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Abstract: Bragg scattering of surface gravity waves by an array of submerged bottom-standing
non-smooth breakwaters is studied under the assumption of linearized long wave theory. The
closed-form long-wave analytical solutions are derived and validated by comparing them with the
results available in the literature. The role of various physical parameters such as breakwaters friction
coefficient, depth, width and gap between the adjacent breakwaters are investigated by analyzing
the reflection and transmission coefficients. Further, the time-domain simulation for the scattering
of long gravity waves over multiple breakwaters is analysed for different values of parameters of
breakwaters. The results reveal that the rough surface of the breakwater plays a vital role in reducing
wave reflection and transmission. Moreover, it is observed that the transmitted wave dissipates
completely for larger values of friction parameters. For certain critical angles, change in wave
dissipation becomes maximum due to the variation of phase of the incident wave. Various findings
can be considered as benchmark results for the design of the non-smooth structures to attenuate the
waves based on the Bragg reflection.

Keywords: bottom-standing structures; bottom-friction; shallow water equations; Bragg reflection;
free surface elevation

1. Introduction

Shoaling, refraction, diffraction, and reflection have an impact on the wave patterns
that are created on the water’s surface, causing them to undergo numerous changes.
Bragg resonance is one such mechanism that is essential for spotting natural occurrences
like earthquakes or free surface oscillations. This phenomenon occurs as a rise and
fall of the water surface and often leads to an increase in wave amplitude over time.
The mechanism of Bragg resonance was originally investigated by Bragg and Bragg [1]
in crystallography. A few decades later, multiple groundbreaking research experimen-
tally, theoretically, and computationally validated the Bragg resonance between surface
water waves and undulating bottom topography (e.g., Heathershaw [2], Mei et al. [3],
Cho et al. [4]). Bragg resonance could cause destruction when its period matches with the
period of another external source, such as the wind, an earthquake, or rapid changes in
air pressure. By adding friction to the top surface of the breakwater, one might lessen the
resonance amplitude during Bragg resonance. Thus, there is a need to examine the effects
of surface friction of a series of breakwaters on Bragg reflection.

There has been significant advancement in the understanding of Bragg scattering
of long waves over submerged structures by a number of studies. Additionally, several
analytical solutions have been developed based on linear long-wave equation (LWE) or
modified mild-slope equation (MMSE). Liu et al. [5] analysed the reflection of waves by four
different kinds of Bragg breakwaters such as triangular, rectified sinusoidal, trapezoidal,
and parabolic and produced the associated optimal collocation curves for maximum wave
reflection. Liu et al. [6] obtained the analytical MMSE solutions for Bragg reflection by a
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series of sinusoidal ripples and trapezoidal bars. Kar et al. [7] studied the Bragg scattering
of long waves by a series of trenches using the solutions of Bessel equations and the
findings were corroborated using numerical data produced based on the boundary element
approach (BEM). Kar et al. [8] examined the Bragg scattering of long waves by an array of
flexible floating plates in the presence of several submerged trenches. Gao et al. [9] analysed
the Bragg resonance produced by deploying a sequence of sinusoidal bars with varying
amplitudes and numbers outside a harbour. The interplay of waves, currents, and surges in
a region of the shallow continental shelf was explored by Sahoo et al. [10]. Barman et al. [11]
investigated the Bragg scattering of long flexural gravity waves by an array of submerged
trenches in the perspective of blocking dynamics. Kar et al. [12] discovered the Bragg
scattering of surface gravity waves due to surface wave interaction with multiple bottom
undulations and a semi-infinite floating flexible structure. Boral et al. [13] investigated the
role of viscous damping in the flexural gravity wave interaction in shallow water waves.
Guo et al. [14] explored the phase downshift or upshift of Bragg resonance for water wave
reflection by an array of cycloidal bars or trenches using the mild slope equation approach.
Liu et al. [15] developed MMSE-based analytical modelling to study wave reflection by a
single cycloidal geo tube or trench. Xie et al. [16] studied the long wave reflection by an
array of submerged trapezoidal breakwaters on a sloping seabed.

The Bragg resonant reflections over several arrays of smooth, impermeable breakwa-
ters were studied by a number of researchers (see Kar et al. [17] and Vijay et al. [18]). How-
ever, in actual use, breakwaters are often porous and not smooth. These structures with-
stand wave resonance and absorb and dissipate wave energy due to its non-smooth/friction
nature. Losada et al. [19] explored monochromatic oblique wave propagation across and
through porous beds or on a submerged rectangular structure. Few researchers have inves-
tigated water flows and resonant waves across the basin that entail the presence of wind
and friction (see Visser et al. [20]). Additionally, Mullarney et al. [21] employed analytical
technique to analyze wave propagation in a basin in the presence of bottom friction, while
Reef et al. [22] investigated using numerical methodology. Ni et al. [23,24] examined the
Bragg resonant reflection of water waves by Bragg breakwaters of two forms of porous bars,
namely rectangular and trapezoidal, on a sloping permeable seabed. Magdalena et al. [25]
analysed the attenuation of waves by mangroves which are modelled as porous struc-
tures. Magdalena et al. [26] performed both analytical and numerical studies for seiches
in a closed basin with bottom friction. Magdalena et al. [27] investigated the resonance
phenomena in lakes using a mathematical model. Subsequently, Magdalena et al. [28]
examined the resonant periods of earthquakes in semi-closed basins with complicated
bottom topography.

Furthermore, the effect of the rough surface of a rectangular submerged breakwater
on resonance phenomena was studied by Magdalena et al. [29] using staggered finite
volume method. They determined the optimal friction coefficient and shows that friction
can prevent the resonance, even reduce the wave amplitude. Using a mathematical model
based on the shallow water equations model, Magdalena et al. [30] simulated the resonance
phenomena in basins of various shapes. They demonstrated that if either one of the
mode parameters of rectangular basin is zero, a lower value of friction will be needed to
prevent the wave resonance otherwise the value of the rougher bottom must be increased
to prevent the incoming wave from resonating. Magdalena et al. [31] reported the effect of
bottom friction on harbour oscillation for the three different harbour geometry (rectangular,
triangular, and semi-parabolic). The results show that a relatively small value of friction is
sufficient to prevent resonance in rectangular harbours whereas for the triangular harbour,
a larger value of friction requires to prevent resonance. As rough surface plays a vital role
on reduction of incidence wave energy, Bragg resonance occurring due to the multiple
structures can be reduced by considering rough surface of the breakwaters. This has
motivated the authors to study the role of rough surface of multiple bottom-standing
structures on Bragg scattering using transform matrix method (TMM).
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The rest of the paper is organised as follows: The detailed formulation of the physical
model is given in Section 2. The details of the used Transfer Matrix Method and solution
of the mathematical model are described in Section 3. The impact of roughness of the
breakwaters on Bragg resonance and the role of various physical parameters such as break-
water width and depth, and the gap between the adjacent sides of breakwaters on Bragg
scattering are analysed in Section 4. The shape of wave packets in time-domain interacting
with rectangular smooth/non-smooth breakwaters is demonstrated in Subsection 4.1 for
various values of the breakwater width, depth, breakwater friction, and initial width of the
wave packet. Finally, the important observations are highlighted in Section 5.

2. Mathematical Formulation

The scattering of surface gravity waves by an array of non-smooth breakwaters is
investigated analytically using the technique of Transfer Matrix Method (TMM) under the
assumption of long wave theory. The problem is studied in the two-dimensional Cartesian
coordinate system with x − y plane being assumed as the horizontal plane and z-axis
being directed vertically upward. The position of the series of breakwaters associated with
water depths is shown in Figure 1. It is assumed that the motion is simple-harmonic in
time with angular frequency ω (see Dingemans [32], Behera and Sahoo [33]). Thus, the
free surface elevation ζ(x, y, t) is assumed to be of the form ζ(x, y, t) =Re{η(x)e−ikyy−iωt}
where, ky = k1 sin θ, η(x) is the spatial component of the free surface elevation with k1
being the incident wave number. Under the assumption that u, and v are the velocity
component of the fluid in two dimensions along x, and y− directions respectively, the
equation of motion can be expressed (see as Sahoo [34] for details) as

∂u
∂t

+ g
∂ζ

∂x
= 0,

∂v
∂t

+ g
∂ζ

∂y
= 0, (1)

with g being the acceleration due to gravity. Moreover, the continuity equation associated
with the linearized long wave equation is given by

∂ζ

∂t
+ h1

(
∂u
∂x

+
∂v
∂y

)
= 0. (2)

Figure 1. Schematic of wave motion over the non-smooth surface of rectangular breakwaters.

Thus, from Equations (1) and (2), the two-dimensional long wave equation over the
flat bottom is expressed as

∂2ζ

∂t2 = gh1

(
∂2ζ

∂x2 +
∂2ζ

∂y2

)
. (3)

To account for the roughness of the breakwater, the two-dimensional linearized long
waves equations are modified by adding friction component C f ωu and C f ωv that repre-
sents bottom friction where C f being the friction coefficient. This correction is included into
the equation of motion Equation (1). As a result, the enhanced model may be expressed
(see [26,29,30]) as



Fluids 2022, 7, 352 4 of 17

∂ζ

∂t
+ h2

(
∂u
∂x

+
∂v
∂y

)
= 0, (4)

∂u
∂t

+ g
∂ζ

∂x
+ C f ωu = 0, (5)

∂v
∂t

+ g
∂ζ

∂y
+ C f ωv = 0. (6)

After eliminating u, v from Equations (4)–(6), the two-dimensional long wave equation
in terms of ζ can be expressed as

∂2ζ

∂t2 + C f ω
∂ζ

∂t
= gh2

(
∂2ζ

∂x2 +
∂2ζ

∂y2

)
. (7)

Thus, the two-dimensional long wave equation over the breakwater region can be
expressed in terms of η as

∂2η

∂x2 + (k2 − k2
y)η = 0, (8)

where k is the solution of the dispersion equation ω2 + iω2C f = gk2h2.

3. Closed-Form Analytical Solution

The small amplitude long gravity waves propagating over the series of submerged
rectangular breakwaters as shown in Figure 1 are studied analytically using the technique
of matrix multiplication. The form of solutions of Equations (3) and (8) in smooth and
non-smooth regions having constant depths h1 and h2 respectively are expressed as

η(x) =



eiq1(x−x1,1) + ARe−iq1(x−x1,1) for x ≤ x1,1,
Aj

1eiq2(x−xj,2) + Aj
2e−iq2(x−xj,2) for xj,1 ≤ x ≤ xj,2,

j = 1, 2, 3, . . . . . . , N,
Bj

1eiq1(x−xj+1,1) + Bj
2e−iq1(x−xj+1,1) for xj,2 ≤ x ≤ xj+1,1,

j = 1, 2, 3, . . . . . . , N − 1,
ATeiq1(x−xN,2) for x ≥ xN,2,

(9)

where q1 =
√

k2
1 − k2

y, q2 =
√

k2
2 − k2

y with k2
1 =

ω2

gh1
, k2

2 =
ω2(1 + iC f )

gh2
and AR and AT

the unknown complex amplitudes of the reflected and the transmitted waves respectively.
The unknowns constants Aj

1, Aj
2 and Bj

1, Bj
2 which are related to the amplitudes of the

waves propagating along rough and smooth sea bed region respectively. Moreover, the
reflection Kr and transmission coefficients Kt are defined as

Kr = |AR| and Kt = |AT |. (10)

Transfer Matrix Method (TMM)

Various unknown constants in Equation (9) are obtained using the boundary conditions
on the breakwater boundaries along with the interface boundaries following the transfer
matrix method (see Zeng et al. [35]) which is briefly discussed in the subsequent discussion.

Assuming x = x̃ as an interface boundary, continuity of pressure and flow fluxes
across the interface boundaries of the breakwater and open water regions yield

η
∣∣∣
x̃−

= η
∣∣∣
x̃+

, h(x̃−)
dη

dx

∣∣∣
x̃−

= h(x̃+)
dη

dx

∣∣∣
x̃+

. (11)

Using the matching conditions at x = x1,1 as in Equations (9) and (11) yields
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(
1

AR

)
= H1P1

(
A1

1
A1

2

)
, (12)

where H1 =

(
1 1

q1h1 −q1h1

)−1

, P1 =

(
e−iq2w eiq2w

q2h2e−iq2w −q2h2eiq2w

)
. Using the matching

conditions at x = xj,1 for j = 2, 3, ... . . , N , Equation (9) yields(
Bj−1

1
Bj−1

2

)
= H1P1

(
Aj

1
Aj

2

)
. (13)

Similarly, using the matching conditions at x = xj,2 for j = 1, 2, 3, ... . . , N − 1,
Equation (9) yields (

Aj
1

Aj
2

)
= H2S1

(
Bj

1
Bj

2

)
, (14)

where H2 =

(
1 1

q2h2 −q2h2

)−1

, S1 =

(
e−iq1(d−w) eiq1(d−w)

q1h1e−iq1(d−w) −q1h1eiq1(d−w)

)
.

Finally, using the matching conditions as in Equation (11) at x = xN,2, Equation (9) yields(
AN

1
AN

2

)
=

(
1 1

q2h2 −q2h2

)−1( 1
q1h1

)
AT = H2

(
1

q1h1

)
AT . (15)

Thus, the matrix multiplication to Equations (12)–(15) gives(
1

AR

)
= H1P1

(
H2S1H1P1

)N−1
H2

(
1

q1h1

)
AT =

(
c1
c2

)
AT , (16)

where (
c1
c2

)
= H1P1

(
H2S1H1P1

)N−1
H2

(
1

q1h1

)
,

whilst N represents the number of breakwaters. Therefore, Equation (16) gives rise to the
reflection and transmission coefficients as

Kr = |c2/c1| and Kt = |1/c1|. (17)

4. Results and Discussions

To analyze the effects of different waves and structural parameters on wave scattering
over a non-smooth array of breakwaters for numerical computation, numerical codes
are written using MATLAB software. It is pertinent to mention that certain physically
realistic values of the wave and structural parameters, which are listed in Table 1, are used
in the computation for an efficient breakwater system. Furthermore, in the subsequent
numerical results and discussion, the legend and caption of the figures highlights the values
of different physical parameters which are different from the parametric values mentioned
in Table 1.

Table 1. Numerical data employed for computation.

Parameters Values Parameters Values

h1 Water depth 5 m θ Incident angle 20◦

w/h1 Breakwater width 1 d/h1 Adjacent gap of breakwaters 2
h2/h1 Breakwater depth 0.25 C f Frictional coefficient 0.5

The variation of the reflection coefficient Kr against non-dimensional wave num-
ber k1h1 for double smooth surface bottom-standing rigid breakwaters and trenches
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(N = 2, C f = 0) is depicted in Figure 2a,b, respectively. The primary objective of
these two figures is to validate the present result with published results in two differ-
ent special cases. Thus, in Figure 2a,b, two different sets of parameters are taken from
Zeng et al. [35] and Kar et al. [7], respectively for the purpose of validation. Figure 2a
reveals that the results obtained by present theory is well matched with the results of
Zeng et al. [35] for long wave scattering by multiple breakwaters with N = 2, C f = 0,
h1 = 4 m, h2 = 3 m, w = 90 m, d = 180 m. In addition, in Figure 2b, the variation of
reflection coefficient Kr against wave number k1h1 is plotted in the case of normal incident
waves with double smooth trenches, which agree well with Figure 3a in Kar et al. [7] for
N = 2, C f = 0, h1 = 5 m, h2 = 1.5h1, w = 0.47L1, d = 1.43L1 with L1 = 40π. In both the
figures, Bragg resonance occurs due to the presence of a pair of smooth structures where
C f = 0. In the subsequent figures, the effect of friction parameter C f on Bragg resonance
through the reflection, transmission, and dissipation coefficients is analysed for various
wave and structural parameters.

0 0.05 0.1 0.15 0.2 0.25 0.3
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0.1
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K
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Present study
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Figure 2. Variation of reflection coefficient Kr versus wave number k1h1 for (a) double breakwaters
and (b) double trenches in the absence of friction C f = 0. Here, ◦ indicates Zeng et al. [35] and
− specifies Kar et al. [7].

In Figure 3, the variation of (a) reflection coefficient Kr, (b) transmission coefficient
Kt, and (c) dissipation coefficient Kd versus wavenumber k1h1 are plotted for differ-
ent values of frictional coefficients C f with N = 4, w/h1 = 1, d/h1 = 2, θ = 20◦,
h2 = 0.25h1, h1 = 5 m. Figure 3a shows that Bragg reflection occurs for wave scatter-
ing by an array of multiple smooth breakwaters (C f = 0), which is similar to that of
Kar et al. [7,12]. In Figure 3a,b, the occurrence of zero reflection and full transmission in the
absence of friction happens due to constructive and destructive interference of the trapped
waves. The peaks in each bandwidth of Bragg reflection coefficient Kr remain periodic with
an increase in wave number k1h1. In the presence of friction C f , the periodic pattern in
the reflection coefficient Kr is not observed which happens due to the dissipation of the
incident wave energy by the non-smooth breakwater. These similar phenomena were ob-
served by Gayathri et al. [36]. Further, it is observed that for certain range of wavenumber
i.e., k1h1 < 2.5, wave reflection Kr decreases as friction parameter C f increases. Figure 3b
reveals that no wave is transmitted in the presence of friction C f for k1h1 > 2.5. Moreover,
for wave number k1h1 < 2.5, transmission coefficient Kt decreases as the value of friction
parameter C f increases which is similar as observed in Figure 3a. Figure 3c reveals that
for wave number k1h1 > 2.5, there is nearly 90% wave energy dissipation happens for
irrespective of the value of friction parameter C f . Figure 3a shows that in the presence of
friction, the oscillatory pattern diminishes, which may be due to the dissipation of wave
energy. In Figure 3c, variation of energy dissipation in the absence of friction (with C f = 0)
is zero, which is be due to the distribution of wave energy into the reflected and transmitted
waves over the smooth surface of the breakwater.
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Figure 3. Variation of (a) reflection coefficient Kr, (b) transmission coefficient Kt, and (c) dissipa-
tion coefficient Kd versus wavenumber k1h1 for different C f with N = 4, w/h1 = 1.0, d/h1 = 2,
θ = 20◦, h2/h1 = 0.25, h1 = 5 m.

In Figure 4, the variation of (a) reflection coefficient Kr, (b) transmission coefficient Kt,
and (c) dissipation coefficient Kd versus wavenumber k1h1 are plotted for different values
of N with C f = 1.5, w/h1 = 1, d/h1 = 2, θ = 20◦, h2/h1 = 0.25, h1 = 5 m. In Figure 4a,
the reflection Kr decreases as the number of breakwaters N increases, which is similar
as observed in Behera and Sahoo [33]. Furthermore, the reflection coefficient Kr remains
constant beyond k1h1 > 2.5 irrespective of number of breakwaters N which is not the case
for smaller wave number. This is due to the fact that the effect of bottom undulation in
shallow water region is more as compared to that of the deep water region. Figure 4b
depicts that transmission coefficient Kt decays faster as the number of breakwaters N
increases. Moreover, in the presence of friction, no Bragg resonance occurs for wave
transmission whereas Bragg resonance in wave reflection is observed for wave number
k1h1 < 2. A comparison of Figure 4c with Figure 3c reveals that in both the figures, nearly
90% incident wave energy dissipation occurs for wavenumber k1h1 > 2.5 irrespective of
values of C f or number of breakwaters N. In Figure 4c, the energy dissipation is due to the
increase in the number of non-smooth breakwaters.

In Figure 5, the variation of (a) reflection coefficient Kr and (b) transmission coefficient
Kt versus wavenumber k1h1 is plotted for different h2/h1 with C f = 0.5, w/h1 = 1,
d/h1 = 2, θ = 20◦, N = 4, h1 = 5 m. Figure 5a depicts that reflection coefficient Kr
decreases with an increase in breakwater depth h2/h1. This is due to the decrease in the
height of the non-smooth breakwater which will transmit more wave energy.
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Figure 4. Variation of (a) reflection coefficient Kr, (b) transmission coefficient Kt, and (c) dissipation
coefficient Kd versus wavenumber k1h1 for different N with C f = 1.5, w = h1, d = 2h1, θ = 20◦,
h2 = 0.25h1, h1 = 5 m.
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Figure 5. Variation of (a) reflection coefficient Kr, and (b) transmission coefficient Kt versus wavenum-
ber k1h1 for different h2/h1 with C f = 0.5, w/h1 = 1, d/h1 = 2, θ = 20◦, N = 4, h1 = 5 m.

Moreover, in the presence of friction C f , the reflection coefficient Kr follows an oscilla-
tory pattern with an increase of wave number k1h1. The peaks in the wave reflection Kr
shift forward with an increase in wavenumber k1h1. The shifting of peaks is due to the
phase change in the reflected and transmitted waves. In Figure 5a, zero reflection does
not occur as the height of breakwaters increases, which is similar to the observation as
studied in [33]. Furthermore, it is observed that the number of peaks remains the same
irrespective of the values of breakwaters depth. Figure 5b depicts that there is negligible
variation of transmission coefficient Kt observe for smaller values of wavenumber i.e.,
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k1h1 < 1.5. Moreover, the transmission coefficient Kt increases with an increase in breakwa-
ter depth h2/h1. The zero transmission occurs for higher values of wavenumber k1h1. Both
figures reveal that breakwater height plays a major role to reflect the wave energy toward
the seaside.

Figure 6 describes the variation of (a) reflection coefficient Kr, (b) transmission coeffi-
cient Kt, and (c) dissipation coefficient Kd against wavenumber k1h1 for different breakwater
width w/h1 with C f = 0.5, h2/h1 = 0.25, d/h1 = 2, θ = 20◦, N = 4, h1 = 5. It is found
that reflection coefficient Kr follows an oscillatory pattern with an increase in wavenumber
k1h1. Moreover, the oscillatory pattern of reflection coefficient Kr demises with an increase
in width of the breakwater w/h1. Further, it is observed that after a certain width, wave
reflection remains constant. The number of resonating peaks for smaller breakwater width
w/h1 is more compared to the higher values of breakwater width w/h1. Moreover, the
oscillatory pattern in wave transmission Kt is not observed. This is due to the dissipation
of incident wave energy by the rough surface of the multiple breakwaters. A comparison
between the Figure 6a,b reveal that an oscillatory pattern in wave reflection Kr occurs
whereas no oscillatory peaks are observed in wave transmission. In general, dissipation
of incident wave energy increases with an increase in width of the breakwaters as shown
in Figure 6c. Additionally, dissipation coefficient Kd varies significantly for smaller wave
numbers with k1h1 < 2.5 which ensures that the present physical model is more suitable
for the long waves as compared to that of short waves. A comparison of Figures 5 and 6
reveals that in the presence of friction C f , the changes in transmission coefficient Kt are
observed more as compared to that of the reflected coefficient Kr.
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Figure 6. Variation of (a) reflection coefficient Kr, and (b) transmission coefficient Kt, (c) dissi-
pation coefficient Kd versus wavenumber k1h1 for different w/h1 with C f = 0.5, h2/h1 = 0.25,
d/h1 = 2, θ = 20◦, N = 4, h1 = 5 m.

In Figure 7, the variation of (a) reflection coefficient Kr, (b) transmission coefficient
Kt, and (c) dissipation coefficient Kd against wavenumber k1h1 is plotted for different
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gap between the adjacent breakwaters d/h1 with C f = 0.5, h2/h1 = 0.25, d/h1 = 2,
θ = 20◦, N = 4, h1 = 5 m.
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Figure 7. Variation of (a) reflection coefficient Kr, and (b) transmission coefficient Kt, (c) dissi-
pation coefficient Kd versus wave number k1h1 for different d/h1 with C f = 0.5, h2/h1 = 0.25,
d/h1 = 2, θ = 20◦, N = 4, h1 = 5 m.

Figure 7a reveals that the peaks in the reflection coefficient Kr decreases as gap be-
tween the adjacent sides of breakwaters d/h1 increases which is same as observed in
Figure 6a. Moreover, the mutual interaction between incident, reflected and transmitted
waves decrease for higher gap gap between the structures d/h1 thus, the oscillation in wave
reflection Kr demises as gap d/h1 increases. Furthermore, due to this reason, the number
of resonance peaks in the reflection coefficient Kr decreases as the distance d/h1 widens.
Figure 7b shows the changes in transmission coefficient Kt are very little as the gap between
the breakwaters d/h1 increases. Moreover, a comparison between the Figure 7a,b reveals
that oscillatory trend is observed in wave reflection which is not the case with wave trans-
mission. Figure 7c shows that the peaks in the dissipation coefficient Kd decrease as the gap
between the adjacent side of breakwaters d/h1 increases. A comparison of Figure 7c with
Figures 4c and 6c and reveals that 90% of the incident wave energy dissipates irrespective
of gap between the adjacent breakwaters d/h1 or number of breakwaters N.

In Figure 8, the variation of (a) reflection coefficient Kr, (b) transmission coefficient
Kt, and (c) dissipation coefficient Kd versus angle θ is plotted for different values of C f
with d/h1 = 2, width w/h1 = 1.0, h2/h1 = 0.25, and N = 4. Figure 8a shows that the
reflection coefficient Kr increases rapidly after a certain angle i.e., nearly θ = 65◦ as the
value of the friction parameter increases. Moreover, in the absence of friction (C f = 0),
zero reflection occurs for certain countably many angles θ which is similar as observed
in [33]. The occurrence of zero reflection is due to the destructive interference of reflected
and incident waves. However, zero reflection does not happen in the case of breakwaters
with rough surfaces (C f 6= 0) because of the dissipation caused by the structures. Further, a
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comparison with Figure 4a exhibits that the oscillatory pattern diminishes as the friction
coefficient C f increases. Figure 8b evinces that the transmission coefficient Kt decreases
with an increase in angle θ which is obvious as reflection coefficient Kr increases with an
increase in angle θ. Moreover, in the absence of friction, full transmission occurs for certain
values of angle θ◦, which is due to the constructive interference of the resonating waves.
Figure 8c shows that for higher values of friction parameter C f , more energy dissipation
occurs and in the absence of friction, no dissipation occurs. Therefore friction parameter C f
plays a major role in the dissipation of wave energy.
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Figure 8. Variation of (a) reflection coefficient Kr, (b) transmission coefficient Kt, and (c) dissipation
coefficient Kd versus angle θ for different values of C f with d/h1 = 2, width w/h1 = 1.0, h2/h1 = 0.25,
and N = 4.

Figure 9 reveals the changes in (a) reflection coefficient Kr, (b) transmission coefficient
Kt, and (c) dissipation coefficient Kd versus angle θ for different values of breakwater depth
h2/h1 with breakwater width w/h1 = 1.0, C f = 0.25, d/h1 = 2 and N = 4. Figure 9a shows
that reflection coefficient Kr increases with an increase in angle θ◦. Moreover, Figure 9a
shows that for greater values of a certain angle, the reflection coefficient increases with an
increase in breakwater depth h2/h1 whereas for smaller values of a certain angle, reflection
follows the reverse pattern. Figure 9b reveals the transmission coefficient Kt decreases with
an increases in angle θ. Moreover, it is observed that transmission coefficient Kt decreases as
breakwater depth h2/h1 increases. Figure 9c shows that dissipation coefficient Kd increases
as breakwater depth h2/h1 decreases. Further, Figure 9c reveals that in the presence of
friction C f , for a certain angle i.e., nearly at 65◦, the maximum wave dissipation occurs.
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Figure 9. Variation of (a) reflection coefficient Kr, (b) transmission coefficient Kt, and (c) dissipation
coefficient Kd versus angle θ for different values of h2/h1 with breakwater width w/h1 = 1.0, C f = 0.5,
d/h1 = 2 and N = 4.

In Figure 10, the variation of (a) reflection coefficient Kr and (b) transmission coefficient
Kt versus angle θ is plotted for different values of N with breakwater width w/h1 = 1.0,
h2/h1 = 0.25, d/h1 = 2,C f = 0.5, and N = 4. Figure 10a reveals that the reflection
coefficient Kr decreases with an increase in the number of breakwaters N. Moreover,
the reflection coefficient Kr increases with an increase in the number of breakwaters N
as observed in [26]. Further, it is observed that common minima occur in the case of
an even number of breakwaters, whereas common maxima occur in the case of an odd
number of breakwaters as the angle of propagation θ increases. Moreover, the bandwidth
of each harmonic peak increases with an increase in the number of breakwaters N. Further,
Figure 10b reveals that the position of the band of each cycle remains fixed with an increase
of oblique angle θ irrespective of the number of breakwaters N. Moreover, for a certain
angle, θ, the wave reflection Kr becomes completely zero which may be due to the phase
mismatch of the resonating waves.

Figure 11 describes the changes of (a) reflection coefficient Kr, and (b) transmission
coefficient Kt against gap between the breakwater d/h1 for different values of C f with
breakwater width w/h1 = 1.0, h2/h1 = 0.5, N = 3. Figure 11a reveals that reflection
coefficient Kr follows a periodically oscillatory pattern with an increase in the gap be-
tween the adjacent breakwaters d/h1 which is similar as observed in [17]. Further, the
amplitude of the peaks in each band decreases with an increase in friction coefficient C f .
Further, the sub-harmonic peaks demise with an increase in friction coefficient C f . Further,
Figure 11b reveals that in the absence of friction, full transmission occurs for finitely many
d/h1. The position of the band of each cycle remains fixed with an increase of oblique
angle θ irrespective of the number of breakwaters N. Moreover, for certain angle θ, the
wave reflection Kr becomes completely zero which may be due to the phase mismatch
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of the resonating waves. In Figure 11a, wave reflection decreases due to the damping of
wave energy.
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Figure 10. Variation of (a) reflection coefficient Kr and (b) transmission coefficient Kt versus angle θ

for different values of N with breakwater width w/h1 = 1.0, h2/h1 = 0.25, d/h1 = 2, C f = 0.5, and
N = 4.
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Figure 11. Variation of (a) reflection coefficient Kr, and (b) transmission coefficient Kt versus gap
d/h1 for different values of C f with breakwater width w/h1 = 1.0, h2/h1 = 0.5 and N = 3.

Figure 12 describes the variation of (a) reflection coefficient Kr, and (b) transmission
coefficient Kt versus breakwater width w/h1 for different values of C f with breakwater
width w/h1 = 1.0, h2/h1 = 0.5 and N = 3. Figure 12a reveals that in the absence of friction,
Bragg reflection occurs and follows periodically oscillatory pattern with an increase in
breakwater width w/h1 which is observed in our previous study (see Kar et al. [7,12]).
Moreover, the reflection coefficient Kr decreases with an increase in the friction coefficient
C f . Further, the reflection coefficient Kr remains constant after certain values of breakwater
width (w/h1 > 1) irrespective of friction coefficient C f . Further, it is observed that in the
absence of breakwater friction, zero reflection occurs for the countably many values of
breakwater width w/h1. Moreover, the bandwidth of each harmonic peak remains fixed
with an increase in the breakwater width w/h1. Further, Figure 12b reveals that in the
absence of friction, the amplitude of peaks in each band of the cycle remains the same with
an increase in width of the breakwater w/h1. Moreover, in the absence of friction, the trans-
mission coefficient Kt follows the periodically oscillatory. Further, full transmission occurs
for the countably many values of breakwater width w/h1. Moreover, in the presence of fric-
tion, zero transmission occurs for greater values of certain breakwater width w/h1 > 1. It is
observed that with an increase in breakwater friction C f , wave transmission coefficient Kt
decreases gradually. The periodic pattern in wave transmission vanishes in the presence of
friction C f which is the same as observed in Figure 6b which may be due to phase mismatch
of the resonating waves. The results in Figure 12 imply that in the presence of friction,
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the reduction of wave amplitude happens which may be due to the occurrence of wave
energy dissipation.
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Figure 12. Variation of (a) reflection coefficient Kr, and (b) transmission coefficient Kt versus break-
water width w/h1 for different values of C f with breakwater width w/h1 = 1.0, h2/h1 = 0.5 and
N = 3.

4.1. Time-Dependent Simulations and Numerical Results

The time-dependent results are present for wave packets, which are incident from
infinity. The free surface elevation, defined in Section 2 in the time domain, is computed
using the formula

η(x, t) = Re

{ ∫ ∞

−∞
f̃ (ω)η(x, ω)e−iωtdω

}
, (18)

with f̃ (ω) being the Fourier transform of the incident wave pulse. In Equation (18), η(x, ω)
is the frequency-dependent surface displacement of the open water region. The incident

wave pulse is assumed to be a Gaussian wave packet of the form f̃ (ω) =
√

b
π e−b(ω−ω0)

2

where b is the spreading function and ω0 is the central frequency of the incident
wave pulse.

In Figures 13–15, the free surface elevation η(x, t) is plotted against spatial variable
x for different values of time t, breakwater depth h2/h1 and incident angle θ in the (a)
absence and (b) presence of the breakwater friction C f with number of breakwaters N = 3.
Figures 13a–15a depict that the amplitudes of wave pulses remain the same along the
breakwater as observed in [12], whereas Figures 13b–15b show that the amplitude of
wave pulse reduces in the presence of friction and demises with an increase in time. The
amplitude of wave pulse reduces with an increase in time which is due to the dissipation of
energy over the rough surface of breakwaters. The occurrence of this phenomena by time
domain simulation is well verified with the results observed in Figure 3b. The reduction of
the wave pulse happens due to the presence of bottom friction which plays an important
role in restricting the unlimited growth of the wave height.
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Figure 13. Free surface elevation η(x, t) versus spatial variable x (a) without friction coefficient
C f = 0 and (b) with friction coefficient C f = 0.32 for N = 3 with h1 = 5 m, θ = 0◦, h2/h1 = 0.4.
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Figure 14. Free surface elevation η(x, t) versus x for different angle θ (a) with friction coefficient
C f = 0.0 and (b) with friction coefficient C f = 0.32 for N = 3, t = 2 s.
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Figure 15. Free surface elevation η(x, t) versus x for different (a) breakwater depth h2/h1 without
friction coefficient C f = 0 and (b) friction coefficient C f with h2/h1 = 0.4 with h1 = 5 m, N = 3,
t = 2 s, θ = 30◦.

5. Conclusions

Under the assumption of linearized long wave theory, Bragg reflection of surface
gravity waves by an array of submerged bottom-standing non-smooth breakwaters is
investigated in this study. The linearized shallow water equations are solved analytically
using the transfer matrix method to calculate the reflection, transmission and dissipation
coefficients. The study reveals that wave transmission decays linearly in the presence of
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friction, whereas wave reflection follows an oscillating pattern similar to that observed
for a pair of breakwaters in the literature as in Magdalena et al. [25]. In the presence of
friction, the common minima or maxima of the reflection curve shift upward as the wave
number increases. In addition, zero reflection or full transmission does not occur in the
presence of friction parameters. Moreover, the transmission coefficient decays linearly
in the presence of friction in the case of multiple breakwaters, similar to what has been
observed in the literature. In contrast, the amplitude of surface elevation decreases in the
presence of friction, which is due to wave dissipation. The present study will provide a
helpful basis in the design of an array of submerged breakwaters for coastal protection
and can be used as bench mark solution in case of long wave propagation. However, these
type of submerged structures would not be very effective in the case of short-period small
amplitude waves where wave energy concentration is higher near the free surface than that
of long waves as discussed in the present study.
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