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Abstract: Abridged statistical dynamical closures, for the interaction of two-dimensional inhomoge-
neous turbulent flows with topography and Rossby waves on a beta–plane, are formulated from the
Quasi-diagonal Direct Interaction Approximation (QDIA) theory, at various levels of simplification.
An abridged QDIA is obtained by replacing the mean field trajectory, from initial-time to current-time,
in the time history integrals of the non-Markovian closure by the current-time mean field. Three
variants of Markovian Inhomogeneous Closures (MICs) are formulated from the abridged QDIA by
using the current-time, prior-time, and correlation fluctuation dissipation theorems. The abridged
MICs have auxiliary prognostic equations for relaxation functions that approximate the information
in the time history integrals of the QDIA. The abridged MICs are more efficient than the QDIA for
long integrations with just two relaxation functions required. The efficacy of the closures is studied in
10-day simulations with an easterly large-scale flow impinging on a conical mountain to generate
rapidly growing Rossby waves in a turbulent environment. The abridged closures closely agree with
the statistics of large ensembles of direct numerical simulations for the mean and transients. An Eddy
Damped Markovian Inhomogeneous Closure (EDMIC), with analytical relaxation functions, which
generalizes the Eddy Dampened Quasi Normal Markovian (EDQNM) to inhomogeneous flows, is
formulated and shown to be realizable under the same circumstances as the homogeneous EDQNM.

Keywords: Markovian closures; non-Markovian closures; turbulence; Rossby waves; statistical
dynamics; inhomogeneous flows

1. Introduction

The development of statistical dynamical closure theory for fluid dynamical equations
describing chaotic motion depends on a suitable truncation of the infinite hierarchy of
coupled moment or cumulant equations. For systems described by quadratic nonlinearity,
the prognostic equation for a given cumulant is coupled to the next higher cumulant. Exam-
ples of particular interest here are the Navier–Stokes equations, and the quasi-geostrophic
and primitive equations of atmospheric and oceanic dynamics. If closed at second order,
the mean, the one-point function, is coupled to the second order cumulant, the two-point
function, which in turn is coupled to the three-point function and so on. The order at which
this infinite hierarchy of moments is truncated defines the dynamics in terms of interacting
triads in wavenumber space. In particular, there is an important class of closure theories
for which the three-point function can be represented in terms of time history integrals
over a product of three (renormalized) propagators–two-point cumulants and response
functions–multiplied by vertex functions [1]. As noted in the review in the introduction of
Frederiksen [2], essentially, the same closure problem occurs for corresponding systems
in quantum field theory, such as quantum electrodynamics (QED) and the scalar Klein
Gordon equation with gφ3 Lagrangian.
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The definitive pioneering advance in statistical fluid dynamical closure theory was
made by Kraichnan [3] with his development of the non-Markovian Eulerian Direct Interac-
tion Approximation (DIA) for three-dimensional homogeneous isotropic turbulence (HIT)
in which the propagators are closed at second order and the renormalized vertex functions
are replaced by the bare vertices, the interaction coefficients, of the Navier–Stokes equations.

Kraichnan’s [3] DIA was followed by independent approaches by Herring [4,5], result-
ing in the closely similar self-consistent field theory (SCFT) closure and by McComb [6–9]
with his local energy transfer (LET) closure. With hindsight, the SCFT and LET closures can
be derived formally from the DIA, as noted by Frederiksen et al. [10] and Kiyani and Mc-
Comb [11], by using a fluctuation–dissipation theorem (FDT) [12–16], as an approximation.
These related closures use the prior-time FDT [14] (Equation (3.5)) defined by

Ck(t, t′) ≡ Rk(t, t′)Ck(t′, t′) (1)

for t ≥ t′. Here, Ck(t, t′) is the two-time spectral covariance at wavenumber k, Rk(t, t′)
is the response function and Ck(t′, t′) the prior time single-time covariance. Both the
SCFT and LET have the same single-time second order cumulant equation as the DIA but
with somewhat different response function or two-time cumulant equations. The SCFT
has the same response function as the DIA but determines the two-time cumulant from
Equation (1). The LET uses the DIA two-time cumulant and determines the response
function from Equation (1). Carnevale and Martin [17] and Carnevale and Frederiksen [18]
also developed two space scale versions of the Eulerian DIA closure for homogeneous
anisotropic turbulence interacting with Rossby waves and internal gravity waves.

The subsequent further development of closures for homogeneous turbulence has
been reviewed by Frederiksen and O’Kane [1], McComb [7–9], Lesieur [19], Zhou et al. [20],
Cambon et al. [21], Sagaut and Cambon [22], and Zhou [23].

Kraichnan’s [3] theoretical approach to the statistical dynamics of HIT, and even
more so the diagrammatic approaches of Wyld [24] and Lee [25], are based on application
of renormalized perturbation theory to classical systems. Renormalized perturbation
theory, through diagrammatic and functional approaches, were employed most famously
by Tomonaga, Schwinger, and Feynman to develop the remarkably successful quantum
electrodynamics (QED) theory in the mid-1900s (Frederiksen [2] reviews the literature).
In QED the strength of the interaction, measured by the fine structure constant of ~ 1

137 , is
quite weak while in high Reynolds number turbulence the interactions are much stronger.

Martin et al. [26] and Phythian [27] generalized the Schwinger–Dyson functional
operator approach for QED to classical systems while the Feynman path integral ap-
proach [2,28,29] was employed by Phythian [30] and Jensen [31] to extend the functional
operator approach to more complex systems.

The performance of the DIA, as well the SCFT and LET closures, at the large energy
containing scales, is quite accurate but the high Reynolds number power law behavior of
the DIA and SCFT differ slightly from the k−

5
3 inertial range for three-dimensional turbu-

lence and the k−3 enstrophy cascading inertial range for two-dimensional turbulence [32].
Kraichnan [33] attributed these deficiencies to “sweeping effects”, spurious non-local inter-
actions between the small and large scales of the turbulent eddies. McComb [6,7] showed
that, at statistical steady state, the cause of the inconsistency of the DIA, SCFT, and Ed-
ward’s [34] steady state closure, with the Kolmogorov [35] classical k−

5
3 inertial range for

high Reynolds number three-dimensional turbulence was associated with an infrared (zero
wavenumber) divergence for the response function equation. Remarkably, the singularity
disappears with the LET response function showing that the Eulerian LET is consistent with
the classical k−

5
3 inertial range for high Reynolds number three-dimensional turbulence.

However, at moderate Reynolds numbers or for any finite resolution, and notably for
two-dimensional turbulence [36,37], all two-point two-time Eulerian closures such as the
DIA, SCFT, and LET closures all have similar deficiencies with too little small-scale energy.
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Kraichnan [38] noted that the correct inertial ranges could be obtained by localizing
the interactions between wavenumbers of triads through a cut-off ratio α. In fact, the
studies of Frederiksen and Davies [37] and O’Kane and Frederiksen [39] suggest that
α ≈ 4 is essentially universal for both two-dimensional homogeneous and inhomogeneous
turbulence. This is also very close to the estimate of α ≈ 3.5 of Sudan and Pfirsch [40] for
three-dimensional HIT.

Subsequently, Kraichnan [41,42], Kraichnan and Herring [43], Kaneda [44], and Go-
toh et al. [45] used transformations of the fluid dynamical equations into quasi-Lagrangian
coordinates to develop alternatives to the Eulerian closures. Unfortunately, unlike the Eule-
rian DIA, the equations and results of the quasi-Lagrangian closures depend on the choice
of field variables used and whether the formulation is in terms of labelling time deriva-
tives [41] or measuring time derivatives [44] as reviewed by Frederiksen and Davies [37].
The quasi-Lagrangian closures attempt to avoid the spurious convection effects by non-
unique transformations and choices of variables but are still second order in perturbation
theory and do not fundamentally address the problem of vertex renormalization. Mar-
tin et al. [26] asserted that “the whole problem of strong turbulence is contained in a proper
treatment of vertex renormalization”. A fundamental resolution of the vertex renormaliza-
tion problem would certainly be a phenomenal achievement for the theory of HIT. However,
in the meantime a one parameter non-Markovian theory with α ≈ 3.5 to 4, as discussed
above, or a one parameter Markovian closure such as the EDQNM and EDMIC, discussed
in Section 7, may suffice.

There is an equally important issue, stressed by McComb [9], and that is “Ultimately,
if closures are to be useful, they must be capable of application to real-life situations”. This
requires the development of computationally tractable closure theories for inhomogeneous
systems. Second-order inhomogeneous closures have traditionally required the computa-
tion of the full covariance and response function matrices to close the mean field equation.
This is the case for closures based on the renormalized perturbation theory approach of
Kraichnan [46,47], on the functional approach of Martin et al. [26], on the path integral
approaches [30,31], and on the corresponding Schwinger–Dyson and Schwinger–Keldysh
methods for quantum field theory [2].

The computational costs of computing the full covariance and response function ma-
trices at every timestep are currently too large, for high-dimensional systems, and are
prohibitive for the non-Markovian closures with potentially long time-history integrals.
Thus, to date, closures that require full covariance matrices including time-history informa-
tion, i.e., correlations in time, such as Kraichnan’s [46,47] inhomogeneous DIA (IDIA) have
not been applied to studies of real-life inhomogeneous turbulence problems. Some progress
has been made in tackling these two important issues of (1) the size of the covariance and
response function matrices and (2) the potentially long time-history integrals.

The quasi-diagonal direct interaction approximation (QDIA) closure, formulated by
Frederiksen [48] for inhomogeneous turbulence interacting with mean flows and topog-
raphy, represents the full covariance and response function matrices, and the three-point
function, in terms of the diagonal elements and the mean flow and topography in spectral
space. It thus reduces the computational problem of second order inhomogeneous closure
from the computation of N × N covariance and response function elements at each time
step to N where N is the total number of components of the dynamical fields. In addition,
the coupled mean field and covariance and response function equations are much simpler
than Kraichnan’s [46,47] IDIA closure and the related inhomogeneous closure formulations
discussed above [2]. The QDIA closure has subsequently been generalized to include
non-Gaussian initial conditions [39], to include Rossby waves on a β-plane [49], to general
classical field theories with first order time derivatives [50,51] and to classical and quantum
field theories with first or second order time derivatives and non-Gaussian noise and
non-Gaussian initial conditions [2].

The QDIA has been numerically implemented and extensively tested against large
ensembles of direct numerical simulations (DNS) and shown to be only slightly slower
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than the DIA for homogeneous turbulence. It has been implemented, in the bare vertex
approximation and, at higher resolution and Reynolds numbers, in regularized form with
α ≈ 4; it has been used to study the statistical dynamics of the interaction of inhomogeneous
turbulent flows with topography on f -planes [39] and β-planes [49]. It has been tested
in predictability studies for atmospheric blocking transitions [49,52], in data assimilation
studies with square root and Kalman filters [53,54], and for developing subgrid scale
parameterizations [55,56]. The structure of the QDIA closure equations has also been
used as a framework for developing subgrid scale parameterizations for atmospheric and
oceanic turbulent flows [57].

Progress has also been made on second major issue noted above, viz., reducing the
cost of computing the potentially long time-history integrals of the non-Markovian closures
that scale like O(T3) where T is the total integration time. The cumulant update restart
procedure [10,58] for homogeneous turbulence that uses non-Gaussian terms in the periodic
restarts has been generalized for the QDIA closure to also improve its computational
efficiency [39,49]. Recently, Frederiksen and O’Kane [1] formulated and implemented
Markovian inhomogeneous closures (MICs) and showed that they performed very well
compared with large ensemble of DNS and with the non-Markovian QDIA.

Orszag [59] formulated the eddy damped quasi-normal Markovian (EDQNM) closure
for HIT for which the computational cost scales with integration time T like O(T). It is a
one-parameter realizable closure that avoids the potential negative energy problems [60,61]
of quasi-normal closures [62]. It can also be formally reduced from the Eulerian DIA by
replacing the response function equation by an analytical form incorporating the eddy
damping, with an empirical damping timescale parameter, and replacing the two-time
cumulant equation by that determined from the current-time FDT

Ck(t, t′) ≡ Rk(t, t′)Ck(t, t) (2)

for t ≥ t′. At about the same time Kraichnan [63] introduced a slightly more complex
Markovian closure for homogeneous turbulence, the test-field model (TFM), which, like
the EDQNM, is consistent with the inertial range power laws for two-dimensional and
three-dimensional turbulence. These Markovian closures have been extensively employed
in the study of both isotropic and homogeneous anisotropic turbulence including in the
presence of waves [17,18,21,22,64–72].

Bowman et al. [68] made an important point about the EDQNM for the interaction of
homogeneous turbulence with waves demonstrating that the closure may not be realizable
if a time-dependent analytical response function is employed rather than the oft-used
asymptotic form. They noted that this is the case irrespective of whether a Markovian form
is derived using the current-time FDT in Equation (2) or the prior-time FDT in Equation (1).
Instead, they established a realizable Markovian closure (RMC) using an FDT that contains
both current- and prior-time cumulants and that we call the correlation FDT

Ck(t, t′) ≡ [Ck(t, t)]
1
2 Rk(t, t′)[Ck(t′, t′)]

1
2 (3)

for t ≥ t′. It is clear from Equation (3) that the response function and correlation function
are equal. The RMC statistical equations consist of a Markovian equation for the single-
time cumulant, in which appears a triad relaxation function, coupled to a Markovian
equation for the triad relaxation function. Bowman et al. [68] also formulated the theory
for multi-field versions of the homogeneous RMC and Hu et al. [73] applied it to the
two equation Hasegawa–Wakatani model of plasma physics. A related realizable test-field
model (RTFM) closure was developed by Bowman and Krommes [74] who employed it
and the RMC to studies of the interaction of homogeneous turbulence and plasma drift
waves (essentially Rossby waves) in the Charney–Hasagawa–Mima equation (essentially
the barotropic vorticity equation with long wave stabilization).
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Frederiksen and O’Kane [1] developed and examined the performance of three
new versions of Markovian Inhomogeneous Closures (MICs) using the three FDTs in
Equations (1)–(3). These FDTs were combined to the form

Ck(t, t′) ≡ [Ck(t, t)]1−XRk(t, t′)[Ck(t′, t′)]X (4)

for t ≥ t′ and Ck(t, t′) = C−k(t′, t) for t′ > t. The current-time FDT corresponds to X = 0,
correlation FDT to X = 1/2 and the prior-time FDT to X = 1. In principle, realizability is
only guaranteed for the variant employing the correlation FDT in Equation (3). However,
for the numerical experiments carried out, the performance of all three variants was very
similar with remarkable agreement with results of the non-Markovian QDIA and with
large ensembles of DNS.

The broad aim of this article is to make further advances in the development of efficient
closures for inhomogeneous turbulent flows. We focus on an issue that complicates the
formulation of MICs derived from the non-Markovian QDIA: the fact that the closure
equations for the QDIA require the complete trajectory of the mean field in the time
history integrals of both the single-time cumulant equation and mean field equation. This
dependence on the mean field trajectory is carried through to one of the three auxiliary
relaxation functions in each of the three MIC variants of Frederiksen and O’Kane [1]. As
we show in this study, if the decay of the two-time cumulants and response functions in the
time history integrals can formally be assumed to be faster than the change in the mean field
then the MIC equations simplify and become more efficient. The abridged MIC equations
involve just two relaxation functions for each closure. Importantly, the new relaxation
functions do not involve the trajectory of the mean field and, equally importantly, for the
MIC employing the current-time FDT in Equation (2), the relaxation functions only involve
the response functions as is the case for the EDQNM for homogeneous turbulence. In the
case of HIT, the EDQNM triad relaxation function can be calculated analytically rather than
through time integration and thus the EDQNM is computationally even more efficient.
If the problem of possible non-realizability of the EDQNM for homogeneous anisotropic
turbulence (HAT) with response functions involving the bare wave frequency [1,68] could
be overcome by a suitable renormalized form then, again, the MIC with analytical relaxation
functions would be vastly more computationally efficient.

In this study we focus on the case of two-dimensional inhomogeneous turbulent flows
interacting with Rossby waves and topography on a generalized β-plane. Our specific
goals are:

1. Formulate the abridged QDIA closure equations in the case of formally slowly varying
mean field components in the time history integrals;

2. Examine the realizability of the abridged QDIA variant and its consistency with
canonical equilibrium;

3. Formulate more efficient abridged MICs for each of the FDT in Equations (1)–(3) based
on the abridged QDIA;

4. Evaluate the performance of the abridged QDIA and the three abridged MICs com-
pared with large ensembles of DNS;

5. Formulate an Eddy Damped Markovian Inhomogeneous Closure that has analyti-
cal representations of the relaxation functions similar to the EDQNM for homoge-
neous turbulence.

Although our abridged more efficient formulations assume that the mean field in the
time history integrals varies more slowly than the decay of the two-time cumulant and
response functions, we test these new non-Markovian and Markovian closures in situations
where the mean field is spun up rapidly from very small amplitude. These simulations
thus are severe tests of the closures as energy is drained from the large-scale flow and the
turbulent eddy field to generate Rossby wave trains via topographic interactions.

The article is organized as follows. The equations for two-dimensional flows, con-
sisting of a large-scale eastward wind and smaller scale circulations, interacting with
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topography on a generalized β-plane, are presented in Section 2. The large-scale wind
evolves according to the form-drag equation and the smaller scales satisfy the barotropic
vorticity equation on the doubly periodic domain. In Section 3 the flow fields are repre-
sented by Fourier series and equations for the spectral coefficients are detailed. In Section 4,
the statistical dynamical equations for the non-Markovian QDIA closure are documented
and the abridged QDIA formulated in which the current-time mean field replaces its com-
plete trajectory from initial-time to current-time in the time history integrals. Three variants
of abridged MIC models are derived in Section 5 from the abridged QDIA by employing
the current-time, prior-time, and correlation FDTs for the two-time cumulants as well as a
Markovian form of the response function. The auxiliary Markovian prognostic equations
for the relaxation functions needed for the MICs are formulated in Section 5. In Section 6,
numerical simulations with the abridged closures are described and the results compared
with very large ensembles (with 1800 members) of DNS and with results from the original
QDIA and MICs [1]. A new Markovian closure, the Eddy Damped Markovian Inhomo-
geneous Closure (EDMIC), is formulated in Section 7 from the abridged MIC using the
current-time FDT. It has analytical forms for the relaxation functions, rather than prognostic
equations, like the EDQNM for homogeneous turbulence, and is a generalization of the
EDQNM to inhomogeneous turbulent flows with statistical equations for both the mean
flow and the second order cumulant. In Section 8 we discuss the import of our findings
and conclusions and ideas for a sequel to this work. The interaction coefficients for the
spectral equations are presented in Appendix A. Relationships between the diagonal and
off-diagonal spectral elements of the two-point and three-point cumulants and response
functions, which are needed for deriving the QDIA closure, are listed in Appendix B.
Appendix C presents the Langevin equation for the abridged QDIA for slowly varying
mean field and Appendix D presents the Langevin equation for the EDMIC model.

2. Barotropic Flow over Topography on a β-Plane

The basic dynamical equations from which our closures are developed are those
describing barotropic two-dimensional flows over topography. We do our analysis for
flows in planar geometry on a generalized β-plane with the flows consisting of a large-scale
eastward wind U together with smaller scales described by the streamfunction ψ and the
total flow by Ψ = ψ−Uy.

2.1. Large-Scale Flow Equation

The equation for the large-scale flow U is the so-called form-drag equation where the
scaled topography h(x) interacts with the smaller scales to change the large-scale flow. We
include possible relaxation to a mean large-scale flow U with strength αU so that

∂U
∂t

=
1

(2π)2

∫ 2π

0
d2x h(x)

∂ψ(x)
∂x

+ αU(U −U) (5)

determines the evolution of U. Throughout this paper, we present theoretical and numerical
results for flows on the doubly periodic plane 0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π with x = (x, y).

2.2. Barotropic Vorticity Equation for the Small Scales

The barotropic vorticity equation for the smaller scales interacting with large-scale
flow of Equation (5) and topography is given by

∂ζ

∂t
= −J(ψ−Uy, ζ + h + βy + k2

0Uy) + ν̂∇2ζ + f 0. (6a)

Here, the Jacobian is

J(ψ, ζ) =
∂ψ

∂x
∂ζ

∂y
− ∂ψ

∂y
∂ζ

∂x
(6b)
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and the vorticity ζ is the Laplacian of the streamfunction

ζ = ∇2ψ ≡
(

∂2

∂x2 +
∂2

∂y2

)
ψ. (6c)

The above equations, on the generalized β-plane, are structurally the same as the
barotropic equations on a sphere with the wavenumber k0 the analogue of that determining
the strength of the vorticity of the solid-body rotation term [49]. The viscosity is represented
by ν̂, the strength of the beta effect denoted by β and f 0 allows for possible external forcing
although our simulations are for f 0 = 0.

In the absence of forcing, topography, and viscosity, Rossby waves, and superpositions
of Rossby waves, proportional to exp i(k.x−ωU

k t) are solutions to Equation (6a–c). Here,
the Doppler shifted frequency must satisfy the dispersion relationship

ωU
k (t) = ΩU

k (t) + ω
β
k =

U(t)kx(k2 − k2
0)

k2 − βkx

k2 . (7a)

where the Rossby wave frequency is

ωk ≡ ω
β
k = − βkx

k2 , (7b)

and

ΩU
k (t) =

U(t)kx(k2 − k2
0)

k2 . (7c)

3. Dynamical Equations in Fourier Space

The dynamical equations for Fourier components of the flow fields are established by
Fourier transforms. For the ‘small-scales’ the spectral representations are determined by

ζ(x, t) = ∑
k∈R

ζk(t) exp(i k.x), (8a)

ζk(t) =
1

(2π)2

∫ 2π

o
d2xζ(x, t) exp(−i k.x), (8b)

with x = (x, y), k = (kx, ky), k =
(

k2
x + k2

y

)1/2
. The spectral coefficients satisfy the

complex conjugation property ζ−k = ζ∗k that guarantees the reality of the physical space
field. In Equation (8a), R is a circular domain in wavenumber space excluding the origin 0.
In fact, through a judicious definition of the interaction coefficients we can combine the
spectral equations for the ‘small-scales’ with that for U, taken as the zero-wavenumber
component. This is achieved [49] by defining the associated vorticity components by

ζ−0 = ik0U, ζ0 = ζ∗−0. (9)

The complete set of interaction coefficients A(k, p, q) and K(k, p, q) needed to combine
the equations are documented in Appendix A. Finally, the combined equations take the form(

∂

∂t
+ ν0(k)k2

)
ζk(t) = ∑

p∈T
∑

q∈T
δ(k, p, q)

[
K(k, p, q)ζ−p(t)ζ−q(t) + A(k, p, q)ζ−p(t)h−q

]
+ f 0

k(t) (10)

where T = R∪ 0 [49]. In Equation (10), δ(k, p, q) = 1 if k+p+q = 0 and 0 if k+p+q 6= 0,
and the complex ν0(k)k2 combines the viscosity and the Rossby wave frequency ωk

ν0(k)k2 = ν̂k2 + iωk (11)
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with the Rossby wave frequency given by Equation (7b). The drag and relaxation force in
Equation (5) have also been included as the k = 0 components of f 0

k and ν0(k) through

f 0
0 = αUζ0, (12)

ν0(0)k2
0 = αU . (13)

4. Statistical Dynamical Equations for Inhomogeneous QDIA Closure

The theoretical formulation of closures is based on the statistical dynamics of an infinite
ensemble of individual flows, which in our case satisfy the DNS in Equations (5) and (6a–c)
in physical space and Equation (10) in Fourier space. Thus, closures have the important
advantage of propagating the population statistics rather than the sampling statistics of
a finite number of DNS ensemble members. Large errors can occur in estimating means,
when the covariances are sizeable, unless considerable care is taken in setting up even very
large ensembles of DNS [39,49].

In any given member of the infinite ensemble the vorticity spectral field at wavenum-
ber k can be written in terms of its mean < ζk(t) >≡ ζk(t) and deviation from the ensemble
mean ζ̃k(t):

ζk(t) = < ζk(t) > + ζ̃k(t) ≡ ζk(t) + ζ̃k(t). (14)

From Equation (10) the coupled equations for < ζk > and ζ̃k then follow as:(
∂
∂t + ν0(k)k2

)
< ζk(t) >= ∑

p
∑
q

δ(k, p, q)[K(k, p, q)
{
< ζ−p(t) >< ζ−q(t) > +C⊕−p,−q(t, t)

}
+A(k, p, q) < ζ−p(t) > h−q] + f

0
k(t),

(15a)

and(
∂
∂t + ν0(k)k2

)
ζ̃k(t) = ∑

p
∑
q

δ(k, p, q)[K(k, p, q)
{
< ζ−p(t) > ζ̃−q(t) + ζ̃−p(t) < ζ−q(t) >

+ζ̃−p(t)ζ̃−q(t)− C⊕−p,−q(t, t)
}
+ A(k, p, q)ζ̃−p(t)h−q] + f̃ 0

k(t).
(15b)

In these and subsequent equations k, p, q are in the domain T = R ∪ 0. The bare
forcing function consists of deterministic and random contributions

f 0
k(t) = f

0
k(t) + f̃ 0

k(t) ≡< f 0
k(t) > + f̃ 0

k(t), (16a)

and the two-time cumulant elements are given by

C⊕−p,−q(t, s) ≡ C−p,−q(t, s) = < ζ̃−p(t)ζ̃−q(s) > . (16b)

Here, we have placed the superscript ⊕ on C⊕−p,−q(t, s) for later convenience where it
will be replaced by QDIA and the QDIA expression inserted to close the equations.

4.1. General Formulation of QDIA Closure

We see from Equation (15a) that to close the mean field equation we need an ex-
pression for the off-diagonal elements of the two-point cumulant. The QDIA theory for
closing the mean field and second order cumulant equations were originally derived
by Frederiksen [48], extended to the current spectral Equation (10) by Frederiksen and
O’Kane [49], and to general systems of classical and quantum field theory equations by
Frederiksen [2,50,51]. The QDIA closure equation for < ζk(t) > is obtained by replacing
C⊕−p,−q(t, s) ≡ C−p,−q(t, s) in Equation (15a) by CQDIA

−p,−q(t, s) defined in Equation (A4) of

Appendix B. The expression for CQDIA
−p,−q(t, s) ≡ CQDIA

−p,−q(t, s)[Ck, Rk,< ζk >, hk] is a func-
tional of the diagonal two-point cumulant Ck ≡ Ck,−k, the diagonal response function
Rk ≡ Rk,k, mean field < ζk > and topography hk. Thus, we need equations for Ck and Rk.
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The general matrix element of the response function, defined for t ≥ t′, is a measure
of the change in an ensemble member field ζ̃k(t) at time t due to an infinitesimal change in
the forcing f̃ 0

l (t
′) at the earlier time t′. It is defined by through the functional derivative

R̃k,l(t, t′) =
δζ̃k(t)
δ f̃ 0

l (t
′)

, (17a)

where δ denotes the functional derivative. We shall need the ensemble average res-
ponse function

Rk,l(t, t′) =
〈

R̃k,l(t, t′)
〉

. (17b)

As noted above we use a shortened notation for the diagonal elements of the response
function and two-point cumulant:

Rk(t, t′) ≡ Rk,k(t, t′), (17c)

Ck(t, t′) ≡ Ck,−k(t, t′) =< ζk(t)ζ−k(t′) > . (17d)

The statistical dynamical equation for the diagonal two-time cumulant Ck can be
obtained from Equation (15b), by multiplying each term by ζ̃−k(t′) and averaging over the
infinite ensemble. This yields the statistical equation(

∂
∂t + ν0(k)k2

)
Ck(t, t′) = ∑

p
∑
q

δ(k, p, q)A(k, p, q)C⊕−p,−k(t, t′)h−q

+∑
p

∑
q

δ(k, p, q)K(k, p, q)[< ζ−p(t) > C⊕−q,−k(t, t′) + C⊕−p,−k(t, t′) < ζ−q(t) >

+ < ζ̃−p(t) ζ̃−q(t) ζ̃−k(t′) >⊕]+ < f̃ 0
k(t)ζ̃−k(t′) >

(18)

where t > t′ and Ck(t, t′) = C−k(t′, t) for t′ > t. Again, the superscript ⊕ is used to denote
the terms that need to be replaced by their QDIA expressions in Appendix B to produce
the QDIA closure equations. Additionally, note that

< f̃ 0
k(t)ζ̃−k(t′) >=

t′∫
t0

ds F0
k(t, s)R−k(t′, s) (19a)

where t0 is the initial time and

F0
k(t, s) = < f̃ 0

k(t) f̃ 0∗
k (s) > . (19b)

The statistical dynamical equation for the diagonal response function Rk is obtained
from Equation (15b) by taking the functional derivative with respect to f̃ 0

k(t
′) and ensemble

averaging to give(
∂
∂t + ν0(k)k2

)
Rk(t, t′) = ∑

p
∑
q

δ(k, p, q)A(k, p, q)R⊕−p,k(t, t′)h−q

+∑
p

∑
q

δ(k, p, q)K(k, p, q)[< ζ−p(t) > R⊕−q,k(t, t′) + R⊕−p,k(t, t′) < ζ−q(t) >

+2 < R̃−p,k(t, t′) ζ̃−q(t) >⊕] + δ(t− t′)

(20)

where t ≥ t′ and the Dirac delta function means that Rk(t, t) = 1. The terms with
superscript ⊕ are again to be replaced by the QDIA forms in Appendix B.

The four QDIA expressions in Appendix B, that replace the terms with superscript ⊕
in Equations (15a), (18) and (20), at most depend functionally on the diagonal two-point
cumulant Ck, the diagonal response function Rk, mean field < ζk >, and topography hk.
Thus, these three equations together with Equations (A4)–(A7) form the QDIA closure. The
mean field equation, the diagonal two-point cumulant equation and the diagonal response
function can then be written out in full.
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The mean field equation is

(
∂
∂t + ν0(k)k2

)
< ζk(t) > +

t∫
to

ds ηk(t, s) < ζk(s) > = ∑
p

∑
q

δ(k, p, q)A(k, p, q) < ζ−p(t) > h−q

+∑
p

∑
q

δ(k, p, q)K(k, p, q) < ζ−p(t) >< ζ−q(t) >+ f h
k(t) + f

0
k(t).

(21)

The diagonal two-time cumulant equation is

(
∂

∂t
+ ν0(k)k2

)
Ck(t, t′) +

t∫
t0

ds (ηk(t, s) + πk(t, s))C−k(t′, s) =
t′∫

t0

ds (Sk(t, s) + Pk(t, s) + F0
k(t, s))R−k(t′, s) (22)

where t > t′ with Ck(t, t′) = C−k(t′, t) for t′ > t. The diagonal response function equation is

(
∂

∂t
+ ν0(k)k2

)
Rk(t, t′) +

t∫
t′

ds(ηk(t, s) + πk(t, s))Rk(s, t′) = δ(t− t′) (23)

for t ≥ t′ and Rk(t, t′) = 1.
In Equations (21)–(23)

f h
k(t) ≡ f χ

k (t) = hk

t∫
to

ds χk(t, s), (24a)

χk(t, s) = 2∑
p

∑
q

δ(k, p, q)K(k, p, q)A(−p,−q,−k)R−p(t, s)C−q(t, s), (24b)

ηk(t, s) = −4∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)R−p(t, s)C−q(t, s), (24c)

Sk(t, s) = 2∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−k,−p,−q)C−p(t, s)C−q(t, s), (24d)

πk(t, s) = −∑
p

∑
q

δ(k, p, q)R−p(t, s)[2K(k, p, q) < ζ−q(t) > +A(k, p, q)h−q]

×[2K(−p,−k,−q) < ζq(s) > +A(−p,−k,−q)hq],
(24e)

Pk(t, s) = ∑
p

∑
q

δ(k, p, q)C−p(t, s)[2K(k, p, q) < ζ−q(t) > +A(k, p, q)h−q]

×[2K(−k,−p,−q) < ζq(s) > +A(−k,−p,−q)hq].
(24f)

These terms modify or renormalize the damping or forcing in the mean field, two-
point cumulant and response function equations. The eddy-topographic force f h

k(t) is a
product of the topography and the time history integral of χk(t, s), which measures of the
strength of the interaction of the transient eddies with the topography. The term ηk(t, s)
is the nonlinear damping due to eddy–eddy interactions that also damps the two-point
cumulant and response function. The cumulant and response functions are also damped
by πk(t, s) due to interaction of transient eddies with the mean flow and topography. The
two-point cumulant equation also contains the nonlinear noise terms, Sk(t, s) and Pk(t, s)
that renormalize the specified bare noise spectrum F0

k(t, s). The term Sk(t, s) is due to
eddy–eddy interactions and Pk(t, s) is arises from eddy–mean flow and eddy–topographic
interactions. All these noise terms are positive semi-definite and represent energy and
enstrophy injection.
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The last statistical dynamical equation we need is that for the single-time two-
point cumulant:

(
∂
∂t + 2Reν0(k)k2

)
Ck(t, t) + 2 Re

t∫
t0

ds(ηk(t, s) + πk(t, s))C−k(t, s)

= 2 Re
t∫

t0

ds(Sk(t, s) + Pk(t, s) + F0
k(t, s))R−k(t, s)

(25)

where the initial conditions Ck(t0, t0) are to be specified.

4.2. Abridged QDIA Closure with Current-Time Mean Field

Next, we consider the case when the mean field < ζk(s) > is replaced by the current-
time mean field < ζk(t) > in the time history integrals:

ζk(s) ≡ < ζk(s) >→< ζk(t) >≡ ζk(t). (26)

This corresponds to the mean field being more slowly varying than the response
function and the two-time cumulant in the time history integrals. This, like the different
forms of the fluctuation theorem considered in Frederiksen and O’Kane [1] and below,
allows further simplification and greater efficiency of the Markovian inhomogeneous
closures that we studied there. For ease of discussion we will denote this abridged version
of the QDIA, with the replacement (26), by QDIA[ζ(t)] in contrast to the original QDIA
which we also denote by QDIA[ζ(s)] since for it the time history integrals depend on the
whole trajectory of ζk(s) for t0 ≤ s ≤ t.

Employing Equation (26) in Equation (21), the mean field equation for
QDIA[ζ(t)] becomes(

∂
∂t + ν0(k)k2 +

t∫
to

ds ηk(t, s)

)
< ζk(t) > = ∑

p
∑
q

δ(k, p, q)A(k, p, q) < ζ−p(t) > h−q

+∑
p

∑
q

δ(k, p, q)K(k, p, q) < ζ−p(t) >< ζ−q(t) >+ f h
k(t) + f

0
k(t).

(27)

It is also clear from Equation (27) that
t∫

to

ds ηk(t, s) renormalizes ν0(k)k2, the bare

dissipation and Rossby wave frequency, in Equation (11). For the abridged QDIA[ζ(t)]
closure the expressions for πk(t, s) and Pk(t, s) in Equation (24a–f) also simplify, with the
replacement in Equation (26), to

Pk(t, s) .
= Pζ(t)

k (t, s) = ∑
p

∑
q

δ(k, p, q)[2K(k, p, q) < ζ−q(t) > +A(k, p, q)h−q]

×[2K(−k,−p,−q) < ζq(t) > +A(−k,−p,−q)hq]C−p(t, s)
(28a)

πk(t, s) .
= π

ζ(t)
k (t, s) = −∑

p
∑
q

δ(k, p, q)[2K(k, p, q) < ζ−q(t) > +A(k, p, q)h−q]

×[2K(−p,−k,−q) < ζq(t) > +A(−p,−k,−q)hq]R−p(t, s),
(28b)

with ζk(t) ≡< ζk(t) > . Thus, the two-time and single-time cumulant equations are

again given by Equations (22) and (25), respectively, with πk(t, s)→ π
ζ(t)
k (t, s) and

Pk(t, s)→ Pζ(t)
k (t, s) and the response function equation is given by Equation (23) with

πk(t, s)→ π
ζ(t)
k (t, s) . Again, in the abridged QDIA[ζ(t)] closure the mean field (and

topography) terms can now be taken outside the time history integrals in
Equations (22), (23) and (25). However, for the sake of brevity, we shall not show this
explicitly here, but this fact results in the simplifications of the new abridged Markovian
inhomogeneous equations compared with those of Frederiksen and O’Kane [1].
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5. Statistical Dynamical Equations for Abridged Markovian Inhomogeneous Closure

The EDQNM for homogeneous turbulence is a Markovian equation for the single time
cumulant that incorporates a triad relaxation time with an empirical eddy damping. It does
not evolve the mean field. In this Section, where we formulate Markovian inhomogeneous
closures (MICs) we start with the single-time cumulant equation and then follow with the
mean field equation. We consider three variants of the single-time MICs that are formulated
from the non-Markovian abridged QDIA in Equation (25), denoted QDIA[ζ(t)], with

the replacements πk(t, s)→ π
ζ(t)
k (t, s) and Pk(t, s)→ Pζ(t)

k (t, s) in Equation (28a,b). We
denote these abridged MICs by the notation MICX [ζ(t)] to distinguish them from those of
Frederiksen and O’Kane [1] that we shall refer to as MICX [ζ(s)] since one of their relaxation
functions involve the whole trajectory of ζk(s) for t0 ≤ s ≤ t. Here, the superscript X
relates to that used in the combined FDT in Equation (4) with X = 0 being the current-time
FDT, X = 1/2 correlation FDT, and X = 1 the prior-time FDT.

The non-Markovian single-time covariance equation can be written in the form

∂

∂t
Ck(t, t) + 2 Re[Nη

k(t) + Nπ
k (t) + N0

k] = 2 Re[FS
k (t) + FP

k (t) + F0
k(t)] (29)

where Ck(t, t) is real. Here, with Equation (26) employed, we no longer need to split up

the Pζ(t)
k (t, s) and π

ζ(t)
k (t, s) terms into their mean vorticity, topographic and cross terms

for developing MICs. This results in considerable simplification and efficiency of the
subsequent Markovian closures derived from the QDIA closure. Some algebra shows that
the Fk(t) and Nk(t) functions have the following expressions

FS
k (t) = 2∑

p
∑
q

δ(k, p, q)K(k, p, q)K(−k,−p,−q)∆(− k,−p,−q)(t), (30a)

∆(−k,−p,−q)(t) =
t∫

t0

dsR−k(t, s)C−p(t, s)C−q(t, s), (30b)

FP
k (t) = ∑

p
∑
q

δ(k, p, q)[2K(k, p, q) < ζ−q(t) > +A(k, p, q)h−q]

×[2K(−k,−p,−q) < ζq(t) > +A(−k,−p,−q)hq]Λ(−k,−p)(t),
(30c)

Λ(−k,−p)(t) =
t∫

t0

dsR−k(t, s)C−p(t, s), (30d)

F0
k(t) =

t∫
t0

dsF0
k(t, s)R−k(t, s). (30e)

Additionally,

Nη
k(t) = −4∑

p
∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)∆(− p,−q,−k)(t), (31a)

Nπ
k (t) = −∑

p
∑
q

δ(k, p, q)[2K(k, p, q) < ζ−q(t) > +A(k, p, q)h−q]

×[2K(−p,−k,−q) < ζq(t) > +A(−p,−k,−q)hq]Λ(−p,−k)(t),
(31b)

N0
k(t) = ν0(k)k2Ck(t, t). (31c)

The nonlinear noise and damping terms in Equations (30a–e) and (31a–c) simplify on
applying the FDTs in Equation (4) with the time history integrals expressed through the
relaxation functions ΘX and ΨX . Importantly, the relaxation functions can alternatively be
determined by time dependent differential equations and effect the Markovianization. Thus,
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FS
k (t) = 2∑

p
∑
q

δ(k, p, q)K(k, p, q)K(−k,−p,−q)C1−X
−p (t, t)CX

−q(t, t)ΘX(− k,−p,−q)(t), (32a)

ΘX(−k,−p,−q)(t) =
t∫

t0

dsR−k(t, s)R−p(t, s)R−q(t, s)CX
−p(s, s)CX

−q(s, s), (32b)

FP
k (t) = ∑

p
∑
q

δ(k, p, q)[2K(k, p, q) < ζ−q(t) > +A(k, p, q)h−q]

×[2K(−k,−p,−q) < ζq(t) > +A(−k,−p,−q)hq]C1−X
−p (t, t)ΨX(−k,−p)(t),

(32c)

ΨX(−k,−p)(t) =
t∫

t0

dsR−k(t, s)R−p(t, s)CX
−p(s, s), (32d)

F0
k(t) =

t∫
t0

dsF0
k(t, s)R−k(t, s). (32e)

Additionally,
Nη

k(t) = Dη
k(t)Ck(t, t), (33a)

Dη
k(t) = −4∑

p
∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)C1−X
−q (t, t)C−X

−k (t, t)ΘX(− p,−q,−k)(t), (33b)

Nπ
k (t) = Dπ

k (t)Ck(t, t), (33c)

Dπ
k (t) = −∑

p
∑
q

δ(k, p, q)[2K(k, p, q) < ζ−q(t) > +A(k, p, q)h−q]

×[2K(−p,−k,−q) < ζq(t) > +A(−p,−k,−q)hq]C−X
−k (t, t)ΨX(−p,−k)(t),

(33d)

N0
k(t) = D0

k(t)Ck(t, t), (33e)

D0
k = ν0(k)k2. (33f)

We can simplify the single-time cumulant equation further by defining

F1
k(t) = FS

k (t); F2
k(t) = FP

k (t);
D1

k(t) = Dη
k(t); D2

k(t) = Dπ
k (t);

(34)

so that (
∂

∂t
+ 2 Re

2

∑
j=0

Dj
k(t)

)
Ck(t, t) = 2 Re

2

∑
j=0

Fj
k(t). (35)

Now, to complete the Markovianization, the response function equation (23) with

πk(t, s)→ π
ζ(t)
k (t, s) must also be replaced by

∂

∂t
Rk(t, t′) +

2

∑
j=0

Dj
k(t)Rk(t, t′) = δ(t− t′). (36)

We note from Equation (25), with the current-time expressions in Equation (28a,b),
and from Equations (29), (33a–f) and (34) that

2

∑
j=0

Dj
k(t) = ν0(k)k2 +

t∫
t0

ds
{
(ηk(t, s) + π

ζ(t)
k (t, s))C−k(t, s)[Ck(t, t)]−1

}
(37)

with C−k(t, s) determined by the FDT in Equation (4). Thus, under these same conditions,
the response function in Equation (36) is equivalent to
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∂

∂t
Rk(t, t′) +

ν0(k)k2 +

t∫
t0

ds
{
(ηk(t, s) + π

ζ(t)
k (t, s))C−k(t, s)[Ck(t, t)]−1

}Rk(t, t′) = δ(t− t′). (38)

As foreshadowed above, with the response function equation having the simpler form
in Equation (36), the integral forms for the relaxation functions ΘX and ΨX can be replaced
by differential equations. Thus, the integral expression for the relaxation time

ΘX(k, p, q)(t) =
t∫

t0

dsRk(t, s)Rp(t, s)Rq(t, s)CX
p (s, s)CX

q (s, s), (39a)

can equally be calculated by forward integration of the ordinary differential equation

∂

∂t
ΘX(k, p, q)(t) +

2

∑
j=0

[Dj
k(t) + Dj

p(t) + Dj
q(t)]ΘX(k, p, q)(t) = CX

p (t, t)CX
q (t, t) (39b)

with ΘX(k, p, q)(0) = 0. As well

ΨX(k, p)(t) =
t∫

t0

dsRk(t, s)Rp(t, s)CX
p (s, s) (39c)

can be calculated from

∂

∂t
ΨX(k, p)(t) +

2

∑
j=0

[Dj
k(t) + Dj

p(t)]ΨX(k, p)(t) = CX
p (t, t) (39d)

with ΨX(k, p)(0) = 0.
The statistical dynamics of the single-time cumulant is now determined by the Marko-

vian form in Equation (35) with auxiliary Markovian equations for the relaxation times in
Equation (39b,d).

Next, we aim to formulate manifestly Markovian equations for the mean field and
thereby have a system of coupled Markovian equations for the mean and two-point cu-
mulant. Again, we approximate the mean field < ζk(s) > by the current-time mean field
< ζk(t) > in the time history integrals as in Equation (26). Then, from Equation (21)
we have(

∂
∂t + ν0(k)k2

)
< ζk(t) > +NM

k (t) = ∑
p

∑
q

δ(k, p, q)[K(k, p, q) < ζ−p(t) >< ζ−q(t) >

+A(k, p, q) < ζ−p(t) > h−q] + f h
k(t) + f

0
k(t).

(40)

Here, the nonlinear damping acting on the mean field and eddy-topographic force are
given by

NM
k (t) = −4 < ζk(t) > ∑

p
∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)
t∫

t0

dsR−p(t, s)C−q(t, s), (41a)

f h
k(t) = 2hk∑

p
∑
q

δ(k, p, q)K(k, p, q)A(−p,−q,−k)
t∫

t0

dsR−p(t, s)C−q(t, s). (41b)

Therefore, with Λ defined in Equation (30d),

NM
k (t) = −4 < ζ(t) > ∑

p
∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)Λ(−p,−q)(t), (42a)
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and
f h
k(t) = 2hk ∑

p
∑
q

δ(k, p, q)K(k, p, q)A(−p,−q,−k)Λ(−p,−q)(t). (42b)

Now, implementing the FDT in Equation (4) these expressions become

NM
k (t) = DM

k (t) < ζk(t) > (43a)

where

DM
k (t) = −4 ∑

p
∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)C1−X
−q (t, t)ΨX(−p,−q)(t), (43b)

and

f h
k(t) = 2hk ∑

p
∑
q

δ(k, p, q)K(k, p, q)A(−p,−q,−k)C1−X
−q (t, t)ΨX(−p,−q)(t). (43c)

The relaxation function ΨX is again calculated through the auxiliary Markovian form
in Equation (39d) and the mean field prognostic in Equation (40) simplifies to the abridged
Markovian equation(

∂
∂t + D0

k + DM
k (t)

)
< ζk(t) > = ∑

p
∑
q

δ(k, p, q)[K(k, p, q) < ζ−p(t) >< ζ−q(t) >

+A(k, p, q) < ζ−p(t) > h−q] + f h
k(t) + f

0
k .

(44)

Equation (44), for the mean flow < ζk(t) >≡ ζk(t), and Equation (35), for the single-
time cumulant Ck(t, t), together with the auxiliary Equation (39b,d) for the relaxation func-
tions ΘX(k, p, q)(t) and ΨX(k, p)(t), form the prognostic equations for the three abridged
MICs with X = 0, 1

2 , 1. For the abridged MICs there are two relaxation functions to be cal-
culated while for the original MICs of Frederiksen and O’Kane [1] there were three. This of
course reduces the computational task for the abridged MICs correspondingly. Importantly,
from the abridged MIC with X = 0 we derive the EDMIC model with analytical repre-
sentation of the relaxation functions in Section 7. It is a generalization of the EDQNM to
inhomogeneous turbulent flows and like the EDQNM is still more computationally efficient
because the prognostic equations for the relaxation functions do not need to be solved.

6. Comparison of Non-Markovian and Markovian Closure Integrations with DNS

In this Section, we compare the performance of the non-Markovian abridged
QDIA[ζ(t)] closure, and the three abridged MICX [ζ(t)] Markovian closures, with each
other, and with an ensemble of 1800 direct numerical simulations. These results are also
compared with those of Frederiksen and O’Kane [1] for the QDIA[ζ(s)] and MICX [ζ(s)]
models. Between them, these numerical simulations provide insights into the robustness
of the inhomogeneous closure calculations to Markovianization, with three versions of
the FDT, and to whether the time history integrals, or equivalent relaxation functions, are
significantly impacted by the full trajectory of ζ(s) ≡< ζ(s) > for t0 ≤ s ≤ t or not.

Our aim is to provide severe tests of these different formulations in situations where
the mean flow is rapidly evolving and interacting with turbulence and topography. This is
achieved using the setup of Frederiksen and O’Kane [1] where a large-scale mean eastward
flow U interacts with topography in a turbulent environment. Because of the differential
rotation on a β-plane, Rossby waves are generated that interact with the topography to
provide a form drag on the large-scale flow U. There is a rapid transfer of energy from the
large-scale flow to the smaller scale mean field, which spins up rapidly, as well as wave-
turbulence interactions and changes in the wavenumber distribution of transient energy.

The experimental setup is as follows. We use length and time scales of one half
the earth’s radius, ae/2, and the inverse of the earth’s rotation rate, Ω−1, respectively.
At the initial time the mean eastward flow U has a speed of 7.5 ms−1 (non-dimensional
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U = 0.0325), the β-effect is 1.15× 10−11 m−1s−1 (non-dimensional β = 1
2 ) representative

of the earth at 60◦ latitude, and the coefficient of viscosity ν̂ is 2.5 × 104 m2s−1 (non-
dimensional ν̂ = 3.378× 10−5). Additionally, the forcing f 0 = 0, the drag on the large-scale
flow αU = 0 and k2

0 = 1
2 . The topography is a 2.5 km high cone centered at 30◦ N, 180◦ E

with and a diameter of 45◦ latitude [49] (Figure 1) and might be seen as an idealized
representation of the Himalayas. The DNS and closure calculations are performed at a
resolution of circular truncation C16 where |k| = k ≤ 16 and all integrations proceed
for 10 days with a time step of ∆t = 1/30 day (non-dimensional ∆t = 0.21). Table 1
specifies the initial transient isotropic spectrum and initial ‘small-scale’ mean field, which is
localized over the topography and of small amplitude. The closure calculations start from
ζk(t0) =< ζk(t0) >=< ζk(0) > and Gaussian initial conditions with Ck(t0, t0) = Ck(0, 0)
in Table 1. For the DNS, an ensemble of 1800 simulations is started from the mean field plus
different Gaussian isotropic perturbations with spectrum Ck(t0, t0) = Ck(0, 0) in Table 1.
Further details on the setup of the DNS perturbations are given in [49] (Section 6). The
time stepping in both DNS and closures is performed with a predictor-corrector procedure
and the time history integrals in the non-Markovian closures are calculated using the
trapezoidal rule [10,49].
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Table 1. Initial conditions used in DNS and closure calculations.

Ck(0, 0) < ζk(0) > a b

k2×10−2

a+bk2 −10bhkCk(0, 0) 4.824× 104 2.511× 103
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The evolved DNS and closure results are compared in terms of the similarity of the
mean flow fields, their pattern correlations, and their mean and transient kinetic energy
and palinstrophy spectra. The mean, transient, and total kinetic energy spectra, averaged
over circular bands, are defined by

E(ki, t) =
1
2 ∑

k∈S
〈ζk(t)〉〈ζ−k(t)〉k−2, (45a)

Ẽ(ki, t) =
1
2 ∑

k∈S
Ck(t, t)k−2, (45b)

E(ki, t) = E(ki, t) + Ẽ(ki, t), (45c)

and the set S is defined by

S = [k|ki = Int.(k +
1
2
)]. (46)

The band-average is over all k within a band of unit width at a radius ki; the energy
of the large-scale flow is plotted at zero wavenumber. Similarly, the band-averaged mean,
transient, and total palinstrophy spectra are defined by

P(ki, t) =
1
2 ∑

k∈S
k2〈ζk(t)〉〈ζ−k(t)〉, (47a)

P̃(ki, t) =
1
2 ∑

k∈S
k2Ck(t, t), (47b)

P(ki, t) = P(ki, t) + P̃(ki, t). (47c)

The initial mean non-zonal streamfunction for the simulations is shown in part
(a) of Figure 1. The other panels in Figure 1 show the day 10 evolved mean streamfunctions
for the non-Markovian and Markovian abridged closures and the ensemble of DNS. The
substantial evolution in terms of magnitude and structure from the initial mean field is very
evident in all simulations with large scale Rossby wavetrains primarily downstream of the
conical mountain. There is little that can be said to distinguish between the panels apart
from slight variations in the magnitude of the peaks and troughs of the wavetrains. We
note that, at the first and largest peak downstream of the conical mountain, the value for
the MIC0[ζ(t)] (at 0.0139) agrees best with the ensemble of DNS (at 0.0137). The values for
the QDIA[ζ(t)] (at 0.0128), MIC

1
2 [ζ(t)] (at 0.0128) and MIC1[ζ(t)] (at 0.0129) are slightly

smaller. We also note from Table 2 that, of the abridged closures, the pattern correlation of
the DNS mean non-zonal streamfunctions is largest with the MIC0[ζ(t)] at 0.9999. We also
see that the pattern correlation is the least with the QDIA[ζ(t)] (at 0.9789) and nearly equal
with the MIC

1
2 [ζ(t)] (at 0.9994) and MIC1[ζ(t)] (at 0.9995). In general, these results are

only slightly less notable than those of Frederiksen and O’Kane [1] where the full trajectory
of ζ(s) was used in the time history integrals. The corresponding pattern correlations of
the DNS field with MIC0[ζ(s)] is identical to that with MIC0[ζ(t)] at 0.9999, and with all of
QDIA[ζ(s)], MIC

1
2 [ζ(s)] and MIC1[ζ(s)] it is 0.9998. It is interesting that the replacement

ζ(s)→ ζ(t) has most effect on the non-Markovian QDIA closure that does not employ
any of the FDTs and least effect on the MIC0 which uses the current-time FDT. Of course,
in all cases the pattern correlations are remarkably high particularly given the dramatic
evolution the flow field has undergone.

Table 2. Correlations of day 10 non-zonal streamfunction for closures with DNS.

QDIA[ζ(t)] : 0.9789 MICX=0[ζ(t)] : 0.9999 MICX= 1
2 [ζ(t)] : 0.9994 MICX=1[ζ(t)] : 0.9995

QDIA[ζ(s)] : 0.9998 MICX=0[ζ(s)] : 0.9999 MICX= 1
2 [ζ(s)] : 0.9998 MICX=1[ζ(s)] : 0.9998
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Next, we consider the energy and palinstrophy spectra of the non-Markovian QDIA[ζ(t)]
and each of the Markovian MICX[ζ(t)] models with X = 0, 1

2 , 1. Figures 2 and 3 show
the initial and 10-day evolved mean and transient kinetic energy spectra and palinstrophy
spectra, respectively, for these closures and for comparison also the results for the ensemble of
DNS. The palinstrophy spectra amplify any differences at small scales as expected. The
QDIA[ζ(t)], MIC

1
2 [ζ(t)] and MIC1[ζ(t)] have slightly larger evolved transient energy near

the peak at k = 4 while for MIC0[ζ(t)] it is underestimated. However, all the closures
perform remarkably well compared with the ensemble of DNS. Using the current-time
mean field in the time history integrals does not significantly degrade the abridged closure
simulations compared with those of Frederiksen and O’Kane [1].
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Figure 2. The initial and evolved non-dimensional kinetic energy spectra for the four inhomogeneous
abridged closures (a) QDIA[ζ(t)], (b) MICX=0[ζ(t)], (c) MICX= 1

2 [ζ(t)], (d) MICX=1[ζ(t)], and the
ensemble of DNS on each figure part. Shown are: initial mean energy (solid blue), initial transient
energy (dashed blue), evolved DNS mean energy (solid black), evolved DNS transient energy (dashed
black), evolved closure mean energy (solid red), and evolved closure transient energy (dashed red).
Multiply by 1

4 a2
e Ω−2 = 5.4× 104 m2s−2 to convert to units of m2s−2.
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palinstrophy spectra, and the ensemble of DNS on each figure part.

For higher resolution and higher Reynolds numbers we expect that the Markovian
closures, like the Eulerian homogeneous non-Markovian DIA [37] and inhomogeneous
QDIA [39], will need to incorporate a regularization, or empirical vertex renormalization,
in order to yield the correct small-scale spectra. This regularization of the MICs is de-
scribed in Appendix C of Frederiksen and O’Kane [1]. Briefly, it is achieved by replacing
the interaction coefficients A(k, p, q) by θ(p− k/α)θ(q− k/α)A(k, p, q) and K(k, p, q) by
θ(p− k/α)θ(q− k/α)K(k, p, q) in the response function and two-time cumulant equations,
but not in the single-time cumulant or mean field equations. Here, θ is the Heaviside step
function and α is a wavenumber cut-off parameter which plays the same role as the γ in
the eddy damping for the EDQNM closure in Equation (54) of Section 7. As noted in the
Introduction, a value of α ≈ 4 appears to be essentially universal, or only weakly flow
dependent, for two-dimensional homogeneous and inhomogeneous turbulence and for
three-dimensional HIT.

The performance of all the abridged Markovian inhomogeneous closures studied in
this Section are very encouraging, given the very rapidly changing flow evolution in the
simulations. This includes the results for the MIC0[ζ(t)] model which uses the current-time
mean field and the current-time FDT, such as the EDQNM closure. From the MIC0[ζ(t)] it
is possible to develop a generalized EDQNM closure for inhomogeneous turbulent flows,
through suitable analytical specifications of generalized eddy damping.

This then removes the need for the auxiliary prognostic equations for the relaxation
functions Θ0(k, p, q)(t) and Ψ0(k, p)(t) and yields a very efficient closure. By analogy, we
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call this closure the Eddy Damped Markovian Inhomogeneous Closure (EDMIC) that we
formulate next.

7. The Eddy Damped Markovian Inhomogeneous Closure

The formulation of the abridged MIC closures, in Section 6, with the current-time mean
field approximation ζk(s) ≡< ζk(s) >→< ζk(t) >≡ ζk(t) (Equation (26)) in the time
history integrals becomes particularly simple when X = 0 in Equations (32a–e) and (33a–f).
Then, the FDT is the current-time FDT of Equation (2). This is of course the FDT that
can be used to derive the EDQNM equations for homogeneous turbulence from the DIA
closure [17,18,64,68]. In this Section, we show that from our abridged MICX=0[ζ(t)] it is
possible to establish the EDMIC model which is suitable generalization of the EDQNM for
homogeneous turbulence to inhomogeneous turbulent flows.

The prognostic equations for the EDMIC model are again Equation (35) for the second
order cumulant Ck(t, t) and Equation (44) for the mean field < ζk(t) >. However, rather
than determining the relaxation functions at a given time from the auxiliary prognostic
equations in Equation (39b,d) we seek analytical parameterized expressions as for the
EDQNM model.

We note first that the solution to the response function differential equation in
Equation (36) is

Rk(t, t′) = exp

(
−
∫ t

t′
ds

2

∑
j=0

Dj
k(s)

)
(48)

where Dj
k are defined in Equations (33a–f) and (34). Thus, from Equation (39a–d) the

relaxation functions with X = 0 simplify to

Θ0(k, p, q)(t) =
t∫

t0

dt′ exp

(
−
∫ t

t′
ds

2

∑
j=0

[
Dj

k(s) + Dj
p(s) + Dj

q(s)
])

(49)

and

Ψ0(k, p)(t) =
t∫

t0

dt′ exp

(
−
∫ t

t′
ds

2

∑
j=0

[
Dj

k(s) + Dj
p(s)

])
. (50)

Next, we make the Markovian approximation for the Dj such that Dj(s)→ Dj(t) ;
these terms can therefore be taken outside the integrals in Equations (48)–(50) giving

Rk(t, t′) .
= R⊗k (t, t′) = exp

(
−

2

∑
j=0

Dj
k(t)(t− t′)

)
, (51)

Θ0(k, p, q)(t) .
= Θ⊗(k, p, q)(t) =

t∫
t0

dt′ exp

(
−

2
∑

j=0

[
Dj

k(t) + Dj
p(t) + Dj

q(t)
]
(t− t′)

)

=
1−exp

(
−

2
∑

j=0

[
Dj

k(t)+Dj
p(t)+Dj

q(t)
]
(t−t0)

)
2
∑

j=0

[
Dj

k(t)+Dj
p(t)+Dj

q(t)
] ,

(52)

and

Ψ0(k, p)(t) .
= Ψ⊗(k, p)(t) =

t∫
t0

dt′ exp

(
−

2
∑

j=0

[
Dj

k(t) + Dj
p(t)

]
(t− t′)

)

=
1−exp

(
−

2
∑

j=0

[
Dj

k(t)+Dj
p(t)

]
(t−t0)

)
2
∑

j=0

[
Dj

k(t)+Dj
p(t)

] .

(53)

Here, the superscript symbol ⊗ can denote either EDMIC or EDQNM.



Fluids 2022, 7, 200 21 of 30

7.1. Analytical Triad Relaxation Functions for EDQNM

In the EDQNM equations for two-dimensional homogeneous turbulence [64] the mean
fields and topography are zero (< ζ >≡ ζ = 0;< U >≡ U = 0; h = 0) and the only
prognostic equation is Equation (35) for the second order cumulant Ck(t, t). This also
means that D2 ≡ Dπ = 0. Moreover, the eddy damping D1 ≡ Dη in the triad relaxation
function in Equation (51) is generally specified by an analytical form that is consistent with
the k−3 enstrophy cascading inertial range:

D1
k(t) ≡ Dη

k(t)→ µ
eddy
k (t) = γ

[
k2Ck(t, t)

] 1
2 . (54)

Here, Ck(t, t) is real and positive and γ is a positive empirically determined dimen-
sionless coefficient. Thus, the EDQNM for homogeneous turbulence has the considerable
simplification and computational efficiency of having an analytical expression for the
triad relaxation time ΘEDQNM(k, p, q)(t), given in Equation (52), with the superscript
⊗ → EDQNM .

For homogeneous turbulence on an f -plane, and particularly for HIT, the Rossby
wave frequency ωk vanishes, D0

k = ν̂k2 > 0 is real as is D1
k(t) ≡ Dη

k(t)→ µ
eddy
k (t) > 0 in

Equation (54). Thus,

Θ⊗(k, p, q)(t) =
1− exp

(
−
[
µk(t) + µp(t) + µq(t)

]
(t− t0)

)
µk(t) + µp(t) + µq(t)

(55)

where

µk(t) = ν̂k2 + µ
eddy
k (t) = ν̂k2 + γ

[
k2Ck(t, t)

] 1
2 . (56)

Now, Θ⊗ = ΘEDQNM(k, p, q)(t) = ReΘEDQNM(k, p, q)(t) ≥ 0 is both real and
non-negative and this ensures that the cumulant Ck(t, t) is also real and non-negative
from Equation (35), and thus realizable, as also shown in Appendix D with superscript
EDMIC → EDQNM .

For homogeneous anisotropic turbulence interacting with Rossby waves on a β-plane
D0

k = ν̂k2 + iωk and again taking D1
k(t) ≡ Dη

k(t)→ µ
eddy
k (t) we have

Rk(t, t′) .
= R⊗k (t, t′) = exp

(
−[µk(t) + iωk](t− t′)

)
, (57)

and

Θ⊗(k, p, q)(t) =
1− exp

(
−
[
µk(t) + µp(t) + µq(t) + i(ωk + ωp + ωq)

]
(t− t0)

)
µk(t) + µp(t) + µq(t) + i(ωk + ωp + ωq)

. (58)

Unfortunately, as noted by Bowman et al. [68], in the presence of waves it cannot
always be guaranteed that ReΘ⊗ = ReΘEDQNM(k, p, q)(t) ≥ 0 and so there may be
situations where Ck(t, t) is no longer realizable.

In the presence of waves, it has been customary to employ the steady state form of the
triad relaxation time

ReΘ⊗(k, p, q)(∞) =
µk + µp + µq

(µk + µp + µq)
2 + (ωk + ωp + ωq)

2 (59)

with ⊗ = EDQNM. This has been the approach in a number of studies of turbulence
interacting with Rossby waves on a β-plane [17,75] or on a sphere [76] or interacting with
internal gravity waves [18,77]. Then, again ReΘ⊗ = ReΘEDQNM ≥ 0 and Ck(t, t) ≥ 0
is realizable.
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The EDQNM closure reduces to the Boltzmann equation in the resonant wave interac-
tion limit [78], also called wave-turbulence [22,79], as the damping vanishes. Thus,

lim
µ→ 0

ReΘ⊗(k, p, q)(∞) = πδ(ωk + ωp + ωq) (60)

where, by µ→ 0 is implied that all damping terms µk vanish, and ⊗ = EDQNM. The
resonant interaction limit was discussed by Holloway and Hendershott [75], Carnevale and
Martin [17], and Carnevale and Frederiksen [18] and reviewed by Newell and Rumpf [79]
and Sagaut and Cambon [22]. As noted by Carnevale and Frederiksen [18], the Boltz-
mann equation, to which the EDQNM model reduces in the limit in Equation (60), has an
additional conservation law and the limit is singular.

7.2. Analytical Relaxation Functions for EDMIC

For the EDMIC model the essential difference from the EDQNM is the fact that
D2

k(t) ≡ Dπ
k (t) needs to be parameterized as well as D1

k(t) ≡ Dη
k(t) and there is the relax-

ation function Ψ⊗(k, p)(t) in addition to Θ⊗(k, p, q)(t) where ⊗ = EDMIC. If these terms
are successfully represented by analytical expressions, then there are no additional obsta-
cles to efficient closure from having the mean field prognostic equation for < ζk(t) > in
Equation (44) in addition to Equation (35) for Ck(t, t). In the presence of mean field and to-
pography one would again expect to represent D1

k(t) ≡ Dη
k(t)→ µ

eddy
k (t) by the enstrophy

cascading inertial range form in Equation (54) for two-dimensional and quasigeostrophic
(QG) turbulence. In contrast, for D2

k(t) ≡ Dπ
k (t) a wider choice of parameterizations may

be of interest depending on the form and strength of the mean field and topography. This
is a topic that we shall study in some detail in a sequel to this paper. However, there are
some general points that can be made about the parameterization of D2

k(t) ≡ Dπ
k (t).

In the enstrophy cascading inertial range of typical atmospheric and oceanic turbulent
flows [57,80] the mean energy spectra fall off much faster than the transients. Thus,

D1
k(t) + D2

k(t) ≈ µ
eddy
k (t) = γ

[
k2Ck(t, t)

] 1
2 , (61)

with µk(t) = ν̂k2 + µ
eddy
k (t) given in Equation (56), may be quite a good approximation

in the inertial range. This may also be the case more generally if the mean field and
topography are relatively weak or if forcing functions are strong outside the inertial range.
In such situations we again have the same four cases to consider as for the EDQNM.

For turbulent flow on an f -plane ΘEDMIC(k, p, q)(t) is given by the right-hand side of
Equation (52) and ReΘEDMIC ≥ 0 is both real and non-negative. Similarly,

Ψ⊗(k, p)(t) =
1− exp

(
−
[
µk(t) + µp(t)

]
(t− t0)

)
µk(t) + µp(t)

(62)

with ⊗ = EDMIC and ReΨEDMIC ≥ 0 is both real and non-negative. This ensures the
realizability of the EDMIC model.

For turbulent flow interacting with Rossby waves and topography on a β-plane,
R⊗k (t, t′) is again given by Equation (57), Θ⊗(k, p, q)(t) by Equation (58) and

Ψ⊗(k, p)(t) =
1− exp

(
−
[
µk(t) + µp(t) + i(ωk + ωp)

]
(t− t0)

)
µk(t) + µp(t) + i(ωk + ωp)

(63)

with⊗ = EDMIC. As noted above for the EDQNM, and as discussed by Bowman et al. [68],
the wave terms mean that ReΘ⊗(k, p, q)(t) ≥ 0 and ReΨ⊗(k, p)(t) ≥ 0 cannot always be
guaranteed and so there may be situations where the EDMIC is not realizable. We note that
in principle the realizability of the MICX=0[ζ(t)] and MICX=1[ζ(t)] of Sections 5 and 6, and
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the MICX=0[ζ(s)] and MICX=1[ζ(s)] of Frederiksen and O’Kane [1], cannot be guaranteed.
In practice they performed very similarly to the associated realizable MICX= 1

2 [ζ(t)] and
MICX= 1

2 [ζ(s)], and this in situations of very rapidly evolving flows from small amplitude.
It should also be noted that the quasi-Lagrangian closures for HIT [41–45], unlike the
Eulerian DIA and QDIA, do not guarantee realizability. Nevertheless, it is of course
desirable for closures to be manifestly realizable in all situations and in a sequel to this
paper we aim to generalize the representations of the time dependent relaxation functions
in Equations (58) and (63) to ensure realizability.

Realizability of the EDMIC model is again ensured with the steady state form of the
relaxation time in Equation (59) and with

ReΨ⊗(k, p)(∞) =
µk + µp

(µk + µp)
2 + (ωk + ωp)

2 (64)

where ReΘ⊗(k, p, q)(t) ≥ 0 and ReΨ⊗(k, p)(t) ≥ 0 and ⊗ = EDMIC.
The EDMIC model equations can also be developed for the resonant interaction limit

where Θ⊗(k, p, q)(∞) is given by Equation (59) and

lim
µ→ 0

ReΨ⊗(k, p)(∞) = πδ(ωk + ωp) (65)

with ⊗ = EDMIC.
The EDMIC closure reflects the fact that the cumulant and response function relation-

ships in Appendix B simplify with the current-time mean field and current-time FDT in the
time-history integrals and with the analytical form of the response function in Equation (51).

7.3. EDMIC for Three-Dimensional Turbulent Flows

The EDQNM closure was of course originally formulated for three-dimensional
Navier–Stokes HIT by Orszag [59] and implemented for the corresponding two-dimensional
HIT by Leith [64]. The EDQNM has subsequently been applied with various modifications
to the eddy damping such as integral forms over wavenumbers [81] and including rotation
for problems of HIT and homogeneous anisotropic turbulence (HAT) [21,22]. We expect
that the EDMIC can, with effort in generalizing the parameterization of the eddy damping,
also be extended to three-dimensional inhomogeneous turbulent flows.

One of the most straightforward generalizations of the EDMIC closure equations is
to three-dimensional QG inhomogeneous turbulent flows. The QG dynamical equations,
with continuous vertical variations, for flow over topography on an f -plane, are presented
in Appendix B of Frederiksen [50]. The generalization to flow on a β-plane and including
a large-scale flow U(z) which varies in the vertical direction z is straightforward as is the
derivation of the consequent EDMIC model. Moreover, the structures of the EDMIC model
equations for two-dimensional and three-dimensional QG inhomogeneous turbulent flows
are essentially the same or isomorphic.

8. Discussion and Conclusions

We have formulated statistical dynamical closure equations for inhomogeneous turbu-
lent flows interacting with Rossby waves and topography, at several levels of simplification,
and tested their performance against large ensembles of direct numerical simulations on
a β-plane. Firstly, the non-Markovian Quasi-diagonal Direct Interaction Approximation
(QDIA) closure [48,49], QDIA[ζ(s)], has been abridged to the QDIA[ζ(t)] variant in which
the current-time mean field ζ(t) replaces the complete mean field trajectory ζ(s) between
the initial and current times, t0 ≤ s ≤ t, in the time history integrals. Secondly, from
the abridged QDIA[ζ(t)] closure, three variants of Markovian Inhomogeneous Closures
(MICs) have been formulated based on different versions of the Fluctuation Dissipation
Theorem (FDT). These are the current-time FDT, the prior-time FDT and the correlation
FDT. The computational cost of the abridged MICs, like the original MICs formulated
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by Frederiksen and O’Kane [1], scales like O(T) where T is the total integration time. In
contrast, the cost for the QDIA closures scales like O(T3). The MICs do however need to
compute auxiliary prognostic equations for the relaxation functions, which replace the time
history integrals of the QDIA, and contain similar information. The abridged MICs have
the computational advantage of there only being two such relaxation functions while for
the original MICs [1] there are three.

The efficacy of the abridged closures in capturing the evolved statistical dynamics of
large (1800-member) ensembles of direct numerical simulations (DNS) has been tested in
stringent numerical experiments with rapidly developing mean fields on a β-plane. The
numerical experiments start with a large-scale eastward mean flow U impinging on a
mid-latitude conical mountain in the northern hemisphere within a turbulent environment
and with an initial small-scale mean field of much lesser amplitude. Simulations are
performed for 10 days during which the non-zonal streamfunction of the mean field
rapidly develops into a large-scale Rossby wavetrain downstream of the mountain and
wave-turbulence and eddy-eddy interactions change the transient kinetic energy and
palinstrophy wavenumber distribution.

Pattern correlations of the 10-day evolved mean non-zonal streamfunction between
the abridged closures and DNS ensemble range from 0.9789 for QDIA[ζ(t)], through 0.9994
for MIC

1
2 [ζ(t)] and 0.9995 for MIC1[ζ(t)] to 0.9999 for MIC0[ζ(t)]. Interestingly, for the

original closures of Frederiksen and O’Kane [1] the pattern correlation is identical, at 0.9999,
for the MIC0[ζ(s)] and 0.9998 for the QDIA[ζ(s)], MIC

1
2 [ζ(s)], and MIC1[ζ(s)]. Thus, the

QDIA is most sensitive to using the current-time mean field and the MIC that also employs
the current-time FDT is least sensitive. However, the mean field results are remarkably
good in all cases, abridged or original. This also extends to the transient kinetic energy
and palinstrophy spectra where there are just slight differences with DNS near the peak at
wavenumber k = 4.

The fact that the abridged closures perform so well even when the mean flow is
rapidly evolving indicates that the perturbation fields are also rapidly decorrelating. This
suggests that rapid Rossby wave growth is associated with rapid error growth and loss
of deterministic predictability. Indeed, this agrees with the finding of Frederiksen [82]
that instabilities tend to grow fastest when storms and blocks intensify. It also agrees
with the results of ensemble weather forecasts where errors tend amplify when dynamical
development of Rossby waves is fastest, as shown in Figure 9 of Frederiksen et al. [83] and
further discussed by O’Kane and Frederiksen [52].

The robustness of the performance of the inhomogeneous closures suggest that it
may be possible to replace the auxiliary prognostic equations for the relaxation functions
by analytic expressions as in the Eddy Damped Quasi Normal Markovian (EDQNM) for
homogeneous turbulence. We demonstrate that the abridged MICX=0[ζ(t)] model, with
both the current-time mean field and current-time FDT, can be adapted to an Eddy Damped
Markovian Inhomogeneous Closure (EDMIC) consisting of a mean field equation and
single-time cumulant equation with analytical expressions for the relaxation functions. We
suggest that the EDMIC is the natural generalization to inhomogeneous turbulence of the
EDQNM including its very high computational efficiency. We note that the EDMIC model
is realizable under the same conditions as the EDQNM.

In a sequel to this work, we plan to study the performance of the EDMIC model, and its
dependence on the eddy damping parameters, and we aim to include wave renormalization
effects that ensure realizability in the presence of time dependent waves for both the EDMIC
and EDQNM models.
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Appendix A. Interaction Coefficients

The equations for the large-scale wind and the spectral equations for the small scales
can be combined into a single form by defining suitable interaction coefficients [49]. The
coefficients needed in Section 3 are

A(k, p, q) = −γ(px q̂y − p̂yqx)/p2, (A1a)

K(k, p, q) =
1
2
[A(k, p, q) + A(k, q, p)] =

1
2

γ[px q̂y − p̂yqx](p2 − q2)/p2q2, (A1b)

and

δ(k, p, q) =
{

1 if k + p + q = 0
0 otherwise.

(A1c)

The large-scale flow is represented by the zero wave vector and is included in the
spectral equations by defining γ , q̂y and p̂y as follows

γ =


− 1

2 k0 if k = 0,
k0 if q = 0 or p = 0,
1 otherwise,

(A2a)

p̂y =

{
1 if k = 0, or p = 0, or q = 0

py otherwise,
(A2b)

q̂y =

{
1 if k = 0, or p = 0, or q = 0

qy otherwise.
(A2c)

The interaction coefficients satisfy the symmetry relationships and sum rule:

A(−k,−p,−q) = A(k, p, q), (A3a)

K(−k,−p,−q) = K(k, p, q), (A3b)

and
K(k, p, q) + K(p, q, k) + K(q, k, p) = 0 (A3c)

for all values of k, p and q.

Appendix B. QDIA Structure and Cumulant and Response Function Relationships

The QDIA closure is computationally tractable because it expresses the off-diagonal
elements of the two-point and three-point cumulants and response functions, needed
to close the QDIA equations, in terms of the diagonal elements and the mean field and
topography. Here, we summarize these relationships. The off-diagonal elements of the
two-point cumulant and response function are
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CQDIA
k,−l (t, t′) =

t∫
t0

ds Rk(t, s)Cl(s, t′)[A(k,−l, l− k)h(k−l) + 2K(k,−l, l− k) < ζ(k−l)(s) >]

+
t′∫

t0

ds R−l(t′, s)Ck(t, s)[A(−l, k, l− k)h(k−l) + 2K(−l, k, l− k) < ζ(k−l)(s) >]

(A4)

and

RQDIA
k,l (t, t′) =

t∫
t′

ds Rk(t, s)Rl(s, t′)[A(k,−l, l− k)h(k−l) + 2K(k,−l, l− k) < ζ(k−l)(s) >]. (A5)

The expressions for the three-point cumulant and between the response function and
perturbation field are

〈
ζ̃−l(t)ζ̃(l−k)(t)ζ̃k(t′)

〉QDIA
= 2

t′∫
t0

dsK(k,−l, l− k) C−l(t, s)C(l−k)(t, s)Rk(t′, s)

+2
t∫

t0

dsK(−l, l− k, k) R−l(t, s)C(l−k)(t, s)Ck(t′, s)

+2
t∫

t0

dsK(k,−l, l− k) C−l(t, s)R(l−k)(t, s)Ck(t′, s)

(A6)

and

〈
R̃(l−k)(t, t′)ζ̃−l(t)

〉QDIA
= 2

t∫
t′

dsK(l− k,−l, k) C−l(t, s)R(l−k)(t, s)Rk(s, t′). (A7)

These relationships are derived by Frederiksen [48,84], Frederiksen and O’Kane [49],
and further detailed by O’Kane and Frederiksen [54].

The relationships between the consequent inhomogeneous QDIA closure in Section 4.1
and other homogeneous and inhomogeneous closures are summarized in Tables 2.1 and 3.1
of O’Kane [85] and a schematic of the development of inhomogeneous closures is shown
in Figure 3.1 of [85]. The numerical methods for solving the QDIA and ensemble DNS
barotropic vorticity equations follow closely those of Frederiksen et al. [10] for homoge-
neous turbulence and are detailed in Chapter 4 of [85]. Flow diagrams of the QDIA code
are presented in Figures 4.1–4.4 of [85] and a flow diagram of the ensemble DNS code
is shown in Figure 4.6 of [85]. Both the DNS code and the QDIA code use the discrete
wavenumber discretization described in Section 3. Frederiksen and Davies [36] also used
the discrete wavenumber formulation for the DIA code for homogeneous turbulence and
found that at low and moderate Reynolds numbers their non-Markovian closures were in
much better agreement with DNS statistics than the continuous wavenumber DIA closure
of Herring et al. [32]. The abridged QDIA of Section 4.2, and the abridged MIC mod-
els of Section 5, again follow the same numerical strategies including predictor-corrector
timesteps and the trapezoidal rule for the calculation of integrals [10,33,85].

Appendix C. Generalized Langevin Equation for Abridged QDIA

As in the case of the homogeneous DIA closure equations [86,87], the QDIA closure
in Equations (21)–(25) have an exact stochastic model representation as noted by Fred-
eriksen [48] (Section 4). This is also the case for the abridged QDIA equations with the
replacement in Equation (26) provided that ζ(t) is assumed to be ζ(T) where T is a slowly
varying time scale that is subsequently replaced by t. Then, the Langevin equation for the
abridged QDIA closure is



Fluids 2022, 7, 200 27 of 30

(
∂

∂t
+ ν0(k)k2

)
ζ̃k(t) = −

t∫
to

ds(ηk(t, s) + π
ζ(T)
k (t, s))ζ̃k(s) + f̃ 0

k(t) + f S
k (t) + f Pζ(T)

k (t). (A8)

Here, f̃ 0
k(t) is the bare random force of Equation (16a) and

f S
k (t) =

√
2∑

p
∑
q

δ(k + p + q)K(k, p, q)ρ(1)−p(t)ρ
(2)
−q(t), (A9a)

f Pζ(T)
k (t) = ∑

p
∑
q

δ(k + p + q)
[
2K(k, p, q) < ζ−q(T) > +A(k, p, q)h−q

]
ρ
(3)
−p(t). (A9b)

We assume that < ζ−q(T) >≡ ζ−q(T) is slowly varying compared with the two-time

cumulants and response function. Additionally, ρ
(i)
k (t) where i = 1, 2, or 3, are statistically

independent random variables such that

< ρ
(i)
k (t)ρ(j)

−l(t
′) >= δijδk lCk(t, t′) (A10a)

with
< ζ̃k(t)ζ̃−k(t′) >= Ck(t, t′). (A10b)

Note also that

f Pζ(T)
−k (s) = ∑

p
∑
q

δ(−k− p− q)
[
2K(−k,−p,−q)ζq(T) + A(−k,−p,−q)hq

]
ρ
(3)
p (s). (A10c)

Thus, the functional dependence on ζ(T) ≡< ζ(T) > in Equation (A8), which is

denoted by the superscript on f Pζ(T)
k (t), does not change when the time dependence

denoted by (t) is changed to (s). In Equation (10), δ is the Kronecker delta function.
The Langevin Equation (A8) guarantees realizability for the diagonal elements of the

covariance matrices, in the quasi-diagonal closure equations. The quasi-diagonal closure
equations also preserve conservation of kinetic energy and potential enstrophy (in the
absence of forcing and dissipation).

Note also that the results of Frederiksen [48], and Frederiksen and O’Kane [49], regard-
ing the convergence of the QDIA to canonical equilibrium [88] (in the inviscid unforced
case) apply equally to the abridged QDIA.

Appendix D. Langevin Equation for EDMIC model

As in the case of the homogeneous EDQNM closure equations [87], our EDMIC model
also has an exact stochastic model representation. The generalized Langevin equation
which exactly reproduces the EDMIC equations is as follows:(

∂

∂t
+

2

∑
j=0

Dj
k(t)

)
ζ̃k(t) =

2

∑
j=0

f j
k(t) (A11)

where
f 0
k(t) = f̃ 0

k , (A12a)

f 1
k(t) =

√
2∑

p
∑
q

δ(k + p + q)K(k, p, q)
[
ReΘEDMIC(k, p, q)(t)

] 1
2 w(t)ρ(1)−p(t)ρ

(2)
−q(t), (A12b)

f 2
k(t) = ∑

p
∑
q

δ(k + p + q)[2K(k, p, q) < ζ−q(t) > +A(k, p, q)h−q]
[
ReΨEDMIC(k, p)(t)

] 1
2 w(t)ρ(3)−p(t). (A12c)
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Here, ρ
(i)
k (t), where i = 1, 2, or 3, are statistically independent random variables

such that
< ρ

(i)
k (t)ρ(j)

−l(t
′) >= δijδk lCk(t, t′), (A13a)

with
< ζ̃k(t)ζ̃−k(t′) >= Ck(t, t′), (A13b)

and
< w(t)w(t′) >= δ(t− t′). (A13c)

In Equation (A13a), δ is the Kronecker delta function and in Equation (A13c) it is the
Dirac delta function.

The Langevin Equation (A11) guarantees realizability for the cumulants Ck(t, t), in
the EDMIC model provided ReΘEDMIC(k, p, q)(t) ≥ 0 and ReΨEDMIC(k, p)(t) ≥ 0. The
EDMIC equations also preserve conservation of kinetic energy and potential enstrophy (in
the absence of forcing and dissipation).
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