 6 vs. log i plane, decreasing both towards the right-hand
side and towards the top of this plot. To understand this shape, we note the asymptotic
behaviors

A(z,6,20,h) ~ %m(g), Zo — 0 (32)

h—z
A(Z,&,Zo,h) N25—2, Zo —» O (33)
which show that when z, is small, A decreases with increasing u = 6%/z, but is indepen-
dent of ¢ for a fixed choice of y, while when z, is large, A decreases with increasing J but
is independent of y. This matches the behavior seen in the plot. The same behavior (not
shown) occurs for other choices of h.

Logl0 Madsen Depth g (m)

) -4 -3 -2 -1 0 1 2 3 4
Logl0 Ekman Depth 4 (m)

4 0 1 2 3
Log10 Inertial Amplitude A (m™)
Figure 4. The rescaled inertial amplitude A = p|f|G(—f,z) on the é vs. y plane for z = 15 m and
h = 1000 m; note that this quantity is independent of the choice of Coriolis frequency f. Black
contours mark locations where A = 10" m~! for integer 1, while white lines are lines of constant
7, with z, = 62/ u = 10" m. Note that z, increases towards the lower right-hand corner. The heavy
black line is the A = 1 m~! contour, a curve that will be referred to in subsequent figures, while
the heavy white line is the z, = 1 m contour. Black dots mark intersections of the z, = 10" m lines
with the A = 1 m~! contour. As discussed subsequently, the limits of high and low values of z,
correspond respectively to purely Madsen-like and purely Ekman-like transfer functions, modified by
the finite value of the boundary layer depth /; this tendency is reflected with the “M” and “E” labels.
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Transfer functions on the complex plane for various (J, ) values are shown in
Figure 5a—f for h = 16 m, 100 m, 1000 m, 10* m, 10° m, and 10° m respectively; the
reason for presenting such large values of h, with a boundary layer depth even exceed-
ing the ocean depth, is to better examine the limiting behavior of the transfer function
as h approaches the value of infinity that is implicitly used in the Ekman and Madsen
solutions. Other parameter values are chosen such that the inertial amplitude is held
fixed at A = 1 m~!, while z, = 10" with integer n. For the & = 1000 m case presented in
Figure 5c, these z, values correspond to the black dots shown in Figure 4, a few of which
fall beyond the edges of that plot. Because the transfer function shape does not change with
z, and h held fixed, transfer functions that lie along curves of constant z, in Figure 4 are
identical to one another apart from rescaling the amplitude and the frequency axis. Thus,
Figure 5¢c completely characterizes the variability of the transfer function form with the
choices h = 1000 m and z = 15 m, and by examining different / values, Figure 5 essentially
captures the entire range of transfer function shapes at z = 15 m.
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Figure 5. Transfer functions at 15 m depth on the complex plane with A =1 m~1 and with & = 16 m, 100 m, 1000 m, 10* m, 10° m,
and 10° m in panels (a)—(f) respectively. The transfer functions in panel (c), with 7 = 1000 m, correspond to the dots on the & vs. u plane
in Figure 4. In each panel, transfer functions are drawn for 6 = 10" with n taking on all integer values from —12 and 12. The heavy
black solid line is for the largest value of z,, the point that is farthest into the Ekman-like regime along the A = 1 m~! contour, while
the heavy black dashed line is for smallest value of z,, i.e., the farthest point into the Madsen regime. Not all lines are visible because
some almost exactly overlap others. A thin white line and thin black line show the asymptotic forms for the depth-modified Ekman and
depth-modified Madsen solutions presented later in Table 2 as forms III-# and VII-/i; these nearly exactly overlie the heavy solid and
heavy dashed lines, respectively. According to the self-similarity established in Section 3.3, for each choice of / the transfer functions
for a different A value but the same values of z, would appear identical to those shown here apart from an overall amplitude scaling;
thus this figure essentially reflects the entire range of possible behaviors of the transfer function at depth z = 15 m.
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We call attention to three features of these transfer functions, explored here graphically,
and then in the following section through the asymptotic behavior of the transfer function
in various parameter regimes. The first is the overall transition from an Ekman-like solution
with K(z) = Kj to a Madsen-like solution with K(z) = Kjz. In each panel in Figure 5,
the transfer function curves transition from the heavy solid line, corresponding to large
zo = Ko/Kj values or the Ekman-like limit, to the heavy dashed line for small z, = Ko/Kj
values or the Madsen-like limit. Note that many of the plotted curves are not visible,
because near the limiting forms, the curves tend to be extremely similar and lie on top
of one another. Comparing panels, we observe that the nature of this transition changes
depending on the boundary layer depth h. For panels (a) and (b), corresponding to# = 16 m
and & = 100 m, the Madsen limit is a broader circle than the Ekman limit, indicating larger
transfer function amplitudes. For deeper boundary layer depths , the situation changes,
and the Madsen curve ends up becoming highly elongated along the real axis. Meanwhile,
the Ekman curves remain largely circular as / increases, while reducing their radii and
shifting their centers towards the positive real direction.

The second feature we call attention to is the phase behavior as the frequency tends to
very large positive or negative values. For 1 = 16 m, a spiraling of the transfer function
around the origin with increasing frequency deviation |w + f| is clearly seen, meaning that
the phase of transfer function continues to increase or decrease as its amplitude decays.
As h increases, this spiraling diminishes until it is not longer visible in the plots, however,
magnification would reveal that it is still occurring but at smaller amplitudes for larger 1
values. In general the Madsen-like curves, which all visibly cross the x-axis even for large
h, show a greater tendency for spiraling than the Ekman-like curves. This spiraling with
increasing frequency deviation is related to the well-known spiraling of the wind-driven
currents with depth, as a consequence of the depth/frequency symmetry discussed earlier.

For comparison, the transfer functions for the same parameter settings as in Figure 5c,
but for the surface instead of at z = 15 m, are shown in Figure 6. The transfer functions
at the surface have a simpler structure than those at depth, with the versions for other
h being qualitatively quite similar to those shown here. A key difference in comparison
with the subsurface transfer functions concerns the phase behavior, as spiraling about the
origin is not observed at the surface. Instead, the two branches approach the origin at an
angle of £45° with respect to the positive x-axis, leading to a 90-degree phase difference
between large positive and large negative frequencies. In this plot, the flattening of the
transfer function approaching the Madsen-like limit of z, = 0 is even more accentuated
than at depth. It will be shown later that the depth-modified transfer function collapses to
a single point for all frequencies at z = 0 in the Madsen-like limit. This is a related to the
logarithmic singularity that emerges at the surface in the infinite depth transfer function,
and that was noted by [8].

The third feature is the near-inertial behavior, already seen in Figures 1 and 2. As was
discussed earlier, a singularity occurs at w = —f when the boundary layer depth is set to
infinity, but this singularity is damped out for finite choices of /. Thus, one would expect a
singularity to begin emerging in Figure 5 as h tends to infinity. The reason it is not seen is
that we have specifically chosen parameters in the various panels such that the transfer
function amplitude A remains fixed at the value of A = 1 m~!, together with the fact
that the transfer function curves have been computed on a very dense frequency array.
However, with ¢ and z, fixed and & increasing, one would indeed see a singularity emerge,
such as was observed between the two panels of Figure 2.

These three features—the transition from an Ekman-like to Madsen-like behavior,
shown to be controlled by z, the phase progression with increasing or decreasing frequency,
and the inertial peak, controlled by h—will all revisited in the next section.
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Figure 6. As in Figure 5¢, the transfer function with & = 1000 m, but for an observation depth of the
surface, z = 0, rather than z = 15 m. All other parameter settings are as in that plot. The Madsen-like
solution at z, = 0, plotted as a thin black line overlaying the heavy dashed line in Figure 5c, collapses
to a single value at all frequencies at the surface, as indicated by the black dot.

4. Asymptotic Behavior of the Transfer Function

In this section we examine the asymptotic behaviors of the general no-slip transfer
function G(w, z), given by Equation (23), for various limits of its controlling parameters,
unifying the results from a number of earlier studies.

4.1. Regimes of the Transfer Function

In investigating limiting behaviors, z,/6, z/z,, and z,/h emerge as controlling quan-
tities, all three of which may be larger than, equal to, or smaller than one. The ratio z,/6
determines whether the gradient of the vertical viscosity is strong or weak. When the
gradient is strong, the roughness length z, is small compared with J, and the dynamics
are Madsen-like—by which we mean dominated by K;—while when the gradient is weak,
the dynamics are Ekman-like or dominated by Kj. The ratio z/z, controls the nondimen-
sional position of the observation depth. Finally, z,/h determines the extent to which the
solution is influenced by the effect of a finite-depth boundary layer.

At this point a new notation will be introduced to help keep track of the ordering of
parameters in various limits:

a«<b means lim(%) — 0. (34)

The symbol “<<” is an arrow superposed on a less than sign, indicating an ordering as well
as a limit; the notation “a < b” is not sufficient because it simply means that a is much less
than b, as opposed to the limit as a/b tends to zero that is required here. An advantage of
this approach is that we can order multiple variables, such that

a«<b«<c means lim(%) — 0, lim(l:) -0 (35)

with the former being a more compact and legible notation.
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4.2. Transfer Function Expressions

Asymptotic forms of the general no-slip transfer function are presented in Table 1,
for the limit of large /i, and Table 2 including the effects of finite h. Each tableisa 3 x 3
matrix in which the three columns are for the three possible relationships between z, and 6
(zo «< ¢, indeterminate, and ¢ «< z, with w # —f, respectively), while the three rows are
for the three possible relationships between z and z, (z << z,, indeterminate, and z, « z).
The orderings implied by the intersections of the row limits and the column limits are
detailed in each entry of the tables. In addition to {,(w), given earlier in Equation (20), two
related functions,

G @ =aw|145E], rea G
(z(w) ~ gz (w) = 22 e517/4 i 1 +% L Zp <z (37)

emerge in the limits of small or large nondimensional observation depth z/z,, respectively.

The infinite /1 regimes in Table 1 are denoted by Roman numerals I-IX, while the finite
h regimes in Table 2 are denoted by I-, II-h, etc. All forms in these tables can be derived
under the indicated limits from the general solution presented earlier in Equation (23),
for K(z) = Ko + Kjz and finite i, which inhabits regime V- at the center of Table 2. When
limits of both z,/J and z,/z are involved, these may be taken in either order. For example,
in moving from V-h to VII-k, one may move first left and then down or first down and then
left. All of the infinite / forms in Table 1 can be derived by first deriving form V from V-#,
then taking appropriate limits of z,/d and of z/z,, or alternatively by taking the infinite &
limit of the corresponding expression in Table 2, yielding identical results in either case.
Relevant details on the derivations of the asymptotic forms are given in Appendix F.

All six terms along the two anti-diagonals—those enclosed in boxes—were previously
presented by Elipot and Gille [12], and are labeled according to the numbering system
of those authors, e.g., EG-1a, etc. (Note that in [12], /i(w + f) is occasionally rewritten
as el/4,/ (w + f), which is not correct; this applies to transfer functions 1a, 1b, and 1c
in the first row of their Table 1. While v/i = /4, changing the sign inside the radical
gives \/—i = e /4 which is not the same as /i x v/—1 = €¥7/4) These were derived
therein as six separate cases, by setting K(z) = Ky, K(z) = Kjz, or K(z) = Ko + Kjz in the
transfer function equation, Equation (13), and then setting a lower boundary condition of
velocity vanishing at either an infinite depth or at z = h. All of the other forms in these
tables are new. The new expressions are useful as giving the intermediate steps in the
derivations that move from the central form to the upper right and lower left asymptotic
limits, and are also themselves relevant approximations to the transfer function under
certain dynamical regimes.

The expressions in these tables either explicitly or implicitly subsume the results from
a number of earlier studies, as we will now discuss in detail, clarifying a point made by
Elipot and Gille [12]. Form III is the transfer function for the Ekman case (K; = 0) with
currents vanishing at infinity, first presented by Gonella [6] following the derivation of
the associated impulse response function by the same author [5]. The impulse response
function corresponding to form Il is, in turn, closely related to the switch-on solution
given in Ekman [4] and attributed to I. Fredholm. As discussed in Section 2.1, the solution
to the switch-on problem in the frequency domain can be readily expressed in terms of
the transfer function as G(w, z) / (iw). Similarly, frequency-domain versions of the switch-
on solutions derived by Lewis and Belcher [11] for the general linear viscosity profile
K(z) = Ko + Kjz for infinite depth, and for K = Ky or K = K;z for both infinite and finite 1
values, are readily found from forms V, III, III-k, VII, and VII-h. Considering the Ekman
problem modified for the effects of finite depth, Krauss [7] found the impulse response
function as well as its Laplace transform, the being essentially identical to the transfer
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function in III-h apart from a change of variables. Finally, the transfer function in regime
VIl is basically the same as the Laplace transform solution of Madsen [8].

4.3. Survey of Asymptotic Behavior

Next we survey the behaviors in Tables 1 and 2, with reference to the Ekman/Madsen
transition, the spiraling behavior with increasing frequency discussed earlier, and the
near-inertial peak.

The Ekman-like (K; = 0) and Madsen-like (Kg = 0) solutions—in the upper-right hand
and lower-left hand corners of these tables, respectively—are seen to represent opposing
limits around which the behavior of the transfer function can be characterized. The right-
hand columns of both tables can be thought of as “near-Ekman”, or close to the K; = 0
behavior but with a minor effect due to the vertical gradient of viscosity. Similarly, the left-
hand columns can be thought of as “near-Madsen”, or close to the Ky = 0 behavior but
with a minor effect due to the surface value of the viscosity. The transitions to pure Ekman
or Madsen dynamics, in which the effect of K; or Ky, respectively, is entirely neglected,
is seen to involve not only a condition on the regime parameter z,/46 but also on the
nondimensional depth z/z,. An interesting aspect is how the Ekman and Madsen solutions
interact. The Ekman-like solutions in regimes III and III-/ contain no dependence on z, or
on y, while the Madsen-like solutions in regimes VII and VII- contain no dependence on
6. For all other forms, both ¢ and z,, or else 6 and i, are required. In other words, all other
entries apart from the lower left and upper right corners are mixed in the sense that they
include to some extent the influence of both the surface value of the viscosity Ky as well
as its gradient K;. The more general expressions in the central column are required when
strengths of these two effects are roughly comparable.

One interesting aspect of the Ekman/Madsen transition concerns the surface singular-
ity of the Madsen solution. The original Madsen solution in regime VII has a logarithmic
singularity at z = 0, a consequence of the asymptotic behavior Ky(x) ~ —In(x) for x — 0.
As was pointed out by Madsen [8], this is an unrealistic aspect of that solution. (The effect
of a finite depth does not help, since form VII-# still has the surface singularity, due to
the fact that as z — 0 we have G(w,z) ~ 2(p|f|u) ' In(h/z) for all fixed frequencies.)
This problem lead Lewis and Belcher [11] to consider the offset linear eddy viscosity
K(z) = Ko + Kj z, for which they derived a switch-on solution for the infinite depth case,
comparable to our regime V. However, the “near-Madsen” solutions in regimes IV and
IV-h, in which the role of Kj is small but non-negligible, also have this singularity removed,
showing that only a small value of the eddy viscosity at the surface is sufficient to resolve
this unphysical feature.

Regarding the phase behavior at large positive and negative frequencies, we see from
the Ekman transfer function, form III, that for z = 0, the phase of the transfer function
is given by arg{G(w,0)} = —sit/4 = —isgn(f)sgn(1l+ w/f)r/4. This implies that
between very large positive and very large negative frequencies, the change in phase of the
transfer function will be £77/2, or 90 degrees. The same behavior can be found by taking
the large frequency deviation limit of the general form V-h. This 90-degree phase difference
at z = 0 is a thus general results for all parameter choices, apart from the pure Madsen
solution which is singular at the surface. This explains the pattern seen earlier in Figure 6.
For z # 0, numerical computation shows the phase to increase or decrease continuously as
one proceeds to large frequency deviations |w + f|, leading to the spiraling behavior seen
in Figure 5.

The value of the transfer function at the inertial frequency w = —f, previously
presented in Equation (24), holds for all parameter values and is most readily derived
from the near-Madsen forms in the left-hand columns of these tables. When # is infinite,
the value of the transfer function at the inertial frequency is unbounded, leading to the
well-known singular behavior seen earlier in Figure 2a. The singularity is removed with the
introduction of a finite boundary layer depth 1, as seen in Figure 2b. As such singularities
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are not observed in reality, all of the infinite / transfer functions considered here have a
prominent feature that is physically unrealistic.

4.4. A Depth/Frequency Interpretation of Regimes

The asymptotic behaviors seen in Tables 1 and 2 not only give limiting forms appropri-
ate for various parameter choices of different transfer functions, but also, to an extent, those
occurring at different frequencies or depths within the same transfer function. The columns
of Tables 1 and 2, which set the regime of the §/z, ratio, can alternatively be seen as
specifying the regime of the frequency deviation |1 + w/ f|. The ratio z,/J acts through
the {;(w) function, given in Equation (20), that appears in the arguments to the Bessel
functions, and limiting behaviors occur when those arguments are either very small or
very large. The z, << ¢ limit is thus essentially equivalent to w — — f, while § <«< z, with
w # —f is essentially equivalent to |1 + w/ f| — co. For this reason, z, << J, and J «< z,
with w # —f, may be referred to as the near-inertial and far-inertial limits, respectively.

In the case of Table 1, we may therefore see these expressions as asymptotic forms
arising on the depth / frequency, or z/w, plane for any individual realization of the
transfer function, provided J and z, are both nonzero. In other words, one expects to
see these regimes approximately occurring within a given transfer function, as labeled in
the schematic in Figure 1a, not only between transfer functions with different parameters.
Thus, the classical Ekman solution is the asymptotic behavior of the general no-slip transfer
function with z, « h in its near-surface, high-frequency limit, while the Madsen solution
arises in the deep, near-inertial limit. For Table 2, the interpretation of the rows as pertaining
to depth regimes within a given transfer function no longer applies, because the upper
and lower rows involve opposing limits of the ratio z,/h. For h < z, the upper row is
suitable for all z, whereas for z, < h the lower row becomes suitable for sufficiently large
z, as indicated in Figure 1b.

The depth/frequency interpretation of transfer function regimes may not be practically
useful, because a transfer function is generally needed for all resolved frequencies, not
just for a particular depth and frequency range. Nevertheless, it is helpful to conceptually
organize the different regimes in terms of where they occur on the depth/frequency plane.

4.5. Impulse Response Functions

Of all the transfer function forms listed in Tables 1 and 2, only a few appear to have
corresponding analytic expressions for the impulse response function: form III, due to
Gonella [5,6]; form VII, due to Madsen [8]; form IV, which will have an analytic solution
that is very similar to that for form VII; and the depth-modified Ekman solution in III-#,
the impulse response function for which was shown by Krauss [7] to involve a Jacobi theta
function. Here we will present the impulse response functions only for the Ekman and
Madsen solutions, which are found to be, respectively,

2 1 1 22
8e(t,z) = U(t)\/;WW eXP<—2|f|t52 - lft> (38)

2 2 z

M(t,z) = U(t) ——- ex (— —1i t) (39)
s ol T P\ Y

with U(t) again being the unit step function. These impulse response functions correspond,

respectively, to the transfer functions

Y 1 (5 fiwrf)
crtw) = e () (40)

4 PSS
(v n ) =

which have been rewritten from Table 1 for easier comparison.

Gum(w,z)
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When the wind stress forcing 7(t) consists of a Dirac delta function in time, 6(f),
then from Equation (1) the current response is simply the impulse response function
v(t,z) = g(t,z). It is straightforward to verify that gr(t,z) and ga(t,z) are in fact valid
solutions for an impulsive forcing with 7(f) = 4(t). That the time-domain momentum
equation, Equation (8), is satisfied can be readily shown by differentiating gr(t,z) and
gm(t,z). The upper boundary condition is then best examined through the vertically
integrated momentum equation, Equation (11), with / set to a value of infinity. Noting first
that [° gr(t,z)dz = [;° gm(t, z)dz = p~1U(t)e"f!, differentiation shows that

[i +if} | stt2)dz = p o) = pl5) 42)

for both gr(t,z) and gu(t,z), using the fact that %U(t) = (). This matches the right-
hand-side of Equation (11) emerging from the upper boundary condition for 7(f) = 4(f).
The lower boundary condition of vanishing flow at infinite depths is clearly satisfied.

While gr(t,z) and Gg(w, z) have both been verified to be solutions to the relevant
equations of motion, establishing that they are a Fourier transform pair is more difficult
due to a subtlety involving the relevant integral formula. The same is true for gus(f,z)
and Gp(w, z). In Appendix G, we show that ¢r(t,z) and Gg(w, z), and similarly gas(t,z)
and Gy (w, z), are in fact Fourier transform pairs in the limit that an artificially introduced
damping parameter tends to zero.

These two impulse response functions possess a similar structure. In addition to
rotating on the complex plane in the anticyclonic sense at frequency | f|, both functions are
zero for negative times and decay for both large times and large depths. For z > 0, both
impulse response functions rise to obtain a maximum modulus at intermediate times that
grows with increasing depth, since differentiating shows that |gg(t,z)| is maximized at
time t = 4(z/5)%/|f| while |ga(t,z)| is maximized at time t = 2(z/u)/|f|. The decay of
the Madsen’s impulse response function for large times is somewhat faster on account of
an additional v/ in the denominator, which also makes the initial growth to the maximum
somewhat slower. The depth scale is controlled by J for the Ekman case and y for the
Madsen case, as expected. The former decays more rapidly with nondimensional depth on
account of the z? appearing in the exponential, compared with the linear decay in the latter
case. Qualitatively these behaviors match those for the numerically computed transfer
function presented earlier in Figure 3.

5. Discussion

This paper has examined the unsteady response of the near-surface ocean currents to
a surface wind stress, what we refer to as the unsteady Ekman problem. The frequency-
domain solution for a general linear eddy viscosity profile K(z) = Ko + K;z with currents
vanishing at the bottom of a boundary layer of a finite depth & was considered. It was shown
that the fundamental quantity involved in the frequency-domain solution, the transfer
function, allows the solution for general wind forcing to be readily expressed, and also
encompasses the solutions to related problems such as the switch-on problem and the
steady response. This general linear transfer function, first derived by Elipot and Gille [12],
was shown to include as asymptotic limits five other transfer functions derived by those
authors as special cases, thereby unifying the results of numerous earlier studies including
Ekman [4], Krauss [7], Madsen [8], and Lewis and Belcher [11], and amounting to the
most general expression for the transfer function yet produced. This unification is the
main result of the paper. As discussed in the Introduction, establishing a nested family of
transfer function forms is an important prerequisite to being able to determine which range
of parameters provides the best fit against observations, and thus improve predictions of
the near-surface velocity given the winds.

Examining the dependence of the transfer function on its parameters, we showed
how taking two self-similarities into account allows one to more clearly see the range of its
possible forms. The roughness length z, emerged as the primary parameter controlling the
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transfer function shape for a fixed boundary layer depth h, while the choice of boundary
layer depth h was seen to determine the strength of the inertial peak, which becomes
singular as h tends to infinity. A numerical issue was uncovered that prevents the evaluation
of the transfer function from leading to sensible results, a problem that was solved in
Appendix E through the use of series expansions for the Bessel functions.

As mentioned in the Introduction, it is important to assess the potential relevance of
this work within the context of our understanding of physics of the real ocean. Here an
important issue is whether observation depths are sufficiently shallow compared to the
Ekman depth such that the eddy viscosity profile might be well approximated by a linear
function. To address this, we first we review some published estimates of the Ekman depth,
denoted ¢ herein. Estimates based on in situ observations are not common, but previous
works have placed it at 25 or 48 m using two different estimation methods in a study of
the California Current [49], 22 or 59 m using two different estimation methods in a study
of the Drake Passage based on repeated observations [50], and 39 m [51] in a reanalysis
of the Drake Passage data; the review in Section 6.3.4.1 of Rio and Hernandez [52] quotes
several other studies giving comparable values. Global estimates are rarer still, but in
an application of a parametric model for the steady wind-driven response using current
observations from the global drifter dataset, Rio and Hernandez [52] obtain estimates of
the Ekman depth (deduced from the parameters of their model) of 30-60 m in the summer
hemisphere, and 60-120 m in the winter hemisphere apart from in subpolar southern
latitudes where smaller values of 0-50 m were observed.

These estimates of Ekman depth can be connected to the expected vertical profile of
the eddy viscosity by appealing to the large eddy simulation study of Zikanov et al. [20].
While those authors do not explicitly state the Ekman depth that best fits their simulations,
a visual examination of their Figure 4b shows that their Ekman profile has its e-folding
depth—corresponding to our é—at about 0.2 of their nondimensional units below the
surface, roughly the same depth at which their inferred eddy viscosity profile, in their
Figure 5d, obtains its maximum. Thus, based on the results of this numerical study, we
would expect the eddy viscosity to obtain its maximum at a depth comparable to the
Ekman depth. Consequently, the eddy viscosity at depths smaller than the Ekman depth
should be reasonably well approximated by a linearly increasing profile. In comparison
with the values quoted in the previous paragraph, we conclude that the 15 m observation
depth of the global drifter dataset should be well within this linearly increasing range
over much of the ocean. A question mark, however, is the physical realism of setting
the flow to vanish at the base of a boundary layer at which the eddy viscosity has its
maximum, and whether this may lead to differences in the transfer function compared
with the linearly increasing regime of a viscosity profile having an intermediate maximum.
Understanding the relevance and limitations of the linear viscosity profile is a promising
topic for future work.

Recently, several important papers have examined the near-surface currents under the
assumption of more realistic or more general eddy viscosity profiles. Shrira and Almelah
[15] examined the unsteady Ekman problem for a more general eddy viscosity profile
than that employed here, equivalent to K(z) = Ko(t)[1 + K1 (t)/Ko(t)z]" in our notation
for some power «, and with Ky(t) and Kj () having the potential to be functions of time.
Solutions were found for currents vanishing at an infinite depth. For the & = 1 case, using
a different transformation from that employed here, those authors obtain an equivalent
Bessel function equation in the Laplace transform domain to our Equation (13), see their
Equation (3.13). The close similarity between their expressions and ours suggests that
it should be straightforward to modify their results to account for the effect of a finite
boundary layer depth £, thus encompassing a broader range of solutions. Whether these
more general solutions could be written in the form of a transfer function is not immediately
clear owing to the complicated transformations involved.

As mentioned in the Introduction, an expression that is essentially the transfer func-
tion solution for the Ekman problem with a cubic eddy viscosity profile proportional
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to (z/h)(1 — z/h)? was found by Song and Xu [14]. Inspired by their results, one may
consider the quadratic eddy viscosity profile

2

K(z) = Ko + K1z — Kpz? = %§2|f| (1 - i — ;) (43)
with € = /Ky /Kp. This eddy viscosity has the advantage of a realistic form that increases
and then decreases again, while also subsuming all of the previously considered constant
and linear solutions, which the cubic profile proportional to (z/h)(1 — z/h)? does not
accomplish. Re-deriving our Equation (13) for the transfer function but for the quadratic
viscosity profile, and with the substitutions (see p. 239 of Ref. [53])

2T oo €y (Y )
oz —z, £ 7 2 2z,

one obtains Euler’s hypergeometric equation for the transfer function

w
f
the solutions of which, like those for the cubic profile in Song and Xu [14], are known in
terms of the Gaussian hypergeometric function ;F;. The examination of the solutions for
the quadratic family of eddy viscosity profiles would be another important step towards
a unified solution of the unsteady Ekman problem. It is also possible that the solution of
Song and Xu [14] could be extended to a more general cubic form, if desired.

An area of active research is understanding the role of Stokes drift and wave breaking
in modifying the near-surface wind-driven currents [11,14,15,17-19]. These effects have
in fact already been incorporated into the linear eddy viscosity model by Shrira and
Almelah [15], though those authors work in the Laplace rather than the Fourier domain.
As discussed in Appendix B therein, the Ekman problem with a general linear viscosity
profile is modified by the presence of a Stokes drift, to lowest order, through a forcing term
appearing in the momentum equation, our Equation (8). The solution then consists of the
general solution to the homogeneous problem together with a particular solution to the
inhomogeneous problem, itself expressible as an integral of the forcing against solutions to
the homogeneous problem. Thus, the transfer function solution is simply augmented with
an integral over the Stokes drift, assuming that the latter is known. The work of Song and
Xu [14] to incorporate Stokes drift as well as wave-induced momentum deposition into the
Ekman problem, in the context of the cubic profile proportional to (z/h)(1 — z/h)?, is quite
closely related to that of Shrira and Almelah [15]. This suggests that by following the work
of those authors, Stokes drift and wave momentum deposition could also be incorporated
into the general quadratic eddy viscosity profile proposed in the previous paragraph.

Finally, several relevant recent studies have investigated solutions to the steady Ekman
problem. In a simplifying work, Dritschel et al. [16] find analytic solutions to the steady
Ekman spiral for a piecewise linear eddy viscosity profile. Similarly, lonescu-Kruse [41]
finds steady solutions for power-law eddy viscosities proportional to z2 or z*/3, while
Bressan and Constantin [54] and Constantin [55] solve for the steady Ekman currents for
an eddy viscosity profile that consists of a depth-dependent perturbation about a constant
value. It is possible that results of those works could be fruitfully brought to bear on the
unsteady problem considered here.

{ 92 90 2sie?
1+

[x(1 —x)]@—f— (1 —2x)$ -

’}G(w,x) =0 (45)

6. Materials and Methods

Numerical code relevant to this paper is released as a part of a freely-available open-
source toolbox for Matlab maintained by the first author. The toolbox, called jLab, is
available for download from https://github.com/jonathanlilly /jLab with installation in-
structions and detailed online documentation available at http:/ /www.jmlilly.net/software.
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html. The primary function related to this paper is called windtrans. This implements the
general no-slip transfer function of Equation (23), as well all of the boxed forms in Tables 1
and 2. The default formulation uses the tilde-function approach developed in Appendix E
to avoid numerical overflow. All figures are created with the script makefigs_transfer.
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Appendix A. The Transfer Function Relation

In this appendix we show that the wind-driven currents can be expressed through
the Fourier domain form presented in Equation (5). Firstly we rewrite the spectral rep-
resentation for 7(¢), Equation (2), bringing the mean wind stress T inside the integral
to yield

[ T @)+t = o

T(t) = e =5 /_o:o e dT (w) + 2776 (w)dw] (A1)

and we similarly rewrite the spectral representation for v(t,z). Then substituting these,
together with ¢(t,z) expressed in terms of its Fourier transform as in Equation (4), into
Equation (1), we obtain

v(t,z) = % /j:o e dV (w,z) + 279(z)d(w)dw]

2 00 [ee] o . .
:<2171>/ / / V(=S HOs Gy 2)[AT (w) + 2778 (w)dw) dv ds

= Zi /_0; /_0; e"'5(v — w)G(v,z)[dT (w) + 27T (w)dw] dv
1

=5 / G (w, 2)[dT (w) + 277T8(w)dw]  (A2)
after making use of | fooo e widt = 2716(w). This reduces to Equation (5) as claimed.

Appendix B. Derivation of the Modified Bessel’s Equation

In this appendix we derive the modified Bessel’s equation for the transfer function

given in Equation (21). To do this we first rewrite Equation (13) for G(w, z) in terms of ¢
w

1+‘}G(w,z)—0 (A3)

and z, as
A L S
Zo ) 022 z,0z 62 f

and then observe that the first two z-derivatives of {,(w) satisfy

10 1 4si w
;0 782 CZ ((U) — ZZ 752 1 + f‘ (A4:)
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(1 + Zo) [azgz(w)] =5 1+ f’ (A5)
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Applying the change of variable relations
90G _9G.o¢ PG _¥G. (95) | 3G, PL (A7)
9z 9, 0z’ 022 972 \ oz 9l 0z2

one obtains Equation (21) after a few lines of algebra.

Appendix C. Verification of the Boundary Conditions

In this appendix we verify that the general no-slip transfer function given in Equation (23)
does indeed satisfy the specified boundary conditions. For notational convenience, we
let 7; = Z,(Cz(w)) and Kj = Ky(z(w)) in this and following appendices, with the
superscript denoting the z-argument of {;(w) inside the Bessel functions. Using this
notation, Equation (23) becomes

V2 1 LK -Gk
PIf1e Vilw + H/IFITRY + K

where we have also noted that e/4\/[1+ w/f| = /si[l+w/f] = /ilw+ f)/|f].
To verify the upper boundary condition, Equation (14), we compute the partial derivative
with respect to depth,

Glw,z) = (A8)

P V2 1 THCE + TEKE 9
S G(wz) = T 10 4 705 522 (@) (49)
z PLf18 \/i(w + £)/1f1 Tg KD + ZKG 0z

in which we have made use of Equation (9.6.27) of Abramowitz and Stegun [46] for the
derivatives of the zeroth-order Bessel functions, namely
d d

o) =h(x),  T-Ko(x) = —Ki(x). (A10)

The z-derivative of {;(w) is found from Equation (18) to be

J V2 Ji(w+ f)/If]

— == All

azgz(w) 5 (1+Z/Z0) ( )
Evaluated at z = 0, the ratio of Bessel functions in Equation (A9) becomes unity, and the
vertical derivative of the transfer function evaluated at the surface thus becomes

d 2 1
2 Glw,0) = - =
210) plflox  pKo

as required for the upper boundary condition. It is clear from inspection of Equation (A8)
that G(w, h) vanishes, satisfying the lower boundary condition.

(A12)

Appendix D. The Free-Slip Transfer Function

The transfer function with a linearly varying eddy viscosity, K(z) = Ko + K;z, and a
free-slip lower boundary condition at the bottom of the boundary layer, z = , is

V2esin/4 1 Zo(Zz(w)) K1 (Th(w)) + T1 (Tn(w)) Ko (L2 (w))
plfle /1 +w/f] Ta(Gn(w))K1(Go(w)) — Z1(Go(w) ) K1 (S (w))

G(w,z) = (A13)
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which corrects a typographic error in Elipot and Gille [12]. This has the form given in
Equation (22) and therefore satisfies the differential equation for G(w, z) in Equation (21).
Its first z-derivative is

P) V2 1 LK} = Z/KF @
a—G(w,Z)Z 57 0 _ 701k 9z
Z Plf10 \/i(w + )/ f1 iKY — ZPK) 9z

which vanishes at z = h and reduces to Equation (A12) at z = 0, thus satisfying both bound-
ary conditions. The near-inertial asymptotic behavior of the free-slip transfer function is
found to be

Zz(w) (A14)

—si 1
olflht+w/fI
which contrasts with Equation (24) for the no-slip case; note that this behavior is indepen-
dent of the choice of Ky or K, and therefore occurs whether or not there is a gradient of
the vertical viscosity. In addition to a singularity at w = — f, the free-slip transfer function
exhibits a 90-degree discontinuous phase jump across the inertial frequency on account of
the sign function s = sgn(f) sgn(1+ w/ f). This is in opposition to the observations, which
show a phase that smoothly approaches zero near the inertial frequency [12]. Thus, this
transfer function does not appear to be realistic, and it need not be investigated any further.

G(w,z) ~ w— —f (A15)

Appendix E. Numerical Computation of the Transfer Function

In this appendix a difficulty in computing the transfer function, Equation (23), arising
from numerical overflow is identified and solved. The problem is illustrated in Figure Ala.
With i = 100 m, the transfer function G(w,z) is computed at frequency w = 2f and
depth z = 15 m over a broad range of parameter space on the ¢ vs. u plane. The transfer
function evaluation fails around the location of the gray line, which marks the location
where |{o(w)| = 10?? for w = 2f. Below this line, some terms in Equation (23) exceed the
largest representable number in double-precision format, about 1.8 x 1038

This numerical overflow arises as consequence of the exponential behavior of the mod-
ified Bessel functions for large arguments, see Equations (9.7.1) and (9.7.2) of Abramowitz
and Stegun [46],

1 T

Ty(x) ~ me", x| > 1, |argx| < 5 (Al6)
3

Ky (x) ~ ,/%e—% x| >1, |argx| < 7" (A17)

and may be traced to two different sources. The first problem occurs if one lets 1 become
large with the ratio z,/4 held fixed, while considering a fixed depth z and a fixed off-
inertial frequency w # — f. Examining the form of {,(w) in Equation (20), we see that as
becomes large, the magnitude of {j,(w) becomes large while {;(w) or {p(w) remain fixed.
The problem of large {;(w) is handled simply by rewriting the Bessel function ratio in
Equation (23) as

ToKG — Tiks _ K — (KG/T5) T

Y+ 9Kl K9+ (KL/TH T

(A18)

using Iy = Z,({z(w)) and K = K;({z(w)) for notational convenience. Now, as {j(w)
becomes large, rather than causing numerical overflow from the exponentially growing
Zo(¢n(w)) Bessel functions, the terms in the parentheses in the numerator and denominator
of Equation (A18) will tend to zero. Then as / increases, the transfer function will smoothly
approach the form for an infinitely deep layer, as presented in regime V of Table 1.
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Figure A1. Anillustration of overflow problems in computing the transfer function, and their solution. The transfer function
G(w, z) at frequency w = 2f and depth z = 15 m is computed on the J vs. u plane with i = 100 m using (a) Equation (23)
directly or (b) using the tilde-function formation of Equation (A17) for Bessel function ratio. In the latter case, 30 terms
are used to compute f,? (z) and 16,7 (z) via Equations (A18) and (A19). The same color scale is used in both (a,b). Panel (c)
is a comparison of the asymptotic or one-term expansions of Equations (A16) and (A17) versus the 30-term expansions.
The quantity shown in panel (c) is the fractional error, defined as the magnitude of the asymptotic version minus the
30-term version, all divided by the 30-term version. The gray diagonal line marks the location on the J vs. u plane where
2v2(2o/8) /[T + w/f] = 2v/2v/3(8/ 1) = 10?7, and is the location where Zy({o(2f)) begins to overflow.

The second problem occurs as the ratio z,/é becomes large with other parameters held
fixed. As this ratio increases, the magnitudes of {;(w), {z(w), and {o(w) all become large
provided w # —f. To overcome this problem, we define variants of the Bessel functions
that have the leading exponential dependence explicitly removed,

fﬂ (x) =e " Z,(x), Izﬂ(x) =e" Ky(x). (A16)

The Bessel function ratio in Equation (23) then becomes, with 7z = fﬂ ({z(w)) and I%é =

Ky (2:(w)),

ThKE — TaKh  efn(@) ) TS _ ofe(w)=Guw) Fh
IO+ ZOKE  elnl@)—To(w) THRY 4 efolw)—u(w) ZOK
00(60) () Tz _ ofolw)+Ex(w)-20,() T2 h

_ )3 - A17
THRY + 20o()2) 0K 7

after rearranging the exponential terms to prevent overflow from large (j (w) discussed
previously. In this form, the exponential growth from the modified Bessel functions of
the first kind Z; (x), and the decay from the modified Bessel functions of the second kind
ICy(x), are arranged to partly cancel.
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The Z,(x) and K, (x) functions can then be expanded as the power series. With ¢
being a small number, these have the expansions

~ 2 an(n) T
Ly ( o argx| < — —¢ (A18)
77 / X ,;]( x I g | 2
[T & (17) 3
IC,7 oy ; o |arg x| < - ¢ (A19)

provided that the indicated phase conditions are satisfied, which is the case here as the ar-
guments of the Bessel functions will have | arg x| < 7t/4. The coefficient a,(#) is defined as

ﬂn(ﬂ) = (4772 — 1) (4772 B 322!'8;1' (4772 - (2” - 1)2) . (AZO)

The series expansions in Equations (A18) and (A19) are given in Equations (9.7.1) and (9.7.2)
of Abramowitz and Stegun [46], or more explicitly in Equations (10.40.1) and (10.40.2) of
NIST [56]. Note that the first term in both series is unity, in agreement with the asymptotic
behaviors in Equations (A16) and (A17).

The accuracy of these approximations for complex-valued arguments like those oc-
curring in the transfer function is assessed as follows. For a fixed number of terms, we
compute Z, (xv/%i) with real-valued x using Equation (A18) and as e~ *V# T, (x+/Fi)
using Matlab’s built-in besseli function. The latter will be taken as the true value. Using
30 terms in Equation (A18), the approximation minus the true value, all divided by the true
value, has a magnitude less than 10~1* with x > 23 and for 77 = 0 or 1. The same applies
for K, (xv/=i) in Equation (A19) compared with besselk with x > 15. Thus, these series
offer a high degree of numerical precision after 30 terms for even relatively small values
of the argument. Because the iﬂ (x) and 16,7 (x) functions can be represented accurately,
while the exponential growth terms have been arranged to cancel, we can now evaluate
the transfer function for large values of z, /4 with very high accuracy.

Employing this tilde-function approach to computing the Bessel function ratio in
the transfer function, as in Equation (A17), is an order of magnitude slower than directly
calling besseli and besselk, and therefore we do not wish to use it for all parameter
values. However, as the overflow due to large ;, (w) is already handled simply by rewriting
the Bessel function ratio as in Equation (A18), the tilde-function approach only need be
used when the second-largest Bessel function argument, {;(w), also leads to overflow.
In implementation, we switch to computing the Bessel function ratio using Equation (A17)
whenever the magnitude of {,(w) exceeds 10?9, a threshold that is slightly below where
7,(Z-(w)) begins to overflow. In Figure Alb, the computation of the transfer function with
the same parameter values as in panel (a) is accomplished by switching to the tilde-function
version in this way. The transfer function can now be accurately computed over a wide
parameter space.

By contrast, simply using the asymptotic behaviors in Equations (A16) and (A17)
instead of the power series in Equation (A18) and (A19) offers unsatisfactory performance.
Figure Alc shows that the difference between the asymptotic or one-term expansion and
the 30-term expansion is non-negligible, with the fractional error approaching 103 over
much of the domain. This error is largest at the location where the algorithm switch is
implemented. Recall that one goal of this work is to be able to use the transfer function
in an optimization scheme to identify the parameters giving currents that best match the
observations. Such optimizations are highly sensitive to the texture of the optimization
function, such that discontinuity seen in Figure Alc would be expected to lead to an
obvious numerical artifact.
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Appendix F. Derivation of the asymptotic forms

In this appendix we discuss the derivation of the asymptotic expressions in Tables 1
and 2. Firstly, we note that when taking a limit such as § «< z,, the other parameters are
considered indeterminate rather than fixed. Thus, for example, if we take z, «< J, this does
not mean that the product (z,/6)?(z/z,) tends to zero, because we may later consider the
opposing limit z, «< z.

The derivation of the asymptotic expressions is primarily a matter of applying the
asymptotic properties of the modified Bessel functions for large arguments, Equations (A16)
and (A17), together with those for small arguments,

IO(X) ~1, Il(x) ~ 33X, |X| <1 (A24)

N~

Ko(x) ~ —In(x), Ki(x) ~ =, x| < 1 (A25)

==

see Equations (9.6.7)—(9.6.9) of Abramowitz and Stegun [46]. We have also made use of
the Taylor series

(1+x)" = 1+nx+O(x2), In(1+x) = x+O(x2) (A26)
as well as the relations
ete™P —ePe4 = 25inh(A — B), ete P+ ePe = 2cosh(A — B). (A27)

The latter, which combine the subtraction formulas for hyperbolic functions with their
definitions in terms of exponentials, are used in moving from the central column of Table 2
to the right-hand column.

A relatively subtle case arises in moving from the central finite depth column, regimes
II-h, V-h, and VIII-A, to the left column. In the case of V-, applying the limit z, << § gives

To(n(w))K1(Zo(w)) + T (Zo(w)) Ko (En(w)) ~ &yt Zo(En(w)) + %C%’CO(Ch(W)) (A28)

for the denominator of the Bessel function ratio, using Equations (A24) and (A25) for the
quantities containing {o(w). Since z, << ¢ implies (p(w) — 0, it would seem that the
second term in square brackets is negligible relative to the first; however we should also
consider possible asymptotic behavior of {;(w). In the large argument limit, as occurs
for z, «< h, we see that 373K (g (w)) is negligible relative to Zo({;(w)). If instead h is
considered fixed, then we have for z, « ¢ that

To(G(w)) + 3BKo(Gh(w)) ~ 1~ 2Z3In <g0<w>,/1 + h) (A29)

again using Equations (A24) and (A25). The second term on the right-hand side is of the
form x? In(x), which vanishes in the limit of small x by I'Hopital’s rule because

lim {xZ ln(x)} = lim [ln(x)/xfz} = lim {—;xz} =0. (A30)

x—0 x—0 x—0

Thus regardless of whether £ is fixed or tending to infinity, we have for z, «< J that

Zo(Zn(w)) K1 (Go(w)) + Tr (Go(w)) Ko (Zn(w)) ~ Lo ' To(Zn(w)) (A31)

and using this, we obtain IV-h from V-h. The same argument gives I-k from II-h and VII-h
from VIII-h.
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To derive the Ekman and depth-modified Ekman solutions, presented in forms III and
III-h respectively, as limits of more general expressions in the central columns, the inertial
frequency must be considered separately. This is because the asymptotic behaviors based
on the limit § «< z,, used in moving from the central column of each table to the right-hand
column, do not hold at exactly the inertial frequency. Nevertheless, forms III and III-h
do indeed have the correct behaviors at w = —f, as can readily be verified. At w = —f,
the depth-modified Ekman transfer function III-h reduces to I-k, as is shown with the help
of the asymptotic behaviors sinh(x) ~ x and cosh(x) ~ 1 for x — 0. This matches the
behavior of the more general form II-h at w = —f, and is the same as the behavior of
the full transfer function V-h at w = —f, given by Equation (24), in the limit z < h «< z,.
Considering form III, the non-depth-modified Ekman solution, we see that it is, correctly,
unbounded at the inertial frequency. Thus forms III and III-/ do give the correct behaviors
at the inertial frequency.

Appendix G. The Ekman and Madsen Impulse Response Functions

In this appendix it is shown that the Ekman and Madsen impulse response functions,
ge(t,z) and gum(t,z) in Equations (38) and (39) respectively, are, in a certain limiting
sense, the inverse Fourier transforms of the corresponding transfer functions G (w, z) and
Gum(w, z) from Equations (40) and (41). For the Ekman case, we begin with Equation (3.471.15)
of Gradshteyn and Ryzhik [57]

) e*ﬁ/tf’yt T
 —di= [TV, R{B} >0, R{7}>0 A32
0 i Y {8} 2 {7} (A32)
which becomes, choosing ¥ = & + iw for real-valued « and w with « > 0,

—at—PB/t

7 ez\/m_/";[u(t)e -

a+iw
Next we define a modified version of the Ekman infinite-depth transfer function from
Equation (40)

% (0 2 V2 1 oo V32 [a +i(w + f)

which has as its inverse Fourier transform

i 2 1 1 22 .
gr(tz) = U(t)\/;W exp<—2|f|t52 —ift— oct) (A35)

as follows from Equation (A33) with S setto f = %zz/ (6%|f]). Here a plays the role of
a damping which is necessary only to ensure the validity of the integral relating g% (¢, z)
and G§(w,z). Letting this quantity become infinitesimally small, we define gg(t,z) =
lim,_,9 g% (t,z), and obtain Equation (38).

For the Madsen impulse response function, Equation (10.32.10) of NIST [56] gives,
for the case of the Bessel function K, (z) of order 7 = 0, the integral representation

] e Wt (A33)

_ « i —u—1z2/y 2
Koz) = | ge " "du, §R{z } >0 (A36)
the history of which is discussed in Watson [58] (p. 183). With the substitutions t = v/ (4u)
and z? = (« +iw)+y for real-valued &, w, and v, and with & > 0 and v > 0, this becomes

ICO( (a—l—iw)’y) = /_ 0; {u(t)zlte—h/f—“f}e—iwfdt. (A37)
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As before we define a modified version Madsen transfer function from Equation (41) as

G (w,2) = p;'y;co (Z\fZ\/[a—H(w—i—f)]}jﬂ) (A38)

which has as its inverse Fourier transform, setting v = 8z/ (| f|) in Equation (A37),

N z2
gu(tz) = u(t>P74W exp(—ymt —ift— txt) (A39)

and again taking the limit as the damping parameter « tends to zero, we obtain Equation (39).
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