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Abstract: AbstractThis study proposes hybrid models to solve the Colebrook–White equation by
combining explicit equations available in the literature to solve the Colebrook–White equation with
an error function. The hybrid model is in the form of fH = fo − eA. fH is the friction factor value
f predicted by the hybrid model, fo is the value of f calculated using several explicit formulas for
the Colebrook–White equation, and eA is the error function determined using the neural network
procedures. The hybrid equation consists of a series of hyperbolic tangent functions whose number
corresponds to the number of neurons in the hidden layer. The simulation results showed that the
hybrid models using five hyperbolic tangent functions could produce reasonable predictions of
friction factors, with the maximum absolute relative error (MAXRE) around one tenth, or ten times
lower than that produced by the corresponding existing formula. The simplified hybrid models are
also given using four and three tangent hyperbolic functions. These simplified models still provide
accurate results with MAXRE of less than 0.1%.

Keywords: Colebrook–White equation; friction factor; explicit approximation; artificial neural
networks; hybrid model

1. Introduction

The friction factor f is an important parameter in flow analysis in pipes and open
channels because it is related to head or energy loss. The loss of head ∆H in the pipe over a
distance L along the flow direction is given by the Darcy Equation (1),

∆H = f
L
D

V2

2g
(1)

where f is the Darcy–Weisbach friction factor, L is the length of pipe, D is the hydraulic
diameter or equivalent pipe diameter, V is the mean velocity, and g is gravity acceleration.
An open channel can be considered as full flow in the pipe split in half [1], and the
Darcy–Weisbach equation originally developed for pipe flow can be adopted for an open
channel [1–4]. Thus, the friction factor in open channels could be related to the flow
conditions in the pipe [1–4]. For uniform flow in an open channel, Equation (1) could
be converted into Equation (2) by substituting D = 4R [1–6], where R = A/P = hydraulic
radius, A = area of pipe cross-section = πD2/4, P = D = wet perimeters of pipe, and
Sf = ∆H/L = energy slope. From Equation (2), we obtain Equation (3).

S f =
f V2

2g4R
(2)

V =

√
8g
f

√
R S f (3)
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The value of f for flow in a pipe depends on relative roughness ε/D as a ratio of the
sand grain size to the pipe diameter and Reynold numbers, Re, defined by

Re =
ρDV

µ
(4)

or Re =
ρ4RV

µ
(5)

where ρ = fluid density and µ is the dynamic viscosity. The relationship between f to ε/D
and Re also depends on the flow conditions, laminar or turbulent. For laminar flow with
Re < 2100, the f value can be computed from Equation (6) [1–9]

f =
64
Re

(6)

There are three types of turbulent flows: smooth, transitional, and fully rough [1–9].
They are distinguished according to the dimensionless Reynolds number R∗ based on
roughness height ε and the shear velocity, u∗ defined as [1–9]

u∗ =
√

τb/ρ =
√

gRS f (7)

R∗ =
u∗ε
ϑ

(8)

where τb is boundary shear stress and ϑ is the kinematic viscosity of the fluid. The flow is
hydraulically smooth if R∗ < 4, transitional if 4 < R∗ < 60 for pipe flow, and 4 < R∗ < 100
for channel flow, respectively, and fully rough if R∗ > 60 for pipe flow and R∗ > 100 for
flow in open channel, respectively [1–9]. When the flow is hydraulically smooth and
Re < 100,000, the f value has a relatively small roughness effect. Therefore, the f value is
directly related to Re [1–9] given by the Blasius formula defined by Equation (9).

f =
0.316

R1/4
e

(9)

When Re > 100,000 and the boundaries are still hydraulically smooth, the f value is
given by the Karman–Prandtl Equation (10) [1,6] as

1√
f
= −2log

(
2.51

Re
√

f

)
(10)

For fully roughly turbulent flow, f is more influenced by roughness or dependent on
ε/D [1,2,6] and f can be computed by Karman–Prandtl ’s Equation (11) [1–9].

1√
f
= −2log

( ε

3.7D

)
(11)

For transitional flow, the friction factor f may be estimated from the Colebrook–White
formula defined by Equations (12) and (13) [1–10].

1√
f
= −2 log

(
ε

3.71D
+

2.51
Re
√

f

)
(12)

or
1√

f
= −2 log

(
ε

14.84R
+

2.51
Re
√

f

)
(13)
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Equations (12) and (13) are the two forms of the Colebrook–White equation, one for
full flow in pipes and another for partially full in pipes and open channels but these are
essentially the same since D = 4R [3].

Equations (12) and (13) are implicit concerning f, which must be determined by trial-
and-error method or by using an iterative procedure, such as the Newton–Raphson Method
or the Secant Method [11,12]. Several explicit formulas to solve the Colebrook–White
Equation (12) have been proposed to avoid the iteration procedure. The first attempt to
make the friction factor calculation easier was made by Moody [13] by producing a f − Re
plot based on Equation (12), generally called Moody’s diagram. Moody also proposed an
explicit formula for f. After that, several explicit equations for solving the Colebrook–White
Equation (12) have been proposed. The study and attempt to find an explicit form of
the Colebrook–White equation is an interesting topic, as can be seen from many studies
available relating to the approximation of the Colebrook–White equation. The comparison
and performance of these equations were examined by some authors, including Brkic [14],
Zeghadnia et al. [15], Plascendia et al. [16], and Perez Pupo et al. [17], compared 49 explicit
equations, ranging from the old equation of Moody [13] to relatively new and complex
equations. Moreover, the study and development of the approximation of the Colebrook–
White equation are still going on today. Some of the latest studies on this can be seen in
several kinds of literature [18–23].

Another approach to determine the value of f is to use an artificial neural network
(ANN), widely applied in engineering and science. The ANN approach was inspired by
the structure and workings of biological neural networks. It is used to find the correlation
between large, complex, and non-linear independent and dependent variables without
knowing the physical process defining the relationship between these parameters [24–26].
Therefore, ANN could be considered a black-box model representing the processes modeled
by networks and weights. Its structure consists of the input, hidden, and output layers
with several neurons. In the ANN networks, information is transferred from one neuron to
another using a specific transform function.

The ANN method starts from the parameters in the input layer, where the neurons
receive input from the outside environment. The inputs received are usually independent
parameters that describe a problem under study. Their signals are transferred to neurons in
the next hidden layer and transmitted through a specific transfer function. The output signal
in neurons at the hidden layer is then transferred to the neurons in the output layer that
sends it to the user. The application of ANN consists of training, validation, and testing.
The training process aims to obtain the weighting coefficient through optimization to
produce minimal prediction errors. The ANN model needs to be tested through validation
and testing processes. The data for the ANN model generally consists of 70% training, 15%
validation, and 15% testing.

The commonly used and simple neural network model is the multi-layered perceptron
(MLP), consisting of three main layers: input, hidden, and output. Cahyono [27] proposed
an explicit model of ANN-based on the MLP model for the output layer consisting of
a single node. The model was applied to develop equations for estimating the setting
velocity of natural sediment. The explicit ANN equation consists of a series of hyperbolic
tangent functions with the sequence number according to the number of nodes in the
hidden layer. Each hyperbolic tangent part contains coefficients whose number is equal to
the input parameters. For example, the explicit ANN with two input parameters is defined
by Equation (14).

YANN =
N

∑
k=1

Ek tanh
(
ak X1 + bk X2 + ck

)
+ F (14)

where YANN is the predicted output value; X1 and X2 are the normalized input values, and
Ek and F are coefficients that depend on the weights ak, bk, and ck, where k = 1, 2, . . . , N
with N = number of nodes in the hidden layer. These weight coefficients were obtained
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through a training process. The MATLAB software can determine the coefficient and the
initial value for the optimization to obtain the best coefficient.

This study’s main objective is to develop explicit models of the Colebrook–White
equation. Several explicit formulas available in the literature for solving the Colebrook–
White equation are used to create the models. The developed models, called hybrid, are
built by developing an error equation, which is the formula expressing the difference
between the friction factor computed by the Colebrook–White equation and that obtained
with the explicit formula. The error equation is derived using the ANN Equation (14). Thus,
with this method, the hybrid models can improve the accuracy of the explicit formula.
The study considers three hybrid models with differences in the number of neurons in the
hidden layer.

The following section discusses the methodology of developing hybrid models; the cre-
ation of data points for training, validation, and testing; and the analysis of the simulation
results for hybrid models, discussion, and conclusions.

2. Materials and Methods
2.1. Development of Hybrid Formula

Hybrid models are developed using a combination of explicit formulas available in
the literature to solve the Colebrook–White equation and an error function. Consider
Equation (15) below

fE = fo + e0 (15)

where fE and fo are the friction factor computed by the Colebrook–White Equation (12) and
that obtained by the explicit formula, and e0 is an error that is the difference between fE and
fo, i.e., e0 = fE − fo. For every pair of Re and ε/D, one can compute fE, fo, and e0. Therefore,
there is a correlation between parameters Re and ε/D with e0. In this study, an equation to
approximate e0 as a function of Re and ε/D, i.e., eA = f (Re, ε/D), is developed by using
the ANN model. The main objective of the contribution is to model eA accurately so that
e0 ≈ eA by minimizing the difference between the e0 and eA. Thus, the hybrid model for
the solution of the Colebrook–White Equation (12) can be defined by Equation (16) below:

fH = f0 + eA (16)

where fH is the friction factor computed by the hybrid model. This study applied the ANN
method with the multi-layered perceptron (MLP) architecture consisting of three main
layers: the input layer, the hidden layer, and the output layer. The input layer consists of
two neurons that receive two input parameters, X1 and X2, relating to Re and ε/D. These
input parameters are in a logarithmic transformation of Re and ε/D, i.e., X1 = log (Re) and
X2 = log (ε/D). Choosing these types of input parameters is in line with Sablani et al. [28],
showing that the accuracy of the ANN model is better when the input parameters used are
logarithmic transformations of Re and ε/D.

The hidden layer has several neurons depending on the ANN model. The output
layer has single neurons relating to eA. However, in this model, the output value is EA,
which is the value eA multiplied by 106. The eA value needs to be multiplied by the
number 106 to avoid significant error calculations dealing with a small value eA. Thus,
applying Equation (14) for eA = f (Re, ε/D), the explicit ANN model for the error function
eA = f (Re, ε/D), can be expressed in a series of hyperbolic tangent functions as stated by
Equation (17) below.

eA(Re, ε/D) = 10−6

[(
N

∑
k=1

Ektanh(akζ + bkη + ck)

)
+ F

]
(17)
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where ζ and η are normalized input parameters X1 = log (Re) and X2 = log (ε/D), respectively,
and a, b, c, E, and F are the coefficients of the function. Substituting Equation (17) into
Equation (16), the hybrid model function becomes

fH = fo + 10−6

[(
N

∑
k=1

Ektanh(akζ + bkη + ck)

)
+ F

]
(18)

The coefficients a, b, c, E, and F depend on the value of the ANN weighting coefficients
that are obtained through optimization in the training process. The optimization is carried
out by using the following objective function

min Er = min
M

∑
i=1

(e0,i − eA,i)
2 (19)

where e0 = fE − fo is the error value defined by Equation (15), and eA = the error value
predicted by the ANN model defined by Equation (17).

2.2. Existing Equation Considered

The five explicit formulas reviewed in this study were selected based on their simplicity
in mathematical expression and rough accuracy, namely, the maximum absolute relative
error value of less than 1.0% in line with the study by Pérez Pupo et al. [17]. The considered
explicit formulas are shown below:

1. Formula (1) of Chen [29],

fo,Chen =

[
−2log

[
ε

3.7065D
− 5.0452

Re
log
(

1
2.8257

( ε

D

)1.1098
+

5.8506
R0.8981

e

)]]−2
(20)

2. Formula (2) of Schorle et al. [30],

f0,S =

[
−2log

[
ε

3.7D
− 5.02

Re
log
(

ε

3.7D
+

14.5
Re

)]]−2
(21)

3. Formula (3) of Bar and White [31],

fo,BW =

−2log

 ε

3.7D
+

4.518 log
(

Re
7

)
Re

[
1 + R0.52

e
29
(

ε
D
)0.7
]

−2

(22)

4. Formula (4) of Sousa et al. [32],

fo,So =

[
−2log

[
ε

3.7D
− 5.16

Re
log
(

ε

3.7D
+

5.09
R0.87

e

)]]−2
(23)

5. Formula (5) of Offor and Alabi [33],

fo,o f =

[
−2log

{
ε

3.71D
− 1.975

Re

(
ln
(( ε

3.93D

)1.092
+

(
7.627

Re + 395.9

)))}]−2
(24)

2.3. Statistical Measure

The performance of the hybrid model is assessed using the following error measures:

1. The coefficient of determination, R2, of the linear regression line between fH represents
the predicted friction factor by the hybrid model Equation (18) and the desired output
friction factor fE obtained from iteration Equation (12).
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2. The mean absolute relative error, MRE, is defined by:

MRE =
1
M ∑M

i=1

∣∣∣∣ fE,i − fH,i

fE,i

∣∣∣∣× 100 (25)

where |( fE − fH)/ fE| = RE is the absolute relative error, and M is the amount of data.
3. The maximum absolute relative error, MAXRE, is defined by:

MAXRE = Max
∣∣∣∣ fE,i − fH,i

fE,i

∣∣∣∣× 100 %, i = 1, 2, . . . , M (26)

2.4. Data Generation

The data points for the training, validation, and testing of the ANN model are gener-
ated by applying an iterative procedure using the Secant method [11,12] on the Colebrook–
White Equation (12). The data points consist of a combination of Re ranging from 2 × 103

to 2 × 109 and ε/D values ranging from 2.5 × 10−7 to 0.05. The first group of data points
for the training process comprises 30,351 points resulting from the solution of Equation (12)
with system log (Re)(i) × log (ε/D)(j) = 151 × 201 data grids with uniform intervals in each
log (Re) and log (ε/D). The second group of data points for validation were from 301 Re and
301 ε/D values, resulting in 90,601 data points. The validation data points have uniform
intervals in Re and ε/D. The third data group for testing comprises 200,901 data points
made from 401 log (Re) and 501 log (ε/D) values using uniform intervals as in the training
data. The total data points obtained for training, validation, and testing are 321,853 points.
The number of data points is enlarged for the resulting robust model for the range of Re
and ε/D under consideration. Generally, the development of the ANN model uses a more
significant proportion of data for training than validation data. In contrast, the data for
validation and testing in this study is greater than the training data to ensure the robustness
of the model obtained. Each data point has Re and ε/D and the associated f value, i.e., (Re,
ε/D, f ). Solving Equation (12) results in the value of f for each pair Re and ε/D through an
iterative process [11,12]. By using the initial value f = 0.01, ε1 = the error tolerance absolute
relative error for f, ε1 < 10−8; and ε2 = the absolute value of implicit Equation (12), ε2 < 10−8.
To get a solution f with these tolerances requires the iteration of Equation (12) between five
and eight times, with an average iteration of seven.

3. Results and Discussion

The training process using the nntool facility in MATLAB software produced coeffi-
cients a, b, c, E, and F, defined in Equation (18). An Excel program was developed based
on the ANN algorithm described using MS excel software to obtain the explicit eA de-
fined by Equation (17). This Excel program refines the ANN model by further optimizing
computations. The optimization with MATLAB uses the Levenberg–Marquardt method,
while the excel program uses the nonlinear generalized reduced gradient (GRG) technique
available in the solver engine. Further optimization with the Excel program uses the coef-
ficient values of a, b, c, E, and F obtained from simulation with MATLAB version R2022a
licence academic ITB as initial values. Furthermore, optimization with the excel program
applies different objective functions. The objective function is to minimize Er defined
by Equation (19), and two other objective functions including minimizing MRE defined
by Equation (25) and minimizing MAXRE defined by Equation (26). However, based on
the simulation results, the MRE and MAXRE values generated from these three objective
functions did not significantly differ in the MRE and the MAXRE values. Therefore, this
study provides the coefficients obtained using the objective function of minimizing MRE.
The resulting hybrid models using five nodes in the hidden layer, called hybrid model 1,
are given in Equations (27)–(31).

a. The formula hybrid model 1 of Chen [29]
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fH,Chen =

[
− 2log

[
ε

3.7065D −
5.0452

Re
log
(

1
2.8257

(
ε
D
)1.1098

+ 5.8506
R0.8981

e

)]]−2

+10−6 [E1 tanh(a1ζ + b1 η + c1) + E2 tanh(a2ζ + b2 η + c2)
+E3 tanh(a3ζ + b3 η + c3) + E4 tanh(a4ζ + b4 η + c4)
+E5 tanh(a5ζ + b5 η + c5) + F]

(27)

where ζ = log (Re)/3− 2.1 and η = 0.37729 log(ε/D) + 1.49089, a1 = 1.24842, a2 = −1.67471,
a3 = 3.21556, a4 = −1.46582, a5 = −6.74339, b1 = 1.95053, b2 = −1.97848, b3 = 1.11762,
b4 = −1.93413, b5 = −0.21634, c1 = 0.45646, c2 = −0.19816, c3 = 1.09509, c4 = −0.31873,
c5 = −6.91059, E1 = 710.654, E2 = −1039.726, E3 = 28.674, E4 = 1773.675, E5 = 378.630,
and F = 363.173.

b. The formula for hybrid model 1 of Schorle et al. [30],

fH,S =

[
− 2log

[
ε

3.7D −
5.02
Re

log
(

ε
3.7D + 14.5

Re

)]]−2

+10−6 [E1 tanh(a1ζ + b1 η + c1) + E2 tanh(a2ζ + b2 η + c2)
+E3 tanh(a3ζ + b3 η + c3) + E4 tanh(a4ζ + b4 η + c4)
+E5 tanh(a5ζ + b5 η + c5) + F]

(28)

c. The formula for hybrid model of Bar and White [31],

fH,BW =

[
− 2log

{
ε

3.7D +
4.518log( Re

7 )
Re

[
1+ Re0.52

29 ( ε
D )

0.7]
}]−2

+10−6 [E1 tanh(a1ζ + b1 η + c1) + E2 tanh(a2ζ + b2 η + c2)
+E3 tanh(a3ζ + b3 η + c3) + E4 tanh(a4ζ + b4 η + c4)
+E5 tanh(a5ζ + b5 η + c5) + F]

(29)

d. The formula for hybrid model 1 of 4 Sousa et al. [32],

fH,So =

[
− 2log

[
ε

3.7D −
5.16
Re

log
(

ε
3.7D + 5.09

R0.87
e

)]]−2

+10−6 [E1 tanh(a1ζ + b1 η + c1) + E2 tanh(a2ζ + b2 η + c2)
+E3 tanh(a3ζ + b3 η + c3) + E4 tanh(a4ζ + b4 η + c4)
+E5 tanh(a5ζ + b5 η + c5) + F]

(30)

e. The formula for hybrid model 1 of Offor and Alabi [33],

fH,o f =

[
− 2log

{
ε

3.71D −
1.975

Re

(
ln
((

ε
3.3D

)1.092
+
(

7.627
Re+395.9

)))}]−2

+10−6 [E1 tanh(a1ζ + b1 η + c1) + E2 tanh(a2ζ + b2 η + c2)
+E3 tanh(a3ζ + b3 η + c3) + E4 tanh(a4ζ + b4 η + c4)
+E5 tanh(a5ζ + b5 η + c5) + F]

(31)

The coefficients a, b, c, and E and F for hybrid models Equations (28)–(31) are shown
in Table A1. In comparison, the models with more nodes in the hidden layer are also con-
sidered, including models 2 and 3 with nodes in the hidden layer of 7 and 10, respectively.
The equations and coefficients a, b, c, E, and F for hybrid models 2 and 3 are given in Tables
S1–S4 in Supplementary Materials. Table 1 shows statistical measures such as MRE and
MAXRE for each considered explicit formula and its corresponding hybrid models. The
value of R2 is not displayed because almost all simulation results have an R2 value close to
1. Furthermore, it was discovered that the hybrid models could significantly increase the
existing formula’s accuracy in reducing the MAXRE value.
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Table 1. Statistical measures for considered explicit equations and the hybrid models developed in
this study.

Explicit Equation Hybrid Model MRE MAXRE

(%) (%)

Equation (26) (Chen [29])

Original 0.117 0.689

Hybrid
Model 1 0.014 0.090
Model 2 0.010 0.082
Model 3 0.004 0.060

Equation (27) (Schorle et al. [30])

Original 0.283 1.889

Hybrid
Model 1 0.055 0.156
Model 2 0.017 0.050
Model 3 0.012 0.045

Equation (28) (Barr and White [31])

Original 0.098 0.942

Hybrid
Model 1 0.039 0.117
Model 2 0.026 0.100
Model 3 0.011 0.067

Equation (29) (Sousa et al. [32])

Original 0.088 0.394

Hybrid
Model 1 0.010 0.035
Model 2 0.005 0.026
Model 3 0.002 0.020

Equation (30) (Offor and Alabi [33])

Original 0.017 0.278

Hybrid
Model 1 0.007 0.043
Model 2 0.005 0.035
Model 3 0.003 0.033

The hybrid models produce the MAXRE of about six to forty times lower than those
provided by existing formulas, especially in a hybrid model 3 with 10 hidden neurons, as
seen in Table 1. Thus, the hybrid model 3 gives very accurate results but is less attractive
in terms of computational time because it contains 10 hyperbolic tangent functions. From
Table 1, the difference between the MAXRE values for Sousa et al. and Offor and Alabi
models 1 and that for hybrid models 2 and 3 is relatively small. The results of this simulation
indicate that using five nodes in the hidden layer for these two models can produce very
satisfactory results.

To evaluate the computational efficiency of the hybrid models, the models are applied
to compute data points for validating (90,601 data points). Using Microsoft Developer
Studio for Fortran Compiler with a processor specification of Intel® Core™ i7-10510U CPU
@ 1.80 GHz–2.30 GHz, and installed memory (RAM) 160 GB, the CPU times for generating
the data with hybrid models 1 of Chen, Schorle et al., Bar and White, Sousa et al., and
Offor and Alabi are 0.069, 0.051, 0.069, 0.052, and 0.052 s, respectively. In contrast, the
corresponding hybrid models 3 require 0.101, 0.087, 0. 094, 0.088, and 0.089 s, respectively.
The simulation results indicate that the average CPU time required to compute validating
data by applying model 3 is 0.092 s, and model 2 is 0.058 s. The simulation with the hybrid
model 3 requires the CPU time to be around 160% longer than that of the hybrid model
2. The results also indicate that the hybrid model 2 of Sousa et al. and Offor and Alibi
require shorter CPU time than the other hybrid models. As a comparison, the CPU times to
compute the validating data using the existing formulas of Chen [29], Schorle et al. [30],
Bar and White [31], Sousa et al. [32], and Offor and Alabi [33] are 0.042, 0.027, 0.042, 0.031,
and 0.032 s, respectively, while the CPU time for iteration of Equation (12) is 1.567 s.

It can be seen in Table A1 that the coefficients E3 and E4 for model 1 of Sousa et al. are
relatively small, so their effects on the overall function value are minor. These coefficients,
E3 and E4, can be eliminated to get a simplified model. By removing the coefficient
E3 and then applying the optimization technique, new coefficients a, b, c, E, and F are
determined, resulting in a simplified Sousa et al. model with four tanh functions. Moreover,
removing the coefficients E3 and E4 and then applying the same approach resulted in a
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simplified formula for hybrid model 1 of Sousa et al. with three tanh functions. The hybrid
models of Sousa et al. using four and three hyperbolic tangent functions are given by
Equations (32) and (33).

fH,So =

[
− 2log

[
ε

3.7D −
5.16
Re

(
ε

3.7D + 5.09
R0.87

e

)]]−2

+10−6 [E1 tanh(a1ζ + b1 η + c1) + E2 tanh(a2ζ + b2 η + c2)
+E3 tanh(a3ζ + b3 η + c3) + E4 tanh(a4ζ + b4 η + c4) + F]

(32)

fH,So =

[
− 2log

[
ε

3.7D −
5.16
Re

(
ε

3.7D + 5.09
R0.87

e

)]]−2

+10−6 [E1 tanh(a1ζ + b1 η + c1) + E2 tanh(a2ζ + b2 η + c2)
+E3 tanh(a3ζ + b3 η + c3) + F]

(33)

where ζ = log (Re)/3 − 2.1 and η = 0.37729 log(ε/D) + 1.49089. Coefficients a, b, c, E, and
F are given in Table 2. The values of MAXRE and MRE for Equation (32) are 0.079% and
0.032%, around one-fifth or five times lower than those of existing Sousa et al.’s formula,
while Equation (33) gives the MAXRE and MRE of 0.107% and 0.045%, respectively, around
one-third or three times lower than those of the existing formula. The computation of
validating data with Equations (32) and (33) requires CPU times of 0.046 and 0.048 s,
respectively.

Table 2. Coefficients of the simplified hybrid model of Sousa et al. [32].

Coefficients of Equation (32) Coefficients of Equation (33)

k ak bk ck Ek & F ak bk ck Ek & F

1 −4.18046 3.32259 −7.37097 −141.907 −4.06502 3.38230 −7.47230 −56.828
2 0.13511 2.13256 −3.64888 −1122.593 0.12831 1.71004 −2.75631 −560.767
3 −1.81466 −0.02359 −1.70540 –52.697 11.44103 −0.00528 12.13929 −503.155
4 4.88475 −0.00526 5.87472 −976.426 F = −116.987
5 F = −340.704

The coefficients E1 and E4 of Offor and Alabi model 1 in Table A1 are relatively
small compared to other coefficients. By performing the same procedure to obtain the
simplification of Sousa et al. model, simplified hybrid models of Offor and Alabi using
four and three tangent hyperbolic functions are given by Equations (34) and (35).

fH,o f =

[
− 2log

{
ε

3.71D −
1.975

Re

(
ln
((

ε
3.93D

)1.092
+
(

7.627
Re+395.9

)))}]−2

+10−6 [E1 tanh(a1ζ + b1 η + c1) + E2 tanh(a2ζ + b2 η + c2)
+E3 tanh(a3ζ + b3 η + c3) + E4 tanh(a4ζ + b4 η + c4) + F]

(34)

fH,o f =

[
− 2log

{
ε

3.71D −
1.975

Re

(
ln
((

ε
3.93D

)1.092
+
(

7.627
Re+395.9

)))}]−2

+10−6 [E1 tanh(a1ζ + b1 η + c1) + E2 tanh(a2ζ + b2 η + c2)
+E3 tanh(a3ζ + b3 η + c3) + F]

(35)

where ζ = log (Re)/3 − 2.1 and η = 0.37729 log(ε/D) + 1.49089. Coefficients a, b, c, E,
and F are given in Table 3. The simplification of the Offor and Alabi hybrid model gives
MAMXRE and MRE values of 0.039% and 0.009% (around one-seventh or seven times
lower than those of the corresponding existing formula) for Equation (34), and 0.068% and
0.013% (one-third or three times lower) for Equation (35). The CPU times for computing
data for validation with Equations (34) and (35) are 0.047 and 0.050 s, respectively.
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Table 3. Coefficients of the simplified hybrid model of Offor-Alabi [33].

Coefficients of Equation (34) Coefficients of Equation (35)

k ak bk ck Ek & F ak bk ck Ek & F

1 −2.80211 −0.62177 −2.94729 −836.494 −10.32700 −1.82460 −8.70690 16.457
2 10.73230 −2.83803 13.28526 −155.146 12.01430 −3.42070 15.08060 −112.035
3 3.08238 0.66715 3.10158 −769.969 −13.07130 0.08710 −13.08580 −164.880
4 10.06938 −0.20182 10.72137 400.633 F =−37.108
5 F = −310.679

It is observed that the simplification of the Sousa et al. [32] and Offor-Alabi [33] hybrid
models defined in Equations (32)–(35) still produces very accurate results with a MAXRE
value of less than 0.1%, much more accurate than most of the more than 49 explicit formulas
reviewed by Zeghadnia et al. [15] and Pérez Pupo et al. [17]. Therefore, Equations (32)–(35)
are potentially used in practical applications, especially Equations (32) and (33), because
they are more straightforward than Equations (34) and (35). However, to obtain more
accurate results, the hybrid model 1 with five hyperbolic tangent functions should be used
with small-time additional time computation. Figure 1 shows the spatial distribution of
the absolute relative error RE of the existing formula of Sousa et al. [32] compared with
RE predicted by its hybrid models with three, four, and five hyperbolic tangent functions.
Figure 1 is generated by using MATLAB R2022a.

Figure 1. Spatial distribution of absolute relative error RE (%) of friction factor f for (a) predicted by
the original formula of Sousa et al. [32] and (b–d) predicted by the hybrid model of Sousa et al. with
three, four, and five hyperbolic tangent functions, respectively.
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4. Conclusions

Hybrid models have been developed using a combination of explicit formulas available
in the literature to solve the Colebrook–White equation with an error equation, eA. The
error equation eA estimates e0 which is the difference between the friction factor computed
by the Colebrook–White equation, fE, and that obtained by the explicit formula, fo. The
existing formulas reviewed were those proposed by Chen [29], Schorle et al. [30], Bar and
White [31], Sousa et al. [32], and Offor and Alabi [33]. The hybrid model is fH = fo + eA,
where fH is the f value predicted by the hybrid model. This study applied the ANN method
with the multi-layered perceptron (MLP) architecture consisting of three main layers—the
input layer, the hidden layer, and the output layer—for modeling the error equation eA.
The input layer consists of two input parameters: the logarithmic transformation of the
Reynolds number Re, and the relative roughness ε/D. The output is the eA value for given
Re and ε/D values. The error equation eA consists of a series of hyperbolic tangent functions
whose number corresponds to the number of neurons in the hidden layer.

Three hybrid models are considered, including models 1, 2, and 3, with the number
of hyperbolic tangent functions being 5, 7, and 10. Hybrid model 3 produces excellent
results but is less attractive in computational time because it contains 10 hyperbolic tangent
functions and requires a CPU time around 160% longer than hybrid model 2. However,
the hybrid model 1 using five hyperbolic tangent functions could produce reasonable
predictions of friction factors, with the MAXRE value one-tenth or ten times lower than
that produced by the existing formula.

The equations for simplified hybrid models of Sousa et al. [32] and Offor-Alabi [33]
using four and three tangent hyperbolic functions are also given. Simplifying these models
still provides very accurate results, with a maximum absolute error MAXRE value of
less than 0.1%, lower than that produced by most existing explicit formulas available in
the literature. Therefore, these equations are potentially used in practical applications.
However, for more precise results, hybrid model 1 with five hyperbolic tangent functions
should be used with only small-time additional time computation, about 10 to 20% longer
than that of the simplified model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fluids7070211/s1. Equations (S1)–(S10): listed the equations
and coefficients for all hybrid formulas. Table S1: Coefficient of hybrid model 2 of Chen [29],
Schorle et al. [30] and Barr and White [31] given by Equations (S1), (S2) and (S3), respectively; Tabel S2:
Coefficient of hybrid model 2 of Sousa et al. [32] and Offor and Alabi [33] given by Equations (S4)
and (S5), respectively; Tabel S3: Coefficient of hybrid model 3 of Chen [29], Schorle et al. [30] and Barr
and White [31] given by Equations (S6), (S7) and (S8), respectively; Tabel S4: Coefficient of hybrid
model 3 of Sousa et al. [32] and Offor and Alabi [33] given by Equations (S9) and (S10), respectively.

Funding: This research was funded by Faculty of Civil and Environmental Engineering, Bandung
Institute of Technology, grant number: 453.11/IT1.C06/TA.00/2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

This appendix lists the coefficients for hybrid models (existing explicit formula +
explicit ANN model for error function) to be used in Equations (28)–(31) for models 1
of Schorle et al. [30], Barr and White [31], Sousa et al. [32], and Offor and Alabi [33],
respectively.

https://www.mdpi.com/article/10.3390/fluids7070211/s1
https://www.mdpi.com/article/10.3390/fluids7070211/s1
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Table A1. Coefficient of Equations (28)–(31) for hybrid models 1 of Schorle et al. [30], Barr and
White [31], Sousa et al. [32], and Offor and Alabi [33].

Hybrid Model
Coefficients

k ak bk ck Ek & F

Schorle et al. [30] + ANN
(2-5-1), Equation (28)

1 −2.26933 −0.05760 0.74884 28.288
2 0.93914 −0.66953 2.51097 25,423.641
3 −1.04822 0.70094 −2.18636 11,387.088
4 4.90973 0.04289 5.39717 −1765.822
5 2.66153 1.81116 0.83719 69.487
6 F = −12,307.506

Barr and White [31] + ANN
(2-5-1), Equation (29)

1 0.83941 −2.98641 3.79362 3239.372
2 1.94701 −3.08646 5.81603 9137.427
3 −0.37782 −5.25154 1.95626 12.447
4 0.90315 −2.76715 4.22969 −11,058.386
5 −4.51262 0.18143 −5.95373 4272.718
6 F = 2942.393

Sousa et al. [32] + ANN
(2-5-1), Equation (30)

1 −4.14477 3.26576 −7.56141 −203.631
2 0.13488 2.04836 −3.88041 −1598.224
3 7.34543 6.94243 2.03779 −5.643
4 −1.49063 −0.02376 −1.41946 −77.800
5 4.69215 −0.00526 5.80950 −1382.211
6 F = −494.097

Offor and Alabi [33] + ANN
(2-5-1), Equation (31)

1 −6.74589 −3.60800 1.99030 1.199
2 −2.66078 −0.61588 −2.73123 −457.489
3 12.23306 −3.42486 15.28631 −134.388
4 3.09142 0.68423 2.97875 −415.722
5 12.38692 −0.21233 12.52520 192.577
6 F = −98.881
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23. Brkić, D.; Ćojbašić, Ž. Evolutionary Optimization of Colebrook’s Turbulent Flow Friction Approximations. Fluids 2017, 2, 15.

[CrossRef]
24. Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice-Hall: Englewood Cliffs, NJ, USA, 1999.
25. Srinivasulu, S.; Jain, A.A. Comparative analysis of training methods for artificial neural network rainfall-runoff models. Appl.

Soft Comput. 2006, 6, 295–306. [CrossRef]
26. Huo, Z.; Feng, S.; Kang, S.; Huang, G.; Wang, F.; Guo, P. Integrated neural networks for monthly river flow estimation in arid

inland basin of Northwest China. J. Hydrol. 2012, 420, 159–170. [CrossRef]
27. Cahyono, M. The Development of Explicit Equations for Estimating Settling Velocity Based on Artificial Neural Networks

Procedure. Hydrology 2022, 9, 98. [CrossRef]
28. Sablani, S.S.; Shayya, W.H.; Kacimov, A. Explicit calculation of the friction factor in pipeline flow of Bingham plastic fluids: A

neural network approach. Chem. Eng. Sci. 2003, 58, 99–106. [CrossRef]
29. Chen, N.H. An explicit equation for friction factor in pipe. Ind. Eng. Chem. Fundam. 1979, 18, 296–297. [CrossRef]
30. Schorle, B.J.; Churchill, S.W.; Shacham, M. Comments on: “An Explicit Equation for Friction Factor in Pipe”. Ind. Eng. Chem.

Fundam. 1980, 19, 228–230. [CrossRef]
31. Barr, D.; White, C. Technical note. solutions of the colebrook-white function for resistance to uniform turbulent flow. Proc. Inst.

Civ. Eng. 1981, 71, 529–535. [CrossRef]
32. Sousa, J.; Da Conceição, M.; Marques, A.S. An explicit solution of the Colebrook-White equation through simulated annealing.

Water Ind. Syst. Model. Optim. Appl. 1999, 2, 347–355.
33. Offor, U.H.; Alabi, S.B. An accurate and computationally efficient explicit friction factor model. Adv. Chem. Eng. Sci. 2016,

6, 237–245. [CrossRef]

http://doi.org/10.24275/rmiq/Fen497
http://doi.org/10.3390/w13091163
http://doi.org/10.3390/e23050611
http://doi.org/10.3390/computation7030048
http://doi.org/10.23967/j.rimni.2020.09.001
http://doi.org/10.3390/fluids4030114
http://doi.org/10.3390/fluids2020015
http://doi.org/10.1016/j.asoc.2005.02.002
http://doi.org/10.1016/j.jhydrol.2011.11.054
http://doi.org/10.3390/hydrology9060098
http://doi.org/10.1016/S0009-2509(02)00440-2
http://doi.org/10.1021/i160071a019
http://doi.org/10.1021/i160074a019
http://doi.org/10.1680/iicep.1981.1895
http://doi.org/10.4236/aces.2016.63024

	Introduction 
	Materials and Methods 
	Development of Hybrid Formula 
	Existing Equation Considered 
	Statistical Measure 
	Data Generation 

	Results and Discussion 
	Conclusions 
	Appendix A
	References

