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Abstract: This research paper focuses on a novel coupling of the aerodynamic and structural be-
haviour of a double-element composite front wing of a Formula One (F1) vehicle, which was simulated
and studied for the first time here. To achieve this goal, a modified two-way coupling method was
employed in the context of high performance computing (HPC) to simulate a steady-state fluid-
structure interaction (FSI) configuration using the ANSYS software package. The front wing plays
a key role in generating aerodynamic forces and controlling the fresh airflow to maximise the aero-
dynamic performance of an F1 car. Therefore, the composite front wing becomes deflected under
aerodynamic loading conditions due to its elastic behaviour which can lead to changes in the flow
field and the aerodynamic performance of the wing. To reduce the uncertainty of the simulations, a
grid sensitivity study and the assessment of different engineering turbulence models were carried
out. The practical contribution of our investigations is the quantification of the coupled effect of the
aerodynamic and structural performance of the wing and an understanding of the influence of ride
heights on the ground effect. It was found that the obtained numerical surface pressure distributions,
the aerodynamic forces, and the wake profiles show an accurate agreement with experimental data
taken from the literature.

Keywords: fluid-structure interaction (FSI); aeroelasticity; ground effect; composite structure

1. Introduction

The front wing of a Formula One (F1) racing vehicle, when operated in close proximity
to the ground, generates approximately 30% of total downforce [1], which is utilised in
conjunction with mechanical grip to boost acceleration, braking, and turning speed. The
wing, being the first appurtenance subjected to fresh airflow, has a significant influence
on management of downstream airflow, interacting with other aerodynamic devices such
as bargeboards, the underfloor, and the rear wing. It can maintain not only a low level
of turbulence but also high energy within the fluid. As a result of a great amount of
aerodynamic loading exerted on the front wing, the focus lies in the structural design.
The wing should be rigid enough to bear the aerodynamic forces through high-speed
corners as well as sufficiently durable. Moreover, in order to enhance competitiveness in
the motorsport world, the structural design should aim to reduce the weight.

In 2011 Australian Grand Prix, it was noticed that the front wing end of the Red
Bull RB6 was deflected towards the ground far more than those of its competitors [2]. It
was revealed that the wing becomes flexible under aerodynamic loads due to the elastic
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characteristic induced by the composite structure, and this is exploited to gain an aerody-
namic advantage. The aeroelastic behaviour of the composite wing allows F1 engineers to
improve aerodynamic performance by circumventing the technical regulation stating that
all aerodynamic components must be satisfied with the static deflection test as a rigid body.

Both experimental and numerical studies on the inverted wing in ground effect have
been extensively performed. In the F1 car, addition of extra elements on the wing can
be an option to enhance aerodynamic performance by delaying trailing edge separation.
Following single-element wing studies [3–6], investigation was thoroughly carried out
on the double-element wing. It was started by Ranzenbach and Barlow conducting an
experimental work on a two-dimensional NACA 632−215 Mod B aerofoil with 30% flap
gap at the fixed ground facility [7]. It was observed that additional downforce is obtained
compared to that of the single-element wing, and a region of force decrease was captured at
large heights. Jasinski and Selig [8] conducted another experiment with the double-element
wing. The ride height was fixed for 0.3 chord length, and the ground was not moving.
It was shown that two trailing edge vortices at the endplate were created, and their size
increased with higher flap angle. Following their single-element wing experiment, Zhang
and Zerihan also investigated the ground effect of a two-element wing [9], which is a
combination of the single-element wing extracted from the previous work [6] with an
extra flap downstream. The results obtained from LDA, PIV, and oil flow visualisation
presented the surface pressure on both elements and the sectional forces with the ride
height variation. The downforce increase was mainly attributed to the main element with
the help of significant circulation caused by the flap. As the wing was approached, the
downforce increased up to the maximum and fell off due to the vortex breakdown at the
small height. The double-element wing in ground proximity was tested experimentally by
Mahon [10] with various configurations of flap position and ride heights. It was found that
the forces generated by a wing with multiple elements in ground proximity were largely
insensitive to variation in flap location. However, extreme values of flap gap and flap
location resulted in significant reductions in aerodynamic forces (downforce and drag) and
pitching moment due to the flap stalling. The same model as Mahon’s was experimentally
tested by van den Berg [11] with a goal of ensuring and refuting Mahon’s hypotheses.
However, unlike Mahon’s idea, he claimed that the cause of reduction in downforce is
mainly from the edge vortex breakdown instead of the reversed flow within the lower
wake. A region of larger flow reversal occurred as the edge vortex broke down.

Computational studies have been extensively performed on the double-element wing
in ground effect. Ranzenbach and Barlow also examined the flow field around their
double-element aerofoil using variants of the Standard k-εmodel in a structured domain
including a moving ground [12]. At low ride heights, they only noticed minor variations in
downforce, but this did not affect their original conclusion on the cause of force reduction.
The influence of various turbulence models was evaluated by Mahon and Zhang [13] using
Zerihan’s double-element aerofoil [9]. It was noted that more than 80% of total downforce
is generated by the primary element, whereas the flap creates a great deal of drag. With the
limited dimensionality, it was argued that the numerical solution anticipates the boundaries
of the wake inaccurately. Mahon also used a three-dimensional double-element wing to
undertake a thorough computational examination [10]. The underestimated lower surface
suction pressure caused weaker edge vortices and they showed close relationship with
the pressure discrepancy between the wing’s bottom and upper surfaces. The three-
dimensionality helped to better predict the wake profile compared to the two-dimensional
result. Following the work of Mahon [10], the same wing model was numerically studied
by van den Berg [14], focusing on improving the quality of the computational domain to
obtain better results. Consequently, the correlation between experiment and numerical
solution was improved in comparison with the work of Mahon [10]. However, the RANS
results failed to converge for a region of the non-dimensionalised ground height (h/c)
ranging between 0.158 and 0.317 due to limitation of capturing unsteady characteristic of
the flow caused by the vortex breakdown. Heyder-Bruckner conducted a computational
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study on a double-element wing in ground proximity with ride height variation using
RANS and detached eddy simulation (DES) [15]. The DES produced better prediction of the
general feature of downforce and breakdown of the main edge vortex than that of RANS. It
was also found that the wing downforce was only influenced at higher ride heights before
the vortex breakdown occurred. Recent research carried out by Benjamin [16] was also
focused on aerodynamic investigation of the double-element wing used for the motorsport
application. It was observed that a bio-mimicked modification inspired by tubercles of a
humpback whale flipper implemented on the leading edge of the wing has potential to
enhance aerodynamic performance.

Despite the importance of the structural design of the inverted wing in ground ef-
fect, there have been few studies considering integration of the wing aerodynamics and
structure. As a result of significant non-linear and interdisciplinary characteristics of the
aero-structural coupled phenomenon, a numerical technique known as fluid-structure
interaction (FSI) may be alternatively used because existing experiments and computations
are restricted. The advent of numerical solutions can address complicated FSI engineering
problems in an efficient manner in many industries such as aerospace, automotive, hemody-
namics, and hydrodynamics. Aeroelastic behaviour of aircraft wings is one of the essential
aspects to be taken into consideration to prevent the wing from static or dynamic aeroelastic
problems [17–19]. In mechanical engineering, hydraulic system geometry consisting of
hydrofoils can be developed by using the FSI approach to study effect of the interaction
between the foils and flow on their performance [20,21]. In hydrodynamics, cavitation,
which has a negative effect on the flow behaviour, was investigated by implementing the
FSI analysis [22], and a new FSI method coupling the smoothed particle hydrodynamics
(SPH) and finite element method (FEM) was developed to study a dam break problem with
an elastic gate [23]. A new form of two-way coupling FSI modelling for a three-dimensional
model for an asymmetric serpentine was introduced by using COMSOL and an arbitrary
Lagrangian–Eulerian (ALE) method [24]. The reduced basis method (RBM) was integrated
with the FSI modelling approaches to solve the complicated coupled problems in a more
efficient manner [25,26]. However, the focus should lie on implementation of a separate
method into existing modelling techniques, especially remeshing process. In addition,
code implementation may be a lengthy process when the complexity of the problem is
increased. Recently, many studies on hemodynamics using FSI analysis have been carried
out [27–30]. Despite assessing different parts of the body or diseases, the main objective is to
investigate the dynamic behaviour between blood flow and flexible aortic wall deformation
and ultimately to better understand causes attributed to diseases.

Aeroelastic behaviour of car components has been the subject of research in the au-
tomotive industry. FSI analysis based on one-way coupling was employed to predict a
potential panel problem caused by vibration of an elastic vehicle hood interacting with flow
field, which is of great help in the preliminary design stage [31]. Ratzel et al. [32] carried
out FSI simulations coupled to transient flow to investigate aerodynamic performance of a
flexible flap attached to the rear of a generic vehicle model. Based on a geometric parame-
terisation study using the FSI technique, the flap shape was optimised in order to minimise
deformation. A front spoiler was numerically analysed using a two-way FSI weakly cou-
pled method to evaluate the effect of interaction between the component and near/far flow
fields on vehicle drag [33]. The computational results were supported in comparison with
the experiments performed in a wind tunnel. Hydroplaning, which occurs between the
tyre surface and a layer of water on the road, was evaluated by coupling the finite element
method and Navier–Stokes equation [34]. Despite more computational resources being
required to simulate the FSI analysis, more accurate prediction for hydroplaning speed and
associated tyre performance was achieved. There are few studies on development of race
car wing performance using the FSI analysis. A Formula One car front wing was simulated
by a CFD and FEA coupled method in order to investigate the wing performance regarding
lift and drag [35]. However, the ground effect was not taken into consideration in this
research. Castro et al. [36] performed an aero-structural coupled numerical analysis of a



Fluids 2022, 7, 85 4 of 22

multi-element wing created based on 2022 F1 technical regulations. Several variations of the
structural design of the wing were studied to quantify its behaviour related to aerodynamic
forces applied. Another recent work studied aeroelastic behaviour of the wing in ground
effect [37]. The single-element composite wing in ground effect was used to investigate
and quantify the aeroelastic effect on the aerodynamic and structural performance of the
wing using a two-way coupling method in ANSYS software, which has great benefits in
reducing the resources required to develop a specific code and associated implementation
procedure. A modified FSI framework using existing fluid and structural modules within
the software was proposed in conjunction with the high performance computing system.
The equivalent methodology was applied in a more complicated model in this study.

The multi-element wing in close ground proximity has been extensively researched in
experimental and numerical studies due to its significant performance advantage. However,
few comparative studies have been conducted to anticipate the aerodynamic and structural
performance of the wing concerning the aeroelastic characteristics. Furthermore, limitations
of the FSI modelling approaches have been found in previous studies [24–26,36], such as
that the additional resources required to develop an code for specific problems which
may take a substantial amount of time. Focus should also be placed on integration of the
separate code into the existing coupling process between CFD and FEA and stability of the
correlation of fluid and structural algorithms. The aim of this work was to implement a two-
way coupled FSI approach using commercial CFD and FEA solutions to examine the effect
of aeroelastic behaviour of a double-element wing operating in close ground proximity
on the wing’s aerodynamic performance. This would be of great help for engineers to
reduce computational resources for solving sophisticated the aero-structural problem as
well as increasing accessibility to the software usage. In order to enhance credibility of the
solution and to minimise uncertainty, a grid sensitivity study was performed, followed by
a turbulence model study. Numerical results are presented in terms of surface pressure
distribution, aerodynamic forces, and wake profile. In the next section, a modified two-way
coupling method is presented that couples the aerodynamic and structural behaviour of
a simplified double-element composite front wing of an F1 vehicle in the context of high
performance computing (HPC) using the ANSYS software package.

2. Methodology
2.1. Numerical Modelling of Two-Way Coupling Fluid–Structure Interaction (FSI) Framework

The mutual contact between a deformable structure and an interior or surrounding
fluid flow is defined as fluid-structure interaction (FSI) [38]. The choice of appropriate
governing equations of the continuum, which determines the relationship between the
deforming structure and the fluid domain, as well as the ability of numerical method to deal
with large distortions, is a critical consideration when developing a numerical simulation
algorithm [39]. Solutions for these multi-physics issues may be divided into two categories:
monolithic and partitioned approaches. The monolithic approach containing governing
equations for the fluid and structure dynamics within a single mathematical framework is
solved simultaneously with a solitary solver [40,41]. This method can improve accuracy
for interdisciplinary issues, but developing a code for a specific mix of such problems may
require considerable resources. The partitioned method, on the other hand, solves the
governing equations of fluid and structural dynamics independently with two distinct
solvers [42]. By combining previously accessible codes or numerical methods that have
been proven and utilised for complicated FSI issues, this methodology can reduce time
for code development. However, in order to achieve coupling method stability, the focus
should be on correlating the fluid and structural algorithms. The wing is considered as a
tube type structure in the structural model, and our scope is to investigate the final shape of
the wing affected by the fluid flow field [37]. Therefore, the effect of the structural damping
is neglected as a modelling assumption. Equation (1) is a general form of the governing
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equation to represent the coupling phenomenon assuming that the structural damping
matrix C is not considered [39] as[

Ms 0
ρ0RT M f

]{ ..
U
..
P

}
+

[
Ks −R
0 K f

]{
U
P

}
=

{
FS
Ff

}
, (1)

where Ms and Ks are the structural mass matrix and structural stiffness matrix and U,
..
U, Fs

are the nodal displacement, the second derivative of nodal displacement, and the structural
load vector, respectively. M f and K f are the fluid mass matric and the fluid stiffness matrix,

and P, Ff ,
..
P are the nodal pressure, the second derivative nodal pressure, and the fluid

load vector, respectively. R is a coupling matrix of the fluid-structure interaction interface.
While the fluid puts pressure loads on the structure, causing it to deform, the fluid

geometric domain is updated to account for the structural deformations. The information
acquired from each numerical technique is communicated at the fluid-structure interface,
which is reliant on one-way or two-way coupling mechanisms as illustrated in Figure 1 in
the partitioned approach. The computed fluid forces from the CFD analysis are transmitted
to the structure analysis as the boundary condition in one-way coupling, and the structure
side is calculated until convergence is obtained, as illustrated in Figure 1a.
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In the two-way coupling technique, on the other hand, the fluid field is solved using
CFD until the convergence requirements are fulfilled. The CFD-derived aerodynamic
pressures on the wing are then transferred to the FEA model as load boundary conditions.
The structural reactions of the wing, such as deformation and stress distributions exposed
to aerodynamic loads are then calculated using FEA, and the results are interpolated to
the fluid mesh appropriately. These processes are continued until the changes in the flow
forces and structural displacements fall below a predetermined threshold of tolerance, as
shown in Figure 1b. In order to solve this complicated and repetitive process, it is vital
to connect the solution process with a high performance computing (HPC) system. The
FSI methodology framework used in this study is based on the existing analysis modules,
fluent and mechanical, provided by ANSYS software, and with the support of ANSYS we
developed a separate code file to connect the FSI modelling with a Linux-based cluster HPC
system used at Cranfield University, which enables the coupled process between CFD and
FEA techniques to be resolved more efficiently with the support of powerful computation.

2.2. Geometry and Mesh Generation

The double-element inverted wing used in the study was extracted from Zerihan’s
experiment [43], which is composed of the single-element wing as the main element
and the single flap. The total chord length from leading edge of the main element to
the trailing edge of the flap is 380.0 mm, and the aspect ratio of the wing is 2.89. The
generic rectangular endplate based on the racing car wing was used with dimensions of
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400 mm × 170 mm × 4 mm. Detailed dimensions of the wing are described in Table 1,
and the schematic configuration of the wing is depicted in Figure 2a. The variation of the
ride height was also considered in the study of the double-element wing with a range of
h/c = 0.079 to h/c = 0.592. With the reference incident of 1◦ of the main elements, the angle
of attack of the double-element wing is 14.1◦. To save computational resources, half of
the wing model was used for this study. As shown in Figure 2b, the computational grid
around the wing was produced using ICEM CFD. At varying ride heights, a multiblock
hybrid mesh with both structured and unstructured grids was constructed, with the relative
grid topology and structure preserved. Prism layers were used to properly capture the
boundary layer of the wing and the ground, and an unstructured tetrahedral mesh was
used to construct the rest of the domain. On regions of interest, refinement function was
applied. An extra structural fine density box was positioned right behind the trailing edge
of the wing for precise study of the wake profile. Within the boundary layer blocks of the
wing and the ground, the first height cell was computed and set to y+ ≈ 1.

Table 1. Dimensions of a double-element wing.

Main Element Chord 223.4 mm Total Chord 380.0 mm

Flap Element Chord 165.7 mm Span 1100 mm

Main Element Angle of Attack 1◦ Wing Planform 0.418 m2

Flap Element Angle of Attack 5.6◦ Aspect Ratio AR 2.89

Main TE Thickness 1.65 mm Flap Overlap 9 mm

Flap TE Thickness 1 mm Flap Gap 12 mm

Endplate Size 400 × 170 × 4 mm
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The wing model was meshed using surface elements in ANSYS Mechanical for struc-
tural analysis. The grid convergence study as a means of verification was performed only
for the fluid mesh. The structural analysis consisted of a smaller number of grid cells in
comparison with that of the fluid analysis. After the mesh sensitivity study was thoroughly
conducted, it was concluded that the resultant wing performance is not significantly at-
tributed to increase in the number of grid cells on the structural side [37]. The reason for
not presenting a validation of the structural model is that there are no experimental data
available for this particular problem in the literature. In the present work, we provide refer-
ence numerical data for the investigated coupled system which can be used for validation
purposes of other numerical methods.
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2.3. Numerical Setup
2.3.1. The Incompressible Fluid Model Due to the Low Mach Number Flow

Computational fluid analysis was carried out using Reynolds averaged Navier–Stokes
(RANS) equations in conjunction with a high performance computing system including a
Linux-based cluster. ANSYS Fluent was utilised to set up all cases in a three-dimensional
segregated steady-state configuration. Due to the low Mach number of 0.09, the effect of
compressibility can be neglected. Therefore, the numerical solution of the incompressible
Navier-Stokes equations was determined in the fluid model. For all simulations, when
second-order precision is required, the upwind discretisation scheme is employed. The
coupled pressure-velocity coupling algorithm was used, which is suitable for coupling
applications such as structural analysis. Six turbulence models were examined, each with
its own set of wall treatments and variations: the one-equation Spalart–Allmaras model [44],
the standard k-ε model [45], the standard k-ω model [46], the k-ω SST model [47], the
k-ε RNG model [48], and the Realizable k-ε model [49]. Enhanced wall treatments were
applied to all k-εmodel variants.

The boundary conditions were created to duplicate the experiment arrangement,
as illustrated in Figure 3. A velocity inlet boundary condition with 30 m/s uniformly
distributed freestream in positive streamwise direction and appropriate turbulent vis-
cosity ratios were used depending on the turbulence models. The upstream boundary
was positioned 5c upstream from the leading edge. The downstream boundary placed
15c downstream from the trailing edge was modelled using a pressure outlet boundary
condition with gauge pressure of 0 Pa. A solid wall with no-slip condition was used to
simulate the wing and the ground. In order to depict moving ground effect, the ground had
a tangential velocity equal to the freestream with the estimated boundary layer thickness
of 0.025 m. The remainder of the boundary conditions were modelled as a symmetry
condition to impose zero crossflow condition and to remove the requirement of additional
boundary layer resolution.
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Based on recommendations suggested by ANSYS [50], the smoothing method in
the dynamic mesh function was used in order to update the fluid mesh according to the
structural analysis results and to provide better quality mesh. The wing was configured
as an interaction surface between the fluid and structural analysis where resultant data
from each module are bidirectionally transferred. The physical time scale of the simulated
process was approximately one second, which is a very short period of time. Furthermore,
the main focus of the research was to investigate the fluid flow field and to quantify the
wing’s aerodynamic performance in conjunction with the wing deflection where fluid
flow is considered as steady-state in our simulations due to the short physical time of the
wing deflection.
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2.3.2. Structural Model

Due to the lack of detailed information in the public domain about the structural
configuration of the wing, the upper and lower surfaces of the wing were created as
a general form of composite structure with a number of composite material layers in
ANSYS Composite PrepPost (ACP) considering the manufacturing limitation. The steady-
state structural analysis was carried out in ANSYS Mechanical, and the wing model was
discretised by quad-dominate shell elements including hexahedral elements for better
mathematical representation of the physical model based on the finite element analysis
technique. The composite materials used in this research were orthotropic carbon fibre-
reinforced thermoplastics, which are commonly used in the motorsport industry, provided
by ANSYS Engineering Data Library. The detailed material properties are presented
in Table 2.

Table 2. Mechanical properties of composite materials.

Mechanical Property Epoxy Carbon UD
(230 GPa)

Epoxy Carbon
Woven (230 GPa)

Epoxy Carbon
Woven (395 GPa)

Young’s modulus (MPa) 1.21 × 105 61,340 91,820

Shear modulus (MPa) 4700 19,500 19,500

Poisson’s ratio 0.27 0.04 0.05

Density
(
kg/m3 ) 1490 1420 1480

3. Results
3.1. Grid Sensitivity Study

In this section, the grid sensitivity study of the double-element composite wing with
the FSI modelling is carried out to provide information on the validity of the aero-structural
two-way coupling computational model and the independence of the discretisation from
the grid resolution. An investigation into the grid convergence index (GCI) was conducted
as recommended by Roache [51,52]. Three grids were constructed: A coarse mesh with
1.3 M grid points, a medium mesh with 3.1 M cells, and a fine mesh of 6.3 M grid points.
Each numerical solution was completely converged with respect to iterations, and the drag
coefficient was obtained from the solutions. According to the procedure given by Roache,
in order to obtain the grid convergence index for the flow field, the effective grid refinement
ratio, re f f ecive, and the order of grid convergence, p, should be calculated using the total
number of grid points (N) and dimension of the fluid domain—re f f ecive,12 for between
coarse and medium grids and re f f ecive,23 for between medium and fine grids. The final grid
convergence ratio was obtained as shown in Table 3 in relation to the GCI values for the
coarse-medium grid and the medium–fine grid determined. Because the GCI ratio is 1.001,
which is close to one, the asymptotic region of convergence was effectively achieved.

Table 3. Summary of GCI study.

Variable Coarse Medium Fine

N 1.3M 3.1M 6.3M
Cd 0.16302 0.16283 0.16253

re f f ective,12 0.736
re f f ective,23 0.795

P 0.701
GCI12[%] 0.227
GCI23[%] 0.370
GCI ratio 1.001

Followed by the grid convergence study suggested by Roache, the impact of grid
resolution on computational outcomes is also explored by presenting the surface pressure
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distribution and the wake profile as shown in Figure 4. The turbulence model was built
using the Spalart–Allmaras model with all three instances, and the three grids indicated in
Table 3 were employed in this investigation. The surface pressure distribution at h/c = 0.211
presented in Figure 4a was obtained with the double-element composite wing at the
reference incidence, and Zerihan’s experimental work is also presented for comparison [53].
Little variation of the pressure distribution is observed over different grid resolution.
In addition, Figure 4b shows the wake flow field for three different grid resolutions at
x/c = 1.066 at the same ride height in comparison with the experiment results obtained
by Zerihan [53] using laser doppler anemometry (LDA) techniques. Between the results,
the overall agreement of the velocity profile was effectively achieved for all three grids.
However, the greatest velocity deficit from the main element as well as the horizontal
position of the confluence point in the middle of two wakes are underpredicted by the
coarse grid. Therefore, the medium grid resolution was selected for all simulations in
this study, providing advantages of computational efficiency and ensuring the validity of
the results.
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For further analysis of the grid sensitivity study, a non-FSI simulation with a rigid
double-element wing model was additionally conducted, and the associated results are
presented in Figure 4. Due to the little discrepancy of the results obtained by between
different grid resolutions of the FSI modelling, the finest grid was specifically selected for
the non-FSI case. In Figure 4a, the resultant surface pressure distributions obtained by
the non-FSI simulation show a similar shape to the experimental results. In comparison
with the non-FSI data, the FSI results with a flexible wing generally present a comparable
shape of the pressure distribution with approximately 4% difference of the suction peak
pressure on the lower surface of the wing near the leading edge. As the lower surface
of the wing, especially where the flow is constrained between the wing and ground, is
sensitive to small perturbation, this discrepancy of the suction peak pressure could increase
the possibility of change in the flow field characteristics and may influence the wing
aerodynamics. In addition, Figure 4b depicts the associated results of the wake survey
obtained from the non-FSI simulation with the rigid wing. The rigid wing simulation
manages to capture the general tendency of the velocity profile in comparison with the
experiment and the FSI cases apart from showing that the maximum error of the velocity
deficit at the confluence point is roughly 9%. In the development of aircraft, there have
been extensive studies on improvement of aerodynamic efficiency in order to increase
the payload and reduce fuel consumption, which are sensitive to marginal changes in the
aerodynamic performance [54–56]. Similarly, the ultimate goal of the F1 cars is to reduce the
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total time of a lap. Due to the sensitive operation conditions such as close ground proximity,
a marginal difference of the aerodynamic performance caused by the ride height change
would have an impact on the final lap time [57]. Thus, investigation of the aeroelastic
behaviour of a double-element composite wing using the FSI modelling discussed in this
research work is crucial to enhance accuracy of the wing performance associated with the
complex fluid flow field.

3.2. Turbulence Model Study

This section outlines a numerical study on the suitability of various turbulence models
for the aero-structural phenomenon using the double-element composite FSI wing model
in terms of the incompressible fluid flow features near the surface and far from the trailing
edge. Six turbulence models were quantitatively assessed at two particular ride height cases
selected for clarification: h/c = 0.211 for a flow condition within the force enhancement
region [9] and h/c = 0.079 near the maximum downforce with distinctive wake characteris-
tics of the main element and flap. In this study, the main element wake is considered as the
lower wake and the flap wake as the upper wake according to their location.

The surface pressure distributions on both the main element and flap are accurately
captured by all turbulence models as shown in Figure 5a. Followed by the stagnation
pressures close to the leading edge, CPstag , correctly captured, the suction peak representing
the maximum downforce and fastest flow is also accurately predicted by all turbulence
models. The details of quantitative data of the surface pressure distribution are presented
in Table 4 in comparison with the experiment and numerical aerofoil result.

Table 4. Information on surface pressures for several turbulence models, h/c = 0.211.

2D [58] 3D [53]

CPsuc x/c at CPsuc CPsuc x/c at CPsuc

Experimental −4.48 0.08 −4.46 0.08

Turbulence model
2D CFD [58] 3D FSI

CPsuc x/c at CPsuc CPsuc x/c at CPsuc

Spalart–Allmaras −4.96 0.11 −4.18 0.095
Standard k-ε −4.95 0.11 −4.02 0.095

k-ε RNG −4.93 0.11 −3.88 0.095
Realizable k-ε −4.94 0.11 −4.13 0.095
Standard k-ω −4.91 0.11 −4.20 0.095

k-ω SST −4.93 0.11 −4.18 0.095

Figure 5b presents the velocity profile of the wake obtained by all turbulence models,
which includes the LDA experimental results extracted from research carried out by Zhang
and Zerihan [9]. Most turbulence models properly anticipate the wake below the lower
wake; the vertical position of the lower wake’s lower limit was underpredicted by Standard
k-ε. The velocity profile representing the resultant ground boundary layer is well captured
by all computational models, and the Spalart–Allmaras model shows improvement in
terms of the ground boundary layer. The discrepancy observed in the wake boundaries
has a consequent influence on a variation within calculation of the upper ((δ99/c)top) and
lower ((δ99/c)low) wake thickness. Table 5 shows the quantitative information of the wake
profile obtained by each turbulence model at x/c = 1.066.

Figure 5c,d present the surface pressure distribution and the wake profile at x/c = 1.066,
respectively, at lower ride height of h/c = 0.079. In a similar way to the higher ride height
case, little variation of the surface pressure over the main element and flap obtained by the
turbulence models is shown including the increased magnitude of the suction surface load-
ing. The actual test results of the wake profile are not available at h/c = 0.079. According
to the analysis, the best prediction of the quantitative feature of various turbulence models
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is achieved by the Spalart–Allmaras model, which was selected in this study. Note that the
legends belong to different quantities in Figures 4 and 5.
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Table 5. Information on wake profiles for several turbulence models at x/c = 1.066 for h/c = 0.211.

Turbulence Model
umin/U∞ y/c at umin/U∞ y/c at δ δ99/c

Low Top Low Top Low Top Low Top

Experimental [9] 0.65 0.72 0.150 0.200 0.104 0.205 0.067 0.034
Spalart–Allmaras 0.64 0.71 0.141 0.182 0.093 0.206 0.078 0.035

Standard k-ε 0.64 0.65 0.140 0.178 0.080 0.211 0.085 0.046
k-ε RNG 0.64 0.68 0.140 0.180 0.095 0.211 0.077 0.039

Realizable k-ε 0.62 0.68 0.140 0.180 0.094 0.212 0.078 0.040
Standard k-ω 0.67 0.70 0.144 0.182 0.092 0.207 0.077 0.038

k-ω SST 0.64 0.70 0.144 0.182 0.092 0.207 0.077 0.038
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3.3. FSI Analysis
3.3.1. Chordwise Surface Pressure

The influence of aeroelastic behaviour of the double-element composite wing in
ground effect is discussed with height variation in comparison with the experimental
results. The impact of ground proximity on the surface pressure distribution of a two-
element composite wing is examined and compared to experiment observations [53] shown
in Figure 6. The overall shape of the surface pressures on both elements at all heights
are accurately calculated. The leading-edge stagnation pressures are well captured for
the main element and the flap. The pressures on the pressure surfaces of both the main
element and flap are correctly predicted, remaining relatively independent of the ride
height, whereas a significant increase in pressures on the suction surfaces with increase in
ground proximity is observed. Figure 6b shows the surface pressure result at lower ride
heights in comparison with the experiment. The increase in suction loading on the main
element lower surface with increase in ground proximity is accurately captured. On the
other hand, little change in suction loading on the lower surface of the flap is observed
when the ground is approached.
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Figure 7 shows the chordwise surface pressures at the wing centre and towards the
wing tip, which are described at two heights for clarity and compared to experimental
results [53]. Non-FSI modelling results at the wing tip at both ride heights are also included,
and the aeroelastic effect is better represented at the wing tip area compared to the centre of
the wing. Figure 7a presents the results of the surface pressure distribution at h/c = 0.395.
From the centre to the tip, the suction on the bottom surface of the primary part is decreased.
The spike on the leading edge has the most suction over the main part in the centre, whereas
for the tip, the spike is not as sharp, and the suction peak at x/c = 0.1 is greater. The
pressures on the upper surfaces of both the main element and flap are reduced from the
centre to the tip. The non-FSI case with the rigid wing at the wing tip appears to follow the
similar trend of the pressure distribution to the experimental result. It was observed that
the aeroelastic composite wing produces less suction on the main element, but marginally
more suction on the flap near the wing tip in comparison with the experimental data and
non-FSI data. Figure 7b shows the surface pressure distribution at h/c = 0.105. The load
on the main element suction surface is significantly reduced towards the wing tip, and the
reduction is greater than at higher heights. From the centre to the tip, the pressure on the
upper surfaces of both the main element and the flap is slightly reduced. Near the wing tip,
the non-FSI simulation generally shows a good agreement with the experimental chordwise



Fluids 2022, 7, 85 13 of 22

pressure distribution. It was found that with the FSI modelling, the suction peak on the
lower surface of the main element is reduced and consequently alleviates the pressure
recovery demand. The flap produces more suction load with the elastic wing, generating an
additional favourable pressure gradient which might result from the wing flexibility. The
velocity contours at the wing centre and tip at different heights are visualised in Figure 8.
As discussed above, the accelerated flow underneath the main element is presented with
the ground height decreased as shown in Figure 8a,c. It is depicted that the flow speed
on the bottom surface of the main element was found to be slowed from the centre to the
tip as shown in Figure 8a,b. In addition, the reduction in flow speed is greater at lower
ride height, and Figure 8d illustrates a region of low velocity downstream underneath the
trailing edge of the flap.

Fluids 2022, 7, x  14 of 24 
 

(a) (b) 

Figure 6. Chordwise surface pressure at wing centre: (a) high ride heights, (b) low ride heights. 

(a) (b) 

Figure 7. Chordwise surface pressure at wing centre and wing tip: (a) h/c = 0.395, (b) h/c = 0.105. Figure 7. Chordwise surface pressure at wing centre and wing tip: (a) h/c = 0.395, (b) h/c = 0.105.

Fluids 2022, 7, x  15 of 24 
 

 
Figure 8. Velocity contours at wing centre and wing tip at different heights (a) h/c = 0.395, centre; 
(b) h/c = 0.395, tip; (c) h/c = 0.105, centre; (d) h/c = 0.105, tip. 

3.3.2. Spanwise Surface Pressure 
In addition to the chordwise pressure distribution analysis, the spanwise surface 

pressures are numerically calculated at the quarter-chord positions on both the main ele-
ment and flap and compared with the experimental results [53]. The estimated spanwise 
surface pressure distribution on the main element at various ride heights is depicted in 
Figure 9, presenting η, non-dimensionalised span from wing tip, on the x axis and pres-
sure coefficient on the y axis. For the large heights shown in Figure 9a, it can be seen that 
the suction loading on the primary element suction surface increases with the decrease in 
distance between the wing and the ground, which shows a higher rate at the wing centre. 
However, similar to the chordwise pressures, the pressures on the upper surfaces remain 
independent of a change in the height. Figure 9b shows the same results for the smaller 
heights. As the height is lowered, the loading on the suction surface increases at a higher 
rate than that at higher heights, with minimal change in pressures on the pressure sur-
faces. 

Figure 10 shows the spanwise pressure distribution on the flap in ground proximity. 
For the large heights shown in Figure 10a, a consistent increase in suction loading is ob-
served on the lower surface of the flap near the tip outside of around η 0.04. The flow 
on pressure surfaces stays constant throughout the span when the wing height is changed. 
It can be seen that the gradient of suction pressures near the tip increases compared to the 
wing centre part, for example, at h/c = 0.211 C  ≈  −1.12 near the inboard part of the 
wing, whereas C  ≈  −1.89 near the tip. Figure 10b shows the same results at smaller 
heights. At this height, the suction at the central portion reduces with the increase in 
ground proximity. Furthermore, the suction surface loading near the tip reduces to a 
greater extent. 

Following the analysis of the computational spanwise surface pressure distributions 
in ground proximity over the main element and flap, Figure 11 shows the numerical FSI 
findings at various heights in contrast to the experimental data; h/c = 0.395, 0.211, and 
0.105. The spanwise pressures on the main element are shown in Figure 11a. The general 
trend of the suction increase on the suction surface with the decrease in ride height is 
accurately captured. However, it can be noticed that the magnitude of suction loading on 
the lower surface is underpredicted across the span compared to the experiment, and the 
discrepancy becomes greater towards the central portion of the wing—at h/c = 0.395, 𝐶  ≈

Figure 8. Velocity contours at wing centre and wing tip at different heights (a) h/c = 0.395, centre;
(b) h/c = 0.395, tip; (c) h/c = 0.105, centre; (d) h/c = 0.105, tip.

The double-element wing exerts extra stresses on the top and bottom surfaces of both
the main element and the flap when compared to a single-element wing, the latter of which
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is relatively unaffected by the ride height variation. The main element suction surface
generates more significant suction loading and the pressure recovery towards the trailing
edge is less demanding. According to Smith [59], the existence of the second element,
the flap, induces a larger portion of circulation on the main element, referring to as the
circulation effect which is beneficial to increasing the wing performance with multiple
elements. This effect may be seen in the surface pressures in the centre of the rigid wing,
which shows an increase in suction pressure as the ride height decreases.

With the aeroelastic-modelled wing, the surface pressure distributions at various ride
heights demonstrate the different pressure characteristics at the wing centre and tip. The
suction loading on the main element lower surface reduces from the centre to the tip due to
the reduced effective angle of attack caused by the wing tip vortex upwash. In comparison
with the suction on the main element of the rigid wing cases near the wing tip at both
ground heights, the aeroelastic effect derived by the composite elements causes the wing to
be tilted backwards, resulting in less suction pressure and stabilising the pressure recovery.
On the flap, the FSI modelled-composite wing marginally increases the suction pressure
near the wing tip compared to the rigid wing. As the flap is deflected by the aerodynamic
loading, the angle of attack is reduced producing a more favourable pressure gradient at
the first part by moving the centre of pressure rearwards, which might help to decrease the
drag. Simultaneously, additional suction may be generated by stronger interaction with the
main element vortices underneath.

3.3.2. Spanwise Surface Pressure

In addition to the chordwise pressure distribution analysis, the spanwise surface
pressures are numerically calculated at the quarter-chord positions on both the main
element and flap and compared with the experimental results [53]. The estimated spanwise
surface pressure distribution on the main element at various ride heights is depicted in
Figure 9, presenting η, non-dimensionalised span from wing tip, on the x axis and pressure
coefficient on the y axis. For the large heights shown in Figure 9a, it can be seen that the
suction loading on the primary element suction surface increases with the decrease in
distance between the wing and the ground, which shows a higher rate at the wing centre.
However, similar to the chordwise pressures, the pressures on the upper surfaces remain
independent of a change in the height. Figure 9b shows the same results for the smaller
heights. As the height is lowered, the loading on the suction surface increases at a higher
rate than that at higher heights, with minimal change in pressures on the pressure surfaces.
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Figure 10 shows the spanwise pressure distribution on the flap in ground proximity.
For the large heights shown in Figure 10a, a consistent increase in suction loading is
observed on the lower surface of the flap near the tip outside of around η = 0.04. The flow
on pressure surfaces stays constant throughout the span when the wing height is changed.
It can be seen that the gradient of suction pressures near the tip increases compared to the
wing centre part, for example, at h/c = 0.211 Cp ≈ −1.12 near the inboard part of the wing,
whereas Cp ≈ −1.89 near the tip. Figure 10b shows the same results at smaller heights. At
this height, the suction at the central portion reduces with the increase in ground proximity.
Furthermore, the suction surface loading near the tip reduces to a greater extent.
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Following the analysis of the computational spanwise surface pressure distributions
in ground proximity over the main element and flap, Figure 11 shows the numerical FSI
findings at various heights in contrast to the experimental data; h/c = 0.395, 0.211, and
0.105. The spanwise pressures on the main element are shown in Figure 11a. The general
trend of the suction increase on the suction surface with the decrease in ride height is
accurately captured. However, it can be noticed that the magnitude of suction loading
on the lower surface is underpredicted across the span compared to the experiment, and
the discrepancy becomes greater towards the central portion of the wing—at h/c = 0.395,
Cp ≈ −2.22 for the numerical result compared to Cp ≈ −2.64 for the experiment. The
surface pressures on the upper surfaces are correctly predicted, remaining independent
of changes in ride height. Figure 11b shows the flap with the same effects. Similarly, the
estimated spanwise surface pressures on the suction surfaces accurately depict the rise in
suction as the wing approaches; however, as with the main element scenario, less suction is
created along the span for all heights. Again, the pressure across the pressure surfaces is
precisely computed, revealing that there is minimal change as the ground height decreases.

Figure 12 illustrates the maximum deflection and the twist angle of the wing through-
out a range of ride heights, which occur at the trailing edge of the flap. The overall trend
of the deflection increase is achieved when the ground proximity is increased as shown
in Figure 12a. With the decrease in ride height up to h/c = 0.158, the gradual increase in
deflection is observed, reaching the corresponding value of 1.05 mm. For further reduction
in the height, little variation is shown with the maximum value of 1.09 mm at h/c = 0.105.
The boundary condition of the flow speed used in our investigations corresponds to the
experimental conditions of the reference data. The maximum twist angle of the wing flap is
also presented in Figure 12b. The variation of both deflection and twist angle computed
in this research is marginal due to the low velocity inlet boundary condition and small
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wing aspect ratio. However, such variation analysed in this study indicates that the cen-
tre of pressure position is shifted downstream due to the incidence reduction induced
by the aeroelastic effect, resulting in the pressure difference and ultimately aerodynamic
performance change. The velocity streamline along with the surface pressure coefficient at
various ride heights are visualised in Figure 13. As discussed above, as the wing is lowered,
the flow speed under the main element near the centre increases as shown, decreasing the
pressure coefficient. On the other hand, it is shown that at lower height in Figure 13c the
flow near the end plate is slowed down resulting from the vortical flow generated from the
main element lower surface edge.
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The flow on the main element and the flap exhibits unique three-dimensional proper-
ties for a range of ride heights as the ground is approached, as indicated in the spanwise
pressures. As shown in Figure 9, when height is reduced, the suction pressure on the main
element increases across the span due to enhancement of the ground effect, whereas the
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pressures on the upper surface remain constant. A similar feature can be found at higher
heights across the span on the flap. However, at small heights the suction pressure is re-
duced with the decrease in the height. As briefly mentioned previously, the suction loading
on the flap has a strong relationship with the vortex generated. For the low ride height, the
vortex is likely to break down or even burst, caused by the unfavourable pressure gradient.
When this happens, the axial velocity of the vortex suddenly drops, resulting in reduction
in the vortex strength and induced velocities. Therefore, the suction on the flap is reduced
due to the weak and diffused vortex, and the influence of the vortex becomes stronger with
lower heights. The FSI simulations compared to the experiment show less suction pressure
on the lower surfaces of both the main element and flap, resulting from decreasing the
effective incidence. The wing is constructed with the composite material which includes
the elastic characteristics. When the aerodynamic loading is applied to the main element or
flap, the wing is tilted backwards, resembling a wash-in effect.
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3.3.3. Aerodynamic Forces

Figure 14 shows the predicted aerodynamic forces created by the double-element
composite wing in close proximity to the ground. The experimental forces measured
by integration of the surface pressures are provided together as a reference [9]. The
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overall characteristics of downforce with variation of ride heights shown in Figure 14a
are correctly calculated. As the height is lowered, the computational downforce grows
until it reaches its maximum value, followed by a sudden drop of downforce further down.
However, compared to the experimental results showing that the peak occurs at a height
of h/c = 0.066, corresponding to CL = 2.579, the maximum value obtained by the FSI
simulation is reached at a higher height of h/c = 0.079 with lower downforce corresponding
to CL = 2.499. In addition, the downforce reduction below the peak height happens to
a greater extent with the elastic composite wing. Figure 14b shows the variation of drag
coefficient with various ride heights in comparison with the experiment. The overall trend
of drag increase with increasing ground proximity is accurately predicted with a smooth
and gradual gradient. However, with the numerical solution including the aeroelastic effect,
a greater amount of drag coefficient is obtained at all ride heights, and lower gradient at
low heights is observed.

1 
 

 

Figure 14. Aerodynamic forces of double-element wing in ground proximity with various heights:
(a) lift coefficient, (b) drag coefficient.

As the wing including the main element is deflected under the aerodynamic loading,
the distance between the lowest point of the wing and the ground is temporarily reduced
compared to the geometrical position. The flow field very close to the ground may be
sensitive to even a small perturbation. Consequently, as the wing is deflected at low height
due to its structural characteristics under aerodynamic loading conditions, the maximum
downforce can be achieved at the higher height than the experiment. The shortened
distance from the ground may cause a strong adverse pressure gradient to be brought
forward in a streamwise direction resulting in early vortex breakdown or burst. This
effect could impede the vortex generation and build up. For the aerodynamic analysis
of the double-element aerofoil, Mahon [58] mentioned that the drag is mainly generated
by the flap, and the majority of it is attributed to the wake-induced drag. With the three-
dimensional wing used in this study, the drag can also result from the induced drag which
is a by-product of the wing tip vortices. Stronger wing tip vortices induced by enhanced
flow entrainment at the lower ride height as a result of the wing deflection are created, and
consequently more induced drag is generated.

3.3.4. Wake Flow Field

For further investigation into the flow field rising from the double-element composite
wing, the wake survey was acquired at the x/c = 1.066 location in terms of various ride
heights in the same way that the laser doppler anemometry (LDA) testing produced
experimental findings [53]. The general feature of the wake profile with variation of the
ride height is correctly captured in comparison with the experiment and does not represent
distinct aeroelastic effect as those results were tested at the centre of the wing.
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The wake profile with different ride heights at x/c = 1.066 and its streamwise position
are illustrated at Figure 15, and detailed information is listed in Table 6. For the sake of
clarity, three ride heights were selected. The general trend between the experiment and
numerical results is in agreement with a few exceptions. First, the boundary layer thickness
growth close to the ground was captured; however, underprediction of the minimum
velocity within the ground boundary layer was observed. A region of accelerated flow
between the wing and the ground and associated velocities was accurately calculated for
all heights, but lower boundary of the lower wake was underpredicted for h/c = 0.395
and 0.105. In addition, the increase in the jetted flow with the decrease in height can be
clearly observed. The lower wake boundary was underpredicted for all heights. As a result,
the wake thickness increased with the increase in ground proximity due to the change in
vertical position of the wake boundary. The gradient of velocity recovery was correctly
captured. The velocity deficit within the lower wake was accurately captured except for
the height of h/c = 0.105, which provides overprediction of minimum velocity compared
to the experiment.
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Table 6. Information on wake profiles for various ride heights at x/c = 1.066.

h/c Exp/FSI
umin/U∞ y/c at umin/U∞ y/c at δ δ99/c

Low Top Low Top Low Top Low Top

0.395
Experiment 0.72 0.74 0.164 0.203 0.136 0.217 0.054 0.027

FSI 0.71 0.74 0.152 0.174 0.112 0.214 0.051 0.051

0.211
Experiment 0.66 0.76 0.150 0.200 0.124 0.207 0.060 0.023

FSI 0.64 0.71 0.141 0.182 0.105 0.207 0.066 0.036

0.105
Experiment 0.58 0.80 0.134 0.192 0.102 0.198 0.078 0.013

FSI 0.40 0.68 0.128 0.176 0.070 0.197 0.099 0.028

The analysis of the wake flow field at the centre of the double-element composite wing
was numerically carried out and compared with the LDA testing results. As the wing is
approached, the wake thickens and the velocity deficit within the wake increases which
mainly resulted from influence of the main element. Mahon [10] concluded that a region of
recirculation created behind the trailing edge of the primary element is greatly attributed
to the lower wake, and a shape of the trailing edge of the main element could impact the
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main element wake and further aerodynamic performance. On the other hand, the surface
pressures can be used to account for this phenomenon. As discussed earlier, the suction
surface pressure of the main element considerably changes, and when the height is reduced,
the pressure recovery increases. However, there is little perturbation of pressure found on
the surface of the flap concerning variation of ride height, which means that the flap is less
sensitive to ground proximity due to distance from the ground. Consequently, decreasing
the wing height causes the adverse pressure gradient on the main element to increase,
which can result in flow separation and increasing the wake. In comparison with the LDA
testing results, the computational wake profile shows a generally similar overall feature but
not distinctive as it is taken at the centre of the wing where the aeroelastic characteristics
are less effective.

4. Conclusions

In the present work, a modified two-way coupling method was employed for the
purpose of investigation into the fluid flow field around the composite-material multi-
element wing to assess the aerodynamic performance of the wing induced by the aeroelastic
effect. Our computational approach focused on a novel coupling of the aerodynamic and
structural behaviour of the double-element composite front wing of an F1 vehicle in the
context of high performance computing (HPC) to simulate a steady-state fluid-structure
interaction (FSI) configuration using the ANSYS software package. The objective of these
investigations was to understand the suitability of computational techniques for FSI mod-
elling and to quantify the influence of aeroelastic behaviour of the composite wing on the
aerodynamic performance in ground effect.

It was found that when the wing approaches the ground, substantial suction loading
is created on the bottom surface of the main element, whereas the pressure around the flap
remains relatively unaffected by the ride height variation as it is far above the ground. For
the spanwise pressure around the wing due to the aeroelastic effect, a smaller amount of the
suction pressure is obtained through simulations on both main elements and the flap across
the span compared to experimental data. The largest numerically predicted downforce
occurs at a higher ride height, followed by a larger drop in downforce at the lowest height
as shown in comparison with experimental data. The FSI simulation generates additional
drag compared to the experiments by a broadly constant value across the ride heights. As
the height of the primary element is lowered, the velocity deficit inside the wakes grows,
owing to an increase in the unfavourable pressure gradient underneath it.

It is important to note that the practical contribution of our investigation was to
quantify the coupled effect on the aerodynamic and structural performance of the wing
because the quantification of these physical processes is in the mainstream research focus.
Overall, we focused on the development of an accurate FSI numerical modelling framework
in conjunction with computational fluid dynamics (CFD) techniques and structural finite
element analysis (FEA) for an F1 application. In future work, a more realistic F1 front wing
could be investigated through computational methods in addition to wind tunnel testing
of the ground effect to improve the applicability of current models.
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