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Abstract: The simulation of fusion plasmas in realistic magnetic configurations and tokamak geome-
tries still requires the development of advanced numerical algorithms owing to the complexity of the
problem. In this context, we propose a Hybrid Discontinuous Galerkin (HDG) method to solve 2D
transport fluid equations in realistic magnetic and tokamak wall geometries. This high-order solver
can handle magnetic equilibrium free structured and unstructured meshes allowing a much more
accurate discretization of the plasma facing components than current solvers based on magnetic field
aligned methods associated with finite-differences (volumes) discretization. In addition, the method
allows for handling realistic magnetic equilibrium, eventually non steady, a critical point in the
modeling of full discharges including ramp up and ramp down phases. In this paper, we introduce
the HDG algorithm with a special focus on recent developments related to the treatment of the
cross-field diffusive terms, and to an adaptive mesh refinement technique improving the numerical
efficiency and robustness of the scheme. The updated solver is verified with a manufactured solution
method, and numerical tests are provided to illustrate the new capabilities of the code.

Keywords: Hybrid Discontinuous Galerkin; fusion plasma modeling; tokamak; adaptive refinement

1. Introduction

Research in magnetic confinement fusion plasmas explores the possibility of produc-
ing carbon-free electric power by using fusion in deuterium–tritium plasmas heated to
temperatures up to 107–108 K, and confined by a magnetic field in machines of toroidal
shape known as tokamaks. With ITER and the promise of burning plasmas, the control
of heat exhaust in high energy confinement configurations has become a topic of critical
importance for the operation [1]. The difficulty to get global experimental measurements
in tokamak makes complementary numerical simulations in realistic tokamak conditions
a valuable asset to design optimized plasma scenarios, allowing for controlling the heat
outfluxes and to prevent material damages. However, such numerical simulation remains
a very challenging issue. This problem is multi-physics and multi-scales due to plasma
wall interactions and turbulence. The geometry also adds a complexity in realistic configu-
rations due to the shape of the tokamak wall and of the magnetic equilibrium. In addition,
the strong anisotropy of the magnetic field components leads to a preferred orientation
denoted as the parallel direction, with reference to the direction along the magnetic field
lines. This leads to specific numerical issues as ill-conditioned algebraic operators to invert,
and significant spurious numerical diffusion in the direction orthogonal to the anisotropy
direction. Routine simulations able to provide information in acceptable timings in a
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tokamak of the size of ITER are still today restricted to 2D models based on averaged
axisymmetric fluid–drift Braginskii equations [2–4]. The current code of the fusion com-
munity is generally based on first and second order finite differences or finite volumes,
and so on structured meshes. Their discretization is aligned along the magnetic field lines
to take advantage of the transport features and limit spurious numerical diffusion [5]. Thus,
the accurate discretization of realistic tokamak wall geometries as well as plasma regions
around singularities such the X-point or the tokamak center remains challenging with these
codes. In addition, the simulation of transient phases of the plasma discharge when the
plasma equilibrium moves is not affordable without a very expensive on the fly re-meshing
of the computational domain. To overcome these limitations, we have recently considered
a Hybrid Discontinuous Galerkin (HDG) method. Such discretization based on structured
or unstructured meshes is magnetic equilibrium free that allows for accurate simulations
of the whole vacuum chamber whatever the geometrical complexity of the tokamak wall
or the magnetic equilibrium shape. It also allows for handling a non-steady magnetic
equilibrium [6]—a critical point to model a full discharge including start-up and shut-down
phases [7]. The ramp up and shut-down phases last about 30% of the full discharge time (a
few seconds). These times are, however, long compared to characteristic turbulence times
which are of the order of few micro-seconds. Indeed, the high-order accuracy of the spatial
discretization allows for controlling the spurious numerical diffusion despite the strong
anisotropy, as recently shown in [8] when increasing the order of interpolation p for a fixed
spatial resolution. In this paper, we present an updated algorithm for solving 2D fluid–drift
Braginskii equations in realistic tokamak geometries. The algorithm has been modified
to handle nonlinear perpendicular diffusion terms with independent coefficients for each
flow variable that allows a much more accurate description of the perpendicular transport
related to turbulence. In addition, an h-refinement technique has been implemented to
improve the numerical performance both in terms of memory and CPU time. This adaptive
mesh refinement method can dynamically re-adjust the mesh locally according to error
estimators based on the output data. The first results show it improves the global accuracy
of the solution without using a global refinement of the mesh in the whole computational
domain. The paper begins by introducing the physical model (Section 2) and the general
features of the numerical algorithm (Section 3). The original developments are presented
in Sections 4 and 5 for the diffusive cross-field terms and the h-refinement technique,
respectively. Concluding remarks and perspectives are summarized in Section 6.

2. Physical Model

The 2D computational domain mimics actual tokamaks with limiter or X-point and
corresponds to the entire volume of plasma going from the core up to the wall as shown in
Figure 1.

The magnetic field B is assigned including both closed flux surfaces in the center and
open flux surfaces with field lines impacting the wall at the edge. These flux surfaces
are separated by a magnetic field line in the poloidal called the separatrix in the poloidal
cross-section. The strong difference of intensity between the toroidal and poloidal com-
ponents ||Bp|| << ||Bt|| defines a privileged direction denoted as the parallel direction,
with reference to the direction along the magnetic field lines. To take advantage of this flow
anisotropy, the equations are projected along the magnetic field lines using the differential
operator ∇‖ = b ·∇ and ∇⊥ = ∇− b ·∇, where b = B

||B|| is the unitary vector in the
parallel direction.
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Figure 1. WEST tokamak poloidal cross section. Example of typical triangular meshes restricted at
the plasma edge (left) or in the whole section (center). On the right, a sketch of the computational
domain with boundary conditions for plasma edge simulations (Section 2.2). The lines correspond to
the magnetic flux surface as assigned in the code.

2.1. Equations of the Model

The mathematical model relies on 2D fluid conservation equations based on Bragin-
skii simplified closures [9]. Under some hypothesis and ordering detailed in Ref. [10], it
corresponds to a standard model in the fusion community of advection diffusion equa-
tion that governs the transport of the mean plasma quantities as the density n is the
parallel momentum nu, and the ion and electron total energy Ei = 3

2 kbTi +
1
2 miu2 and

Ee =
3
2 kbTe, respectively, with mi being the mass of the ion and Ti and Te are the ion and

electron temperatures, respectively. The conservation equations below correspond to a
compressible adiabatic gas in the parallel direction and to an incompressible fluid in the
perpendicular direction where turbulence process dominates. The system writes:

∂tn +∇ · (nub)−∇ · (D∇⊥n) = Sn (1)

∂t(minu) +∇ · (minu2b) +∇‖(kbn(Te + Ti))−∇ · (µ∇⊥(minu)) = SΓ (2)

∂t

(
3
2

kbnTi +
1
2

minu2
)
+∇ ·

((
5
2

kbnTi +
1
2

minu2
)

ub
)
− nueE‖

−∇ ·
(

3
2

kb(TiD∇⊥n + nχi∇⊥Ti)

)
−∇ ·

(
− 1

2
miu2D∇⊥n +

1
2

miµn∇⊥u2
)

−∇ · (k‖iT
5
2

i ∇‖Tib) +
3
2

kbn
τ̂ie

(Te − Ti) = SEi

(3)

∂t

(
3
2

kbnTe

)
+∇ ·

(
5
2

kbnTeub
)
+ nueE‖ −∇ ·

(
3
2

kb(TeD∇⊥n + nχe∇⊥Te)

)
−∇ · (k‖eT

5
2

e ∇‖Teb)− 3
2

kbn
τ̂ie

(Te − Ti) = SEe

(4)

where pi and pe are the diagonal part of the ion and electron pressure stress tensor, and
they are equal to pi = nkbTi and pe = nkbTe [m−1s−2], respectively. The constant diffusion
coefficients that take into account the collisions transport and turbulent effects in the
cross field direction are denoted D, µ, χi and χe for n, nu, Ei and Ee, respectively. Their
values are chosen as a compromise between estimations provided by theory or experimental
measurements and numerical stability constraints. They are usually less or equal to 1 m2s−1.
The terms (k||,iT

5/2
i ) and (k||,eT5/2

e ) correspond to nonlinear parallel diffusions for ion and
electron, respectively. The parallel diffusion coefficients depend on the mass of the species
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and are equal for the deuterium to k||,i = 60 [Wm−1eV−7/2] and k‖,e = 2000 [Wm−1eV−7/2].
The parameter τ̂ie is the relaxation time for the collisions coupling term between electrons
and ions, W = 3

2
kbn
τ̂ie

(Te − Ti). It is defined as:

τ̂ie =
3
√

2
e4

ε2
0

Λ
π

3
2

mi
me

√
mee

3
2

T
3
2

e
n

where the Coulomb logarithm Λ = 12, the ionic mass mi = 3.35 · 10−27 [kg], the electronic
mass me = 9.11× 10−31 [kg], the vacuum permeability ε0 = 8.85× 10−12 [C N−1 m−1]
and the electron charge e = 1.60 × 10−19 [C]. Finally, Sn,SΓ, SEi , SEe correspond to
sources’ terms.

2.2. Boundary Conditions

In the direction parallel to the magnetic field lines, the boundary conditions for the
plasma are specific and correspond to the Bohm boundary conditions modeling plasma
wall interactions [10]. They assume a parallel velocity of the plasma equal to or larger

than the sound speed cs =
√

kb(Te+Ti)
mi

and leave free the density value at the wall that
corresponds to ([6]):

u ≥ cs i f b · n > 0

u ≤ −cs i f b · n < 0
(5)

where n is the outer normal of the surface. For the electrons and ion energy equations,
the Bohm conditions impose the parallel fluxes on the sheath transmission values, lead-
ing to:

(nEi + pi)u−
k‖i
mi

T5/2
i ∇‖Ti = γiupi +

1
2

nu3

(nEe + pe)u−
k‖e
mi

T5/2
e ∇‖Te = γeupe

(6)

where γi = 2.5 and γe = 4.5. In the perpendicular direction to the magnetic field lines,
homogeneous Neumann conditions are considered for all variables.

3. The Hybrid Discontinuous Galerkin Method

A specific Hybrid Discontinuous Galerkin (HDG) algorithm has been developed for
many years [6,8,11,12], and implemented in the family of codes SOLEDGE3X [4], well-
known in the international fusion community to efficiently address turbulent transport in
different machines all around Europe. A complete description of the method is provided in
Appendix A as well as in former papers [6,8,11,12]. In HDG, the system of Equations (1)–(4)
is written in terms of conservative variables considering the vector:

U = {U1, U2, U3, U4}T = {n, nu, nEi, nEe}T

where the superscript �T stands for transpose. The discontinuous partition induces a two-
step problem. In a first step, the set of conservative equations written in a weak formulation
is solved element by element to express the discrete unknowns U(x, t) at the element nodes
in terms of another approximation of the solution, called the trace solution Û, which is
defined on the borders of the element. In a second step, a global equation is set by imposing
in a weak form the continuity of the fluxes across the borders of the elements to obtain Û
in the whole mesh skeleton. Once Û is obtained, it is possible to recover the elementary
solution U on each element using a local post processing. The introduction of this trace
solution restricted to the skeleton of the mesh leads to a linear system of smaller size than in
a classical discontinuous Galerkin method. The time discretization is fully implicit, and the
nonlinear terms are linearized using a classic iterative Newton–Raphson method.
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4. Implementation of Independent Nonlinear Diffusive Cross-Field Terms

In the model introduced in Section 2, the cross-field transport coefficients for n, u, Ti, Te
play a fundamental role in the reliability of the solutions by modeling the perpendicular
anomalous transport of particles and energy. Thus, their values directly impact the bal-
ance between the parallel and perpendicular transport which governs the plasma flow in
the tokamak. With the implicit time integration scheme, the implementation of diffusion
coefficients non equal for each flow variable is not straightforward. In this case, indeed,
the expression of the coefficients as a function of conservative variables introduced addi-
tional nonlinear coupling between the equations as described thereafter. When assuming
D = µ = χi = χe, the terms of the perpendicular dynamics in Equation (A2) depend only
linearly on the unknown Q as follows:

−∇ ·


D∇⊥(n)
µ∇⊥(nu)

χi∇⊥(nEi)
χe∇⊥(nEe)

 = −D f Q + D f Qb⊗ b (7)

which represents the gradient of the conservative variable U. When these coefficients are
chosen to be non-equal, a nonlinear dependency occurs in the equations system written in
conservative variables as:

hΓ = Qt,⊥ ·WΓ = Qt,⊥ ·


(D− µ)U2

U1
0
0
0

+ µQ2,⊥

hEi = χi∇⊥(nEi) = Qt,⊥ ·WEi = Qt,⊥ ·


(D− χi)

U3
U1

(D− µ)
U2

2
U2

1

−(D− µ)U2
U1

0
0

+ χiQ3,⊥

hEe = Qt,⊥ ·WEe = Qt,⊥ ·


(D− χe)

U4
U1

0
0
0

+ χeQ4,⊥

(8)

Notice here that, for D = µ = χi = χe, Equation (8) is written as Equation (7). The lin-
earization and integration of these nonlinear additional terms are detailed thereafter.

4.1. Linearization

The nonlinear terms of Equation (8) are written as:

h(U, Q) = QtW(U) (9)

that linearize according to the Formula (A15) as:
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h(Uk, Qk) = h(Uk−1, Qk−1) +
d
dε

h(Uk−1 + εdU, Qk−1 + εdQ)|ε=0+

+ O(dU2, dQ2) =

= Qk−1W(Uk−1) +
d
dε

((Qk−1 + εdQ)W(Uk−1 + εdU))|ε=0+

+ O(dU2, dQ2) =

= Qk−1W(Uk−1) + dQW(Uk−1) + Qk−1 dW
dU

∣∣∣
k−1

dU+

+ O(dU2, dQ2) =

= Qk−1W(Uk−1) + QkW(Uk−1)−Qk−1W(Uk−1)+

+ Qk−1 dW
dU

∣∣∣
k−1

Uk −Qk−1 dW
dU

∣∣∣
k−1

Uk−1 + O(dU2, dQ2) =

= QkW(Uk−1) + Qk−1 dW
dU

∣∣∣
k−1

Uk + O(dU2, dQ2)

(10)

where dU and dQ have been replaced by dU = Uk −Uk−1 and dQ = Qk −Qk−1. Then,
hΓ(Uk, Qk), hEi (U

k, Qk) and hEe(U
k, Qk) linearize as:

hΓ(Uk, Qk) = QkWΓ(Uk−1) + Qk−1 dWΓ

dU

∣∣∣
k−1

Uk + O(dU2, dQ2)

hEi (U
k, Qk) = QkWEi (U

k−1) + Qk−1 dWEi

dU

∣∣∣
k−1

Uk + O(dU2, dQ2)

hEe(U
k, Qk) = QkWEe(U

k−1) + Qk−1 dWEe

dU

∣∣∣
k−1

Uk + O(dU2, dQ2)

(11)

where:

dWΓ

dU
=


−(D− µ)U2

U2
1

(D− µ) 1
U1

0 0

0 0 0 0
0 0 0 0
0 0 0 0



dWEi

dU
=


−
(
(D− χi)

U3
U2

1
+ 2(D− µ)

U2
2

U3
1

)
2(D− µ)U2

U2
1

(D− χi)
1

U1
0

(D− µ)U2
U2

1
−(D− µ) 1

U1
0 0

0 0 0 0
0 0 0 0


dWEe

dU
=


−(D− χe)

U4
U2

1
0 0 (D− χe)

1
U1

0 0 0 0
0 0 0 0
0 0 0 0



(12)

Defining now:

hU
Γ = Qk−1 dWΓ

dU

∣∣∣
k−1

Uk; hQ
Γ = QkWΓ(Uk−1)

hU
Ei
= Qk−1 dWEi

dU

∣∣∣
k−1

Uk; hQ
Ei
= QkWEi (U

k−1)

hU
Ee

= Qk−1 dWEe

dU

∣∣∣
k−1

Uk; hQ
Ee

= QkWEe(U
k−1)

(13)
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the split momentum diffusion terms are as follows:

hΓ = hU
Γ + hQ

Γ

hEi = hU
Ei
+ hQ

Ei

hEe = hU
Ee
+ hQ

Ee

(14)

The superscripts U and Q stand for the terms whose unknowns are Uk and Qk, respectively.
These terms must be now incorporated into the matrices of the discrete linear system.

4.2. The New Discrete Linear System

From Equation (8), the diffusion terms can be actually written as the sum of two terms
as Sd + D f Q with Sd = 0 for D = µ = χi = χe. To incorporate the new term Sd into the
linear system, Sd is first written in the matrix form as:

Sd = SU + SQ =


0

hU
Γ

hU
Ei

hU
Ee

+


0

hQ
Γ

hQ
Ei

hQ
Ee

 (15)

Focusing on the second equation of the system (A12), the local problem is as follows:

(v, ∂tU)Ωi
−
(
∇v, F − D f Q + D f Qb⊗ b− Ft

)
Ωi
+

+
〈
v,
(

F̂ − D f Q̂ + D f Q̂b⊗ b− F̂t

)
n
〉

∂Ωi
+
(

v, f E||

)
Ωi

+
(

v, f EEX

)
Ωi
−

− (v, g)Ωi
−(∇v,−SU + SU b⊗ b)Ωi−(∇v,−SQ + SQb⊗ b)Ωi

+
〈
v,
(
− SÛ + SÛ b⊗ b

)
· n
〉

∂Ωi
+
〈
v,
(
− SQ̂ + SQ̂b⊗ b

)
· n
〉

∂Ωi
= (v, s)Ωi

(16)

Using the convention introduced in Appendix B.3, the terms with the unknown U are
inserted in the matrix of the local problem Auu while the terms with the unknown Q are
inserted in Auq. Then, in the discrete local problem, the new matrices are as follows:

Auu =⇒ Auu − (∇v,−SU + SU b⊗ b)Ωi +
〈
v,
(
− SÛ + SÛ b⊗ b

)
· n
〉

∂Ωi

Auq =⇒ Auq − (∇v,−SQ + SQb⊗ b)Ωi +
〈
v,
(
− SQ̂ + SQ̂b⊗ b

)
· n
〉

∂Ωi

(17)

Let us notice that the new matrices are just related to the second equation of the system
(A12), and the changes are limited to the local element by element problem. It is worth
observing that, in the formulation of the global problem, the perpendicular gradient term is
included in the imposition of the normal fluxes at the element boundary in Equation (A14).
Moreover, it is also present in the flux vector that defines the Bohm boundary condition
where the normal gradient is imposed as equal to 0. In addition, in this case, the contribution
of the split diffusion term has to be considered, and the matrices for the assembling of
the global problem All , Alq are modified in the same way by the additional terms of
Equation (17).

4.3. Code Verification

The Method of the Manufactured Solution (MMS) [6] is used to verify the code with the
new formulation (Equation (16)). The transport coefficients are specially set all differently
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from each other: D = 0.1, µ = 0.2, χi = 0.3, χe = 0.4 m2/s. The following analytical
solution is used with ωx = ωy = 1:

n = 2 + sin (2πωxx) sin (2πωyy); Ei = 20 + cos (2πωxx) sin (2πωyy)

u = cos (2πωxx) cos (2πωyy); Ee = 10− sin (2πωxx) cos (2πωyy)
(18)

Results of convergence plotted in Figure 2 show the expected theoretical rate of convergence
in p + 1, and thus the correct implementation of the non-equal diffusion coefficients in
the solver.

Figure 2. Convergence plots in L2 norm of all variables for different values of the polynomial
interpolation p. D = 0.1, µ = 0.2, χi = 0.3, χe = 0.4 m2/s.

4.4. Example of Simulation in the WEST Tokamak

In order to show the new capability of the code to run with different cross-field coeffi-
cients, Equations (1)–(4) are resolved in the WEST geometry (Figure 1). We assume χi = χe
as it is usual in current computations of the literature, in agreement with experimental
measurements carried out at the tokamak cross-section midplane [13]. For simplicity here,
we choose ν = χi = χe = 1, and only D, the particles diffusion, is varied in a short range
between 1 and 0.6 to avoid the use of too fine meshes. A mesh of 15,591 elements with
p = 6-elements is used. These steady state simulations require a run-time of about 40 min
each on 32 cpu.

In Figure 3, the 2D contours for all flow variables are compared to ones obtained with
a former version of the algorithm where all cross-field coefficients had to be equal to 1.
The two solutions globally agree showing that the new version of the solver is able to
provide 2D plasma equilibrium in realistic geometry. As expected, the solution at D = 0.6,
however, shows some differences. The contours are sharper contours in particular at the
X-point, and the density is higher in the core, of about a factor 1.6, since less matter is
allowed to diffuse from it. On the parallel Mach number, the tongue of positive velocity
extends towards the top to the same extent while slightly decreasing its width, as is to be
expected for a lower density diffusion. Moreover, the parallel Mach number is higher at
the X-points. Regarding the ion and electron temperatures now, they are globally lower
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for D = 0.6, meaning that, for this value of density diffusion, the plasma in the core has a
higher density but lower temperatures.

Figure 3. Large scale flows in the WEST tokamak poloidal cross section. Isolines of density, parallel
Mach number, ion, and electron temperature at ν = χi = χe = 1 and D = 1 for the column on the left
and D = 0.6 for the column on the right.
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5. Spatial Adaptivity

Plasma solutions of interest for tokamak operation may exhibit large gradients both in
the radial and parallel flow directions when targeting realistic conditions for the simulations,
corresponding generally to small values of the cross-field diffusion coefficients [4]. This
routinely leads to demanding requirements on the local spatial resolution of the mesh.
In practice, failure to design a mesh that accommodates these resolution requirements
results in aliasing errors in some elements of the mesh that may lead to divergence of
the Newton–Raphson iterations during the convergence toward the steady state solution.
With the objective of enabling a robust numerical modeling of plasma transport in the edge,
an adaptive h-refinement has been implemented. The h-refinement method is based here on
an oscillation indicator to target flow regions with steep gradients or discontinuities inside
the domain of computation. The element size is then optimized by imposing iterative, local
mesh refinements in these flow regions while keeping a coarse mesh elsewhere [14].

5.1. Refinement Process Strategy

Experience in the computation of steady-state solutions of plasma transport in the edge
has led to the emergence of a strategy combining Newton–Raphson iterations, with progres-
sive lowering of cross-field diffusion coefficients in Equations (1)–(4) in order to reach the
desired value imposed by the simulation of tokamak operation (around 1 m2·s−1 or lower).
The Newton–Raphson iterative process is led to convergence for each value of the diffusion,
and the obtained solution is used as an initial condition of the Newton–Raphson iterations
for the next smaller value of diffusion. The h-refinement is adopted for optimizing the
mesh design, refining each element on which oscillations are detected. The procedure is
stopped when the iterations reach the desired level of accuracy for the targeted diffusion
coefficients’ values.

The whole process can be thus summarized as:

• Initialize the calculation with a rather coarse mesh and large values of cross-field
diffusion coefficients;

• Convergence to the steady solution using Newton–Raphson iterations;

– if convergence, computations are going on, lowering diffusion;
– if non convergence, the refinement procedure is started;

* Interpolation of the solution on the new mesh locally refined;
* Convergence to the steady solution using Newton–Raphson iterations;

• Stop when diffusion coefficients reach the target values.

The mesh refinement is performed using the open-source software Mmg [15,16]. It
uses a map of elemental size in which the desired element size on each vertex must be
precise. This current elemental size can be defined on each vertex of an existing mesh [17]
using the elemental areas {|Ωk|} as follows:

hj =
∑i∈Sj

|Ωi|h̃i

∑i∈Sj
|Ωi|

(19)

in which Sj denotes the set of element indices having node j as a vertex. At the iteration
n of the refinement process, a basic and straightforward formula provides a guess of the
desired mesh size at the next iteration, on the element j where oscillations are detected,
using the expression:

h(n+1)
target,j =

(h(n)j )

α
(20)

where α (α > 1) is a control parameter to tune in order to perform the refinement. Af-
ter several tests, the optimal value α = 2 has been found. In this process, it is obvious that
the mesh size is decreased locally and in an isotropic way. The possibility to coarsen the
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mesh has not been taken into account here because in the present configurations the initial
meshes are already very coarse.

The efficiency of such a refinement strategy is mainly based on the choice of a suitable
mesh refinement estimator. This estimator must be well-calibrated to avoid unnecessary
costly over-refinements or, on the contrary, to keep spurious undetected oscillations in
the solution. Here, the estimator can be more considered as an indicator uniquely able
to identify spurious oscillations in the solution, related to unresolved steep gradients or
discontinuities.

5.2. Oscillation-Based Error Indicator

Adaptive mesh refinement is usually considered to converge to a numerical solution
with a desired accuracy whilst using a minimal number of degrees of freedom. Adap-
tive mesh refinement is especially appealing in DG and HDG discretizations using hp-
refinement as it warrants exponential convergence with the number of degrees of free-
dom [18]. The present refinement strategy is not driven by an accuracy criterion, but by a
stability criterion to ensure the convergence of Newton–Raphson iterations towards the
steady solution of Equations (1)–(4). This strategy is based upon the observation that lack
of convergence mostly stems from locally insufficient spatial resolution leading to alias-
ing errors. These errors deteriorate the convergence of the implicit solver and the global
accuracy of the solution, and even more may lead to the divergence of the computations.
This problem can be overcome by increasing the resolution locally to enhance the precision
of the interpolation and to damp spurious oscillations. Usually, the estimators are based
on the output data of the simulation [19] to detect oscillations. The technique is inspired
from shock-capturing techniques [6], although here the quantity evaluated is an oscillation
rather than a discontinuity in the solution. We use a simple sensor Sk, defined on each
element with index k defined as a function of the parallel velocity u. For a computation
with a polynomial approximation of order p, this sensor consists of the norm of the local
contribution of order p, normalized by the norm of the full solution on the element. It is
thus defined as

Sk =
(u− û, u− û)Ωk

(u, u)Ωk

(21)

where u is the solution of order p, and û is the projection of the modal expansion on the
space of polynomials of order p− 1.

5.3. Results

For simplicity, a reduced 2D fluid isothermal model is derived from Equations (1) and
(2) to solve the density n and the parallel momentum nu in a realistic WEST geometry (see
in Ref. [6]). As in the complete model, Bohm boundary conditions are prescribed in the
parallel direction to the magnetic field lines. Although simpler, this reduced model allows
for evaluating most of the numerical issues. It takes into account the anisotropy in the
flow dynamics between the parallel and perpendicular directions, and the balance between
the transport in the two flow directions is simply modulated by varying the diffusion D
(D = µ). Lowering D makes the parallel transport dominant that can be very demanding
for the solver, particularly in the present configuration where the mesh is not aligned along
the magnetic field lines [8]. Thus, the mesh has to be successively refined when decreasing
D to converge toward a plasma equilibrium as already shown in [6] for uniform meshes.
In addition, there is also a geometrical complexity with a magnetic equilibrium with two
X-points as well as a tokamak wall with sharp edges and corners as well as small cavities
around Figure 1. This is thus an attractive configuration to test the local h-refinement
technique proposed in this work.

Calculations are performed here using different meshes, automatically designed by
the adaptive procedure described above. Only p = 4-polynomials are considered.

Typical contour plots of the density and the parallel Mach number are shown in
Figure 4 in the WEST poloidal cross-section for D = 0.83 m2·s−1. The large scale flow
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prediction shows very similar trends with respect to the literature [6]. The density is
maximum at the core boundary, where the Dirichlet condition n = 1 is applied, and rapidly
decreased to low values in the boundary layer, called the scrape-off layer (SOL), beyond the
separatrix. The parallel Mach number u/cs shows positive and negative Mach number
regions, and a flow reversal around the midplane. As expected from theoretical analysis [20]
and from numerical investigations [21], the solution exhibits transitions to supersonic flows
in the vicinity of both divertor legs.

Figure 4. Large scale flows in the WEST tokamak poloidal cross section. Isolines of density n (left)
and parallel Mach number u/CS (right). Computations are carried out for D = µ = 0.83(m2s−1).
Solutions are shown at the last iteration of the adaptive process.

To show the adaptive h-refinement process, Figure 5 shows the grid refinement at
three successive steps for a diffusion D = 2.63 m2·s−1. For each mesh, the oscillations of
the solution detected by the estimator are emphasized. Starting with a relatively coarse
mesh, the results show that the refinement process reduces the elements size only in the
flow regions where oscillations are detected. Accordingly, the number of elements increases
progressively in the poloidal cross-section with Ne = 1192, 2221 and 2554 but much less
than if a uniform refinement had been considered. At the final step, oscillations are totally
damped by the increased resolution around, and the solver converges. With this procedure,
the mesh is automatically designed with a number of degree of freedom which is close to
being optimal.

As mentioned above, lowering the diffusion coefficient toward realistic values chal-
lenges the numerical solver by making the parallel transport dominant with oscillations if
the resolution is not fine enough. The mesh must be then automatically adapted for each
value of the cross-field diffusion to ensure the convergence of the algorithm. Once the
solution converged, the diffusion is lowered again, and a new mesh is generated with an
optimal design. This is shown in Figure 6 where the diffusion coefficient is progressively
lowered by a factor of 100, and the mesh is automatically refined accordingly.

As soon as the mesh is fine enough, we can clearly expect to save on the time needed to
converge. However, it is not straightforward to quantify precisely this saving. We have first
compared the simulation times to convergence when lowering the diffusion coefficients
(Figure 6) between simulations using the automative adaptive refinement procedure and
simulations performed with a unique mesh for each value of the diffusion, corresponding
to the most refined mesh designed during the automative procedure. Results are reported
in Table 1 below, and show a savings of time up to 28% as D is strictly smaller than
D = 0.83 m2 · s−1. Let us remind that target values for tokamak operation simulations are
smaller than D = 1 m2 · s−1. As expected, when the number of elements in the mesh is
not high enough, there is no saving, and there is even an additional cost due to the time
needed by the algorithm to design the mesh which is naturally not taken into account in
the second set of simulations.
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Figure 5. Meshes and solution oscillations at three steps during the adaptive h–refinement process
for D = 2.63 m2·s−1. Mesh distribution with colored elements corresponding to solution oscillations
(top line). 2D maps of oscillations amplitude calculated on the nodes (bottom line). The colorbar
shows the oscillations amplitude from Equation (21) and averaged over neighboring elements at
every node.

Table 1. CPU times in seconds to convergence depending on the diffusion coefficients and the
corresponding meshes for simulations with and without the h–refinement technique. Ne is the
number of elements, nDOF is the number of degrees of freedom for p = 4–polynomials. Without h–
refinement, a unique mesh is used for each value of the diffusion, corresponding to the most refined
mesh designed during the automative procedure.

D Ne nDOF h-Refinement No h-Refinement Time Saving
(m2 · s−1) (Time (s)) (Time (s)) (%)

26.31 388 5820 13.96 14.20 +2%
8.32 1192 17,880 30.84 35.57 +13%
2.63 3219 49,590 126.51 131.67 +4%
0.83 6066 114,120 203.75 280.78 +28%
0.26 10,032 150,480 285.61 366.41 +23%

As additional information, we have compared times to converge at D = 2.63 m2·s−1

using the adaptive procedure described above (Figure 5) and a uniform mesh with ele-
ment size equal to the size of the smallest element provided by the adaptive procedure.
Doing that, the respective meshes are composed by 3219 and 98,372 elements, respectively.
The corresponding times to converge are respectively equal to 126.51 s and 5488 s, which
corresponds to an increase of a factor 43 when using a uniform mesh. Naturally, this is only
informative since uniform meshes are rarely used, but the time to accurately design a mesh
for each value of the diffusion coefficient when lowering it can be long and impossible to
estimate depending on the user’s skills. The automatic design of the mesh, which does not
require any adjustment by hand during the iterative process is clearly a great advantage of
this procedure.



Fluids 2022, 7, 63 14 of 22

D = 26.31 m2·s−1 D = 8.32 m2·s−1 D = 2.63 m2·s−1

D = 0.83 m2·s−1 D = 0.26 m2·s−1

Figure 6. Five meshes and locations of the solution oscillations (colored areas) when lowering the
cross field diffusion coefficient. The corresponding numbers of elements and degree of freedom are
given in Table 1.

6. Conclusions

This paper presents a high-order solver based on the Hybrid Discontinuous Galerkin
method to perform plasma simulations in tokamak. It solves a 2D fluid transport model
for the density, parallel momentum, and the total energy for a deuterium plasma. This
model is relevant with those currently implemented in fluid codes used in the fusion
community. The main features of this solver are the use of unstructured meshes together
with a high-order spatial approximation which allows for misaligning the discretization
from the magnetic field, unlike what is required in lower-order numerical schemes in order
to control the spurious numerical diffusion due to the strong anisotropy of the flow. Thus,
realistic tokamak wall geometries as well as magnetic equilibriums of complex shape and
eventually unsteady can be accurately treated.

The code development is still in progress. In this paper, we have generalized the
treatment of the cross-field diffusion terms. The possibility to handle diffusion coefficients
chosen independently for each variable is a real improvement in the modeling of the cross-
field turbulent transport. To progress toward better numerical performance, the first steps
of an h-refinement technique have been introduced to optimize the mesh design and save on
CPU time and memory. Involving an error indicator based on spurious oscillations related
to aliasing error, the mesh is refined locally and automatically around steep gradients of
the solution that allows for efficiently damping the oscillations. This technique allows for
saving CPU time, and clearly improves the stability and the robustness of the algorithm.

This work is thus a step forward in the development of a very efficient and accurate
numerical solver able to solve a 2D transport fluid model in realistic tokamak configurations
relevant for the operation.
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Appendix A. Equations in Conservative Variables

This appendix details the base of the HDG algorithm used in this work.
Let us consider a computational domain Ω with closed boundary ∂Ω over a range

of time ]0, Tf [. The domain of computation Ω is divided in Nel disjoint elements Ωi with
boundaries ∂Ωi such that:

Ω =
Nel⋃
i=1

Ωi, Ωi ∩Ωj = ∅ f or i 6= j, and T =
Nel⋃
i=1

∂Ωi

Equations (1)–(4) must be written in conservative variables. Let us introduce U =
{U1, U2, U3, U4}T = {n, nu, nEi, nEe}T where the superscript �T stands for transpose.
The plasma physical quantities u, pi, pe, Ti and Te write in conservative variables as:

u =
U2

U1
,

pi =
2

3Mre f

(
U3 −

1
2

U2
2

U1

)
pe =

2
3Mre f

U4,

Ti =
2

3Mre f

(U3

U1
− 1

2
U2

2
U2

1

)
,

Te =
2

3Mre f

U4

U1
,

(A1)

where Mre f is a dimensionless parameter that appears by making the equations dimension-
less, its value is Mre f = T0e

miu2
0
≈ 12.5, where e is the electron charge (1.6e−19 C), mi is the

ion mass (3.35e−27 kg), T0 and u0 are the reference temperature and velocity (50 eV and
1.3839 ms−1, respectively).

Equations (1)–(4) recast as:

Q−∇U = 0 in Ω×]0, Tf [

∂tU +∇ · (F − D f Q + D f Qb⊗ b− Ft)+

+ f E||
+ f EX − g = s in Ω×]0, Tf [

U(x, 0) = U0 in Ω

(A2)
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where the new unknown Q is:

Q = ∇U =


∇U1

T

∇U2
T

∇U3
T

∇U4
T

 =


U1,x U1,y
U2,x U2,y
U3,x U3,y
U4,x U4,y

 =


Q11 Q12
Q21 Q22
Q31 Q32
Q41 Q42


D f is the diffusion tensor. It is diagonal only when the perpendicular transport

coefficient is assumed to be equal to each other, i.e., D = µ = χi = χe. The convective flux
tensor F(U) is written as:

F =


nu

nu2 + Mre f (pi + pe)
(nEi + Mre f pi)u
(nEe + Mre f pe)u

⊗ bT =



U2
U2

2
U1

+ 2
3

(
U3 + U4 − 1

2
U2

2
U1

)
(

U3 +
2
3

(
U3 − 1

2
U2

2
U1

))
U2
U1(

U4 +
2
3 U4

)U2
U1


⊗ bT

The ion and electron temperature gradients have to be written in terms of conservative
variables. For the ion, the gradient writes as:

∇Ti =
2

3Mre f
∇
(U3

U1
− 1

2
U2

2
U2

1

)
=

2
3Mre f

(
∇U1(

U2
2

U3
1
− U3

U2
1
) +∇U2(−

U2

U2
1
) +∇U3(

1
U1

)
)

,

and using the following definition:

Vi(U) =


U2

2
U3

1
− U3

U2
1

−U2
U2

1
1

U1
0


It can be simplified as:

∇Ti =
2

3Mre f
QtVi(U), (A3)

where the transpose of the variable gradient has been introduced Qt = QT . For the electron,
the gradient writes as:

∇Te =
2

3Mre f
∇
(U4

U1

)
=

2
3Mre f

(
∇U1(−

U4

U2
1
) +∇U4(

1
U1

)
)

,

and can be simplified using the following definition:

Ve(U) =


−U4

U2
1

0
0
1

U1


as:

∇Te =
2

3Mre f
QtVe(U). (A4)

Hence, using the definition of the parallel gradient, we have
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∇‖Ti = ∇Ti · b =
2

3Mre f
QtVi(U),

∇‖Te = ∇Te · b =
2

3Mre f
QtVe(U),

(A5)

From the expressions of these parallel gradients, we derive the energy flux Ft related
to the parallel diffusion of the temperature as:

Ft =


0
0

k‖,iT
5/2
i ∇‖Ti

k‖,eT5/2
e ∇‖Te

⊗ bT =



0
0

k||i
(

2
3Mre f

)7/2
 U3

U1− 1
2

U2
2

U1

2

5/2

QTVi(U) · b

k||e
(

2
3Mre f

)7/2(U4
U1

)5/2
QTVe(U) · b


⊗ bT . (A6)

The vector related to the contribution of the parallel electric field fE‖ is

fE‖ = Mre f u∇‖pe


0
0
1
−1

 =
2
3

U2

U1
∇U4 · b


0
0
1
−1

 =
2
3

QtW(U) · b


0
0
1
−1

 (A7)

having defined the vector

W(U) =


0
0
0

U2
U1

.

The vector of temperature exchange between ions and electrons fEX is

fEX =
n2

τie

Te − Ti
T3/2


0
0
1
−1

 =
1

τie

(
2

3Mre f

)−1/2
U5/2

1

U3/2
4

(
U3 −U4 +

1
2

U2
2

U1

)
0
0
1
−1

. (A8)

Finally, the curvature term g is

g =


0

(pi + pe)∇ · b
0
0

 =


0

2
3

(
U3 + U4 − 1

2
U2

2
U1

)
∇ · b

0
0

. (A9)

and
s = {Sn, SΓ, SEi , SEe}T (A10)

is the vector of source terms. When the latter is chosen with an analytical form, they
constitute the right-hand side RHS of the conservative system of Equations (A2). Other-
wise, if they depend on the plasma quantities, they are made an explicit function of the
conservative variables U and treated in the same manner of the vectors above.

Appendix B. The HDG Solver

The resolution of Equations (A2) is made through two steps.
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Appendix B.1. The Local Problem

The local problem coincides with the system (A2) presented above and solved in
each element Ωi. A Dirichlet condition is imposed in each element boundary ∂Ωi, which
constrains U to be equal to Û(x, t) for x ∈ T . The local problem now consists in determining
Q and U as a function of the imposed values Û(x, t) on the mesh skeleton T . Thus,
for i = 1, ..., Nel , the local system of equation to solve in the HDG formulation can be
written as follows:

Q−∇U = 0 in Ωi×]0, Tf [

∂tU +∇ · (F − D f Q + D f Qb⊗ b− Ft)+

+ f E||
+ f EX − g = s in Ωi×]0, Tf [

U(x, t) = Û(x, t) in ∂Ωi×]0, Tf [

U(x, 0) = U0 in Ωi

(A11)

The continuity of the unknowns is guaranteed due to the fact that the Dirichlet condition
imposed on the left and on the right element of a given face is the same, for the given
values of Û on the element boundary. The approximated solution is then obtained after the
discretization of the system of Equation (A11) on a finite two-dimensional space defined in
this way:

Vh = {v ∈ L2(Ω) : v|Ωi ∈ P
p(Ωi) f or i = 1, ..., Nel}

Λh = {v̂ ∈ L2(T ) : v̂|Γi ∈ P
p(Γi) f or i = 1, ..., N f },

where Γi is one face of the element border, and P p is the space of the polynomials of
degree less than or equal to p. Therefore, Vh defines the space of the set of functions for the
discretization of the internal part of the elements while Λh determines the one related to
the trace unknowns on the elements border. Thus, the arbitrary precision of the numerical
scheme is ruled by the degree of the interpolant polynomials. The Fekete nodal distribution
is used as a standard nodal basis to avoid ill conditioning issues. In Figure A1, the node
distribution in the space Vh is represented and Λh for a triangular element with polynomial
degree p = 5.

Figure A1. Nodal representation in the space Vh and Λh for a triangle element of p = 5– polynomial
(Reprinted from [8].)

In order to derive the weak formulation of the system (A11), we use the same proce-
dure explained in [6] obtaining:

(G, Q)Ωi
+ (∇G, U)Ωi

−
〈
Gn, Û

〉
∂Ωi

= 0

(v, ∂tU)Ωi
−
(
∇v, F − D f Q + D f Qb⊗ b− Ft

)
Ωi

+
〈
v,
(

F̂ − D f Q̂ + D f Q̂b⊗ b− F̂t

)
n
〉

∂Ωi

+
(

v, f E||

)
Ωi

+
(

v, f EEX

)
Ωi
− (v, g)Ωi

= (v, s)Ωi

(A12)
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The local problem results ends up in the search for an approximation (Q, U) ∈ [Vh]
d×d ×

[Vh]
d, with a given Û ∈ [Λh]

d, for all (G, U) ∈ [Vh]
4×2 × [Vh]

4 that satisfies the system
of Equations (A12) for i = 1, ..., Nel . In (A12),

(
., .
)

Ωi
denotes the L2 scalar product in

the element Ωi, while
〈
., .
〉

stands for the scalar product of the traces in ∂Ωi. Eventually,
the traces of F and Q on the element boundary have been replaced by numerical traces in
this way:

F̂(Û) = F(Û) + τ
(
U − Û

)
⊗ n

Q̂ = Q

F̂t(Û) = Ft(Û)

(A13)

where n is the outer normal to the element face and τ is the local stabilization matrix.
It is important to underline that τ plays a fundamental role on both the stability and
the accuracy of the numerical scheme, and, in the literature, its role has already been
investigated for a large number of problems by Cockburn et al. [22]. In this work, we
consider its expression in a diagonal form: τ = τI, with I the identity matrix, and depends
on the parameters of the simulation (perpendicular and parallel diffusion coefficients,
sound speed, size of mesh elements, etc.).

Appendix B.2. The Global Problem

The system (A12) allows for computing the solution U and Q in the whole domain of
computation as a function of the trace of the unknowns on the element border Û. By setting
up the global problem, it is possible to determine this variable, which allows for solving
for Û in the entire mesh skeleton. Imposing the continuity of the fluxes across the element
border, we can obtain the equation for Û, which, in weak form, it determines the global
problem. Substituting the definition of the fluxes, it can be written as follows:〈

v̂,
(

F − D f Q + D f Qb⊗ b− Ft

)
n + τ

(
U − Û

)〉
T \∂Ω

+

〈
v̂, BBC

〉
∂Ω

= 0 (A14)

where T represents the skeleton of the triangulation, and BBC is a flux vector that de-
fines the boundary condition on ∂Ω. Thus, the global problem becomes the search of an
approximation Û ∈ [Λh]

4 for the system (A14), for all v̂ ∈ [Λh]
4. Here, U and Q are the

solutions of the local problem (A12) as a function of Û. Eventually, the system (A14) weakly
imposes the normal fluxes at the element boundary, and it depends only on the unknown
Û, reducing the size of the linear system generated by the element discretization.

Appendix B.3. Discrete Form of the Weak Equations

In the previous appendix sections, we have introduced all the necessary ingredients to
build up the discrete form of the weak problem (A12) that is worthwhile and complemen-
tary in order to explain the results showed in Section 4. Thus, just by assembling everything
together, it is possible to obtain the final form of linear system to be solved. In the code, a
totally implicit approach is used, so the time derivative is discretized with a scheme of the
form:

∂tU ≈ δ
U
∆t
− f0

where δ is a constant parameter that depends on the time integration scheme, and f0 is a
vector that takes into account the previous time steps. Now, we need to use a linearization
technique exploited also for the nonlinear terms inside the model. Considering a set of
variables {w1, w2, ...}, these nonlinear terms have been solved using a Newton–Raphson
iterative procedure. In a Newton–Raphson framework, the bilinear forms are linearized
using a second-order approximation. The linearization used for a generic term f is the
following:
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f(wk
1, wk

2, ...) = f(wk−1
1 , wk−1

2 , ...) +
d
dε

f(wk−1
1 + εdw1, wk−1

2 + εdw2, ...)|ε=0

+O(dw2
1, dw2

2, ...),
(A15)

where k is the NR iteration and dwi = wk
i − wk−1

i . Now, proceeding with our problem,
substituting the definition of the numerical traces introduced in Equation (A13) and re-
arranging the terms with reference to the three variables of the local problem U, Q, Û,
the resulting weak problem can be written:

(
∇v, D f Q− D f b⊗Qb + FQ

t

)
Ωi

+
〈
v, (−D f Q + D f b⊗Qb− FQ

t ) · n
〉

∂Ωi
+

+
(

v, fQ
E‖

)
Ωi

+
(

v,
δ

∆t
U
)

Ωi
−
(
∇v,A(U)

k−1U− FU
t

)
Ωi

+
〈

v, øU
〉

∂Ωi
+

+
(

v, fQ
E‖ + fU

E‖

)
Ωi

+
(

v, fU
EX

)
Ωi
−
(

v,
dg
dU

∣∣∣
k−1

U
)

Ωi
+

+
〈

v, (Ak−1
U Û− FÛ

t ) · n
〉

∂Ωi
−
〈

v, øÛ
〉

∂Ωi
=
(

v, f0

)
Ωi

+
(

v, s
)

Ωi
−

−
(
∇v, F0

t

)
Ωi

+
〈

v, F0
t · n

〉
∂Ωi
−
(

v, f0
EX

)
Ωi(

G, Q
)

Ωi
+
(
∇ · G, U

)
Ωi
−
〈
Gn, Û

〉
∂Ωi

= 0.

(A16)

for each element i = 1, ..., Nel . In order to develop a high-order finite-element scheme,
a high-order polynomial interpolation is considered in each element to represent the un-
knowns. Defining a set of basis functions, the vector of nodal values for the vector unknown
U, Û and similarly for the tensor unknown Q in the element Ωi can be represented as:

U =
Np

∑
j=1

NjI4U j Q =
Np

∑
j=1

NjI8Qj Û =

N f p

∑
j=1

N̂jI4Û j (A17)

where Np is the number of nodes in each element and Nj, N̂j is the j-th basis belonging to
Vh and Λh, respectively, and U j, Qj, Û j are the nodal values of the unknowns U, Q, Û in
the j-th node. The test functions are chosen in the same space of the basis functions, so we
can define v,G and v̂ as follows:

v =
Np

∑
j=1

NjI4v G =
Np

∑
j=1

NjI8G v̂ =

N f p

∑
j=1

N̂jI4v̂ (A18)

where the vector v is the correspondent column of the identity matrix for each equation,
respectively. The vectors G and v̂ are constructed in a similar way. Using the nodal
decomposition introduced in (A17)–(A18), the system of equations for the local problem
(A16) can be rewritten:

AuqQ+ AuuU + AulÛ = S

AqqQ+ AquU + AqlÛ = 0
(A19)

where we define the vectors U = [U1, ...,UNp ], Q = [Q1, ...,Q2Np ] and Û = [Û1, ..., ÛN f p ]
and the following bilinear form is introduced:
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Auq =
(
∇v, D f Q

)
Ωi
−
〈

v, D f Q
〉

∂Ωi
−
(

v, D f Qb⊗ b
)

Ωi
+

+
〈
∇v, D f Qb⊗ b

〉
∂Ωi

+
(
∇v, FQ

t

)
Ωi
−
〈

v, FQ
t · n

〉
∂Ωi

+
(

v, fQ
E‖

)
Ωi

,

Auu =
(

v,
δ

∆t
U
)

Ωi
+
〈

v, øU
〉

∂Ωi
−
(
∇v,Ak−1U

)
Ωi

+
(
∇v, FU

t

)
Ωi
+

+
(

v, fU
E‖

)
Ωi

+
(

v, fU
EX

)
Ωi
−
(

v,
dg
dU

∣∣∣
k−1

U
)

Ωi
,

Aul =
〈

v, (Ak−1Û) · n
〉

∂Ωi
−
〈

v, FÛ
t · n

〉
∂Ωi
−
〈

v, øÛ
〉

∂Ωi
,

S =
(

v, f0

)
Ωi

+
(

v, s
)

Ωi
−
(
∇v, F0

t

)
Ωi

+
〈

v, F0
t · b

〉
∂Ωi
−
〈

v, f0
EX · b

〉
∂Ωi

,

Aqq =
(
G, Q

)
Ωi

, Aqu =
(
∇ · G, U

)
Ωi

, Aqu =
〈
Gn, Û

〉
∂Ωi

.

(A20)

The problem in (A19) coincides with solving Np + 2Np equations, so, clearly, it is not
sufficient to compute the (Np + 2Np + Ne f × N f p) coefficients U ,Q, Û , where Ne f is the
number of faces in each element. Nevertheless, it is possible to find a relation between
them using the Newton–Raphson procedure for the computation of the residuals. Thus,
for each iteration k, this procedure allows us to solve the local linear system (A19) for the
variable U and Q as a function of the variable Û on the faces of the element. Writing in a
more compact form for each element i = 1, ..., Nel , we have:

Un,k
i = Uk,n

i Û
n,k
i +Fn,k

i ,

Qn,k
i = Qk,n

i Û
n,k
i +Hn,k

i

(A21)

where Un,k
i , Qn,k

i , Ûn,k
i are respectively the nodal solutions of the unknown U, Q for the

element Ωi and the nodal solution of the trace Û for the faces of the element ∂Ωi, at the
time step n and NR iteration k. The terms Uk,n

i and Qk,n
i are the elemental matrices at the

time step n and NR iteration k, while Fn,k
i andHn,k

i are the right-hand side vectors for the
two systems. At this point, the nodal values U , Q can be replaced by the solution of the
local problem (A21), and it is possible to write a set of equations involving only the nodal
values Û in the whole mesh:

Kk,nÛ k,n = Rk,n, (A22)

where Kk,n is the global matrix, andRk,n
i is the global right-hand side at each iteration of

the Newton–Raphson method used and at each time step. It is straightforward that the
inversion of the problem (A22) represents the solution of the HDG problem.
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