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Abstract: The propagation of hydrothermal waves in a differentially heated shallow open cavity
filled with a complex fluid (a mixture of an oil with solid spherical metallic particles) is investigated
in the framework of a hybrid numerical two-way coupled Eulerian–Lagrangian methodology. We
explore the response of this system to the solid mass fraction (mass load) and the particle size (Stokes
number). The results show that particles and related (inertial and drag) effects can cause appreciable
modifications in the properties of the wave, leading to a shrinkage of its velocity of propagation.
Interesting dynamics can also be seen in terms of particle patterning behavior as the Stokes number is
increased. Due to the joint action that distinct traveling rolls exert on the dispersed solid mass, related
accumulation loops induced by centrifugal effects are progressively distorted and finally broken.
Particles simply tend to cluster (as time increases) along the lower periphery of the main Marangoni
circulation and, as a result of this mechanism and the different velocities of the return flow and the
hydrothermal disturbance, a wavy boundary is formed, which separates the upper particle-rich area
from a relatively depleted region next to the bottom wall.

Keywords: Marangoni convection; hydrothermal wave; solid particles; patterning behavior

1. Introduction

Hydrothermal waves (HTWs) represent the preferred mode of supercritical Marangoni
convection in a variety of geometrical configurations and for different fluids (including
liquid metals, molten salts or oxides and a plethora of transparent and/or organic liquids).
The first experimental observation of these phenomena dates back to the work by Schwabe
and Scharmann [1], who revealed their existence in liquid bridges. Later, Smith and
Davis [2] determined the properties of these waves (the critical value of the Marangoni
number, the direction of propagation of the disturbance with respect to the basic flow and
the related wavenumber and wavelength as a function of the Prandtl number, Pr) applying
the typical protocols of the linear stability analysis (LSA) to a layer of infinite extent with
adiabatic top and bottom boundaries.

Yet in the framework of LSA, Priede and Gerbeth [3] considered the alternate case with
a conducting boundary on the bottom (assumed to mimic the effect of an external metallic
container, with the free liquid/gas surface retaining an adiabatic behavior). Subsequent
studies were essentially devoted to a characterization of these phenomena for different
boundary conditions (of a thermal and/or geometrical nature). As an example, several
experiments (Daviaud and Vince [4] for Pr = 10.3; Gillon and Homsy [5] for Pr = 9.5; De
Saedeleer et al. [6] for Pr = 15; Garcimartìn et al. [7] for Pr = 10, 15 and 30; Pelacho and
Burguete [8] and Pelacho et al. [9] for Pr = 10.3; Burguete et al. [10]) indicated that the
properties of the emerging flow may depend significantly on geometrical factors. Along
these lines, it is certainly worth citing Pelacho et al. [11], as these authors conducted a
series of tests expressly conceived to characterize the emergence of waves in containers
whose dimensions (height, width and length) could be continuously changed. Peltier
and Biringen [12], Xu and Zebib [13] and Tang and Wu [14] numerically explored these
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behaviors for rectangular containers of finite size with various aspect ratios. Studies
addressing the presence of a topography on the bottom of the considered physical domain in
the form of a backward-facing or forward-facing step (or a combination of both geometrical
features resulting in a central obstruction) are relatively recent (Lappa [15]). Steady gravity
or oscillatory accelerations (resulting from the application of vibrations to the container
hosting the liquid) are also known to have a significant impact on the dynamics of the
hydrothermal waves, leading in some cases to their suppression (Parmentier et al. [16])
or to the emergence of new waveforms (standing waves or waves traveling in other
directions, Lappa [17]).

Additional degrees of freedom are represented by the possibility to alter the kinematic
and thermal conditions at the free interface by blowing a current of air with a desired
velocity and temperature in a direction parallel to the surface itself (Shevtsova et al. [18]) or
to induce a solidification process in the liquid by lowering the temperature on the cold side
under the threshold required for phase transition (from liquid to solid) to occur (Lappa [19],
Salgado Sanchez et al. [20]). As an additional example witnessing the richness of the
considered problem in terms of influential factors and system response, Ospennikov and
Schwabe [21] revealed that the HTWs can be artificially suppressed (leading to stationary
rolls) in experimental configurations where the return flow does not exist (these researchers
suppressed the return flow using channels and side channels with lower flow resistance
compared to that of the return flow).

Although the exploration of the sensitivity of these phenomena to intrinsic and envi-
ronmental factors may appear as exhausted given the number of valuable efforts described
above, most recently a completely new line of inquiry has been originated by the discovery
that these waves can support the formation of ordered structures produced by particles
(tracers initially dispersed in liquid bridges for visualization purposes). Such findings
(Schwabe et al. [22]) have stimulated a number of research works focusing on aspects
relating to the patterning behavior in these systems for conditions in which the presence of
the dispersed phase is expected not to influence the properties of the carrier flow (dilute
dispersions, see, e.g., Schwabe et al. [23], Schwabe and Mizev [24], Pushkin et al. [25],
Melnikov et al. [26], Lappa [27–30], Kuhlmann et al. [31], Gotoda et al. [32,33], Lappa [34],
Melnikov and Shevtsova [35], Capobianchi and Lappa [36–38], Sakata et al. [39]).

Given the lack of analyses specifically devoted to this topic, in the present work,
we concentrate on the fundamental interaction of such traveling waves with dispersed
particles for situations in which the back influence of particles on the background fluid
flow cannot be neglected (this actually brings in a new degree of freedom not addressed by
earlier studies). In particular, given the significant interest attracted by such a configuration
in the past and its simplicity, we consider the case of a differentially heated laterally
bounded layer, i.e., a rectangular open cavity in microgravity conditions (no buoyancy
effects). Although properly capturing the spanwise component of the HTWs would require
fully three-dimensional (3D) simulations, in line with similar attempts in the literature
(see, e.g., [12–15,19]), we base the simulations on a two-dimensional (2D) one-layer model.
Clearly, such a simplification is equivalent to considering an ‘idealized’ setting where
any processes that depend on the details of the third (spanwise) dimension are excluded.
Nevertheless, our endeavor originates from the two-fold intention to (1) look directly at
the physical (fundamental) processes involved for high-Prandtl-number fluids, which are
believed to be ‘captured’ with an acceptable degree of approximation by a 2D model,
and (2) contain the otherwise not affordable simulation time which would be required by
parametric 3D computations.

2. Mathematical and Numerical Model

The influence of a dispersed phase on HTWs is still a matter of debate. As outlined in
the Introduction, existing theoretical and numerical studies have been limited essentially to
dilute systems in which the effects of particles on the background flow could be ignored.
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A full understanding of such a problem would require it to be tackled in a consistent
way on several scales. Clearly, the first of these scales concerns the emergence of waves as
a result of the primary instability of Marangoni flow. This means that some care is needed
to ensure that the mathematical model and the related computational technique adequately
capture such large-scale phenomena.

The next level of this hierarchy is that connected with the dispersed phase itself.
Proper simulation of particle motion requires adequate understanding of the processes
relating to the transfer of momentum and thermal energy from the surrounding fluid to
particles and vice versa. This subject should therefore be regarded as a typical example
of problems driven by the interplay of large-scale (HTW) and small-scale entities and
processes (particles and their displacement in time), for which, in general, a multiscale (and
multiphysics) approach is needed.

Given these premises, we follow here the same strategy recently implemented by
Lappa [40], i.e., a combined Eulerian–Lagrangian approach where the equations accounting
for the liquid and solid mass are properly coupled through the presence of ‘interphase
exchange terms’. As further detailed in the next section, these coupling terms only relate to
a subset of the involved transported quantities as in the present case the particles do not
dissolve in the carrier fluid (i.e., they behave as an immiscible phase).

2.1. Fluid Governing Equations

For the liquid phase, we consider the classical continuum (Navier–Stokes) equations,
which, for an incompressible Newtonian fluid, simply read

∇ ·V = 0 (1)

ρ
∂V
∂t

= −∇p− ρ∇ · [VV] + µ∇2V + Sm (2)

ρCv
∂T
∂t

+ ρCv∇ · [VT] = λ∇2T + SE (3)

where the vector V accounts for the fluid velocity components [u, v] along the x and y
directions, respectively, p is the pressure and T is the temperature; moreover, ρ, µ, λ and Cv
are the fluid density, dynamic viscosity, thermal conductivity and specific heat at constant
volume, respectively (all assumed to be constant).

These equations also include at the right-hand side the aforementioned interphase
coupling terms, by which the diverse effects of particle dynamics of fluid flow can be
properly accounted for. These are formally represented by the vector quantity Sm and
the scalar SE at the right-hand side of Equations (2) and (3), respectively. As mentioned
before, the continuity equation (Equation (1)) lacks such a term as particles are considered
immiscible entities, and therefore the overall masses of the liquid and the solid phases are
conserved separately.

2.2. Particle Tracking Equations

As shown in Section 2.1, proper implementation of a two-way coupling strategy
requires ‘additional’ physical reasoning and mathematical treatment to expand the standard
Navier–Stokes and energy equations with extra terms; this, however, is not needed for the
Lagrangian counterparts, i.e., the equations related to the transport of the dispersed solid
mass. The required feedback contributions (accounting for the influence of the liquid on
the particles) are indeed ‘native’ terms in these equations. As an example, the interested
reader will find a mathematical derivation of the kinematic equation for the transport of
particles in the study by Maxey and Riley [41], where it was obtained (through Laplace
transforms) as a balance of the ‘dynamic’ effects experienced by each particle:

ρp
dVp

dt
= ρ

DV
Dt

+
9
2

µ

R2
p

(
V −Vp

)
+

ρ

2

(
DV
Dt
−

dVp

dt

)
(4)
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In this equation, Vp = [up, vp] is the particle velocity, Rp is the particle radius (we assume
particles to be perfectly spherical) and ρp is the density of the solid matter. Following up
on the above statement about the possible physical interpretation of this equality as a
balance of forces, the three terms appearing at its right-hand side should indeed be seen
as the force exerted on the generic particle by the undisturbed flow, the drag and the
virtual-added mass force, respectively. The so-called Basset force is disregarded here as
the angular frequency of the emerging HTW satisfies the criteria by which the effect of this
additional term can be considered negligible (the interested reader may consider Lappa [28]
for additional details about these criteria and the underlying rationale).

The equivalent Lagrangian equation for thermal (heat exchange) effects can be cast in
compact form (see, e.g., Bianco et al. [42]) as

ρpCs
p

dTp

dt
= 3

h
Rp

(
T − Tp

)
(5)

where h is the heat convective transfer coefficient for a spherical particle and Cs
p is the mate-

rial specific heat. In addition to the previous mathematical modeling, as other characteristic
physical quantities, we introduce the particle relaxation time (τp):

τp =
2
9

Rp
2

ν
(6)

and the characteristic viscous time scale of the carrier flow:

τf low =
d2

ν
(7)

where ν = µ/ρ is the liquid kinematic viscosity and d is the characteristic size of the
considered geometrical domain (the depth of the liquid layer in our case). It is worth
recalling that the particle relaxation time (τp) can be regarded as a measure of the time
that a particle would take to adjust or ‘relax’ its velocity to new environmental conditions
(varying-in-time magnitude and direction of the carrier fluid flow).

2.3. Two-Way Model

Closure of the two-way coupling strategy, whose foundations have been laid in the
preceding two subsections, simply requires that an expression for the momentum and
energy exchange terms appearing in Equations (2) and (3) is provided. Using the same
formalism introduced by Lappa [40], by denoting the number of particles present at a given
instant in any computational cell of the domain as nij (i and j being the representative
indexes of the x and y directions, respectively), the interphase terms can be expressed as

Sm = −
nij

∑
k=1

mpk

δΩij

dVpk

dt
(8)

SE = −
nij

∑
k=1

mpk

δΩij
Cs

p
dTpk

dt
(9)

where mp and δΩij are the mass of the generic particle and the volume of the computational
cell containing it, respectively, i.e., mp = ρp

4
3 πR3

p and δΩij = ∆x∆y2Rp (the expression
of δΩij implicitly indicates that the considered 2D computations are representative of a
spatially periodic 3D volume having extension in the spanwise direction equal to the
diameter of particles; see, e.g., Lappa et al. [43] for further elaboration of this concept). It is
also worth noting that the minus sign in front of these terms indicates that an acceleration of
particles (dVp/dt > 0) and/or an increase in their temperature (dTp/dt > 0) is reverberated
in a corresponding deceleration of the Marangoni flow (∂V/∂t < 0) and/or decrease in the
local fluid temperature (∂T/∂t < 0), and vice versa.
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In the following, the additional symbol φ is used to indicate the ratio between the
volume of the generic particle and the volume of the computational cell, i.e.,

φ =
2
3

πR2
p/∆x∆y (10)

Another independent parameter is represented by the overall number of particles to
be tracked (Npart). This can be directly linked to the considered mass loading χ (ratio of
the overall amount of solid mass and liquid mass), particle size and density through the
following relationship:

χ =
Npartρp

4
3 πR3

p

ρΩ2Rp
(11)

where Ω is the area of the two-dimensional domain that is initially seeded with particles.

2.4. Nondimensional Formulation

Following earlier efforts in the literature for the specific case of Marangoni flow and
hydrothermal waves, we assume as reference length, velocity and time, the layer depth (d),
the thermal diffusion velocity (α/d) and time (d2/α), respectively (where α = λ/ρCp is the
fluid thermal diffusivity and Cp is the fluid specific heat at constant pressure). Moreover,
the temperature scaled by a reference value Tref is made non-dimensional as (T−Tref)/∆T.
With such choices and introducing the following non-dimensional property ratios:

Pr =
ν

α
(12)

ξ =
ρp

ρ
(13)

ζ =
Cs

p

Cp
(14)

the relevant Eulerian and Lagrangian equations can finally be cast in non-dimensional form
as follows:

Mass:
∇ ·V = 0 (15)

Momentum:
∂V
∂t

= −∇p−∇ · [VV] + Pr∇2V + Sm (16)

dVp

dt
=

1
ξ + 1/2

[
−Pr

St

(
Vp −V

)
+

3
2

dV
dt

+
3
2
(V · ∇V)

]
(17)

Energy:
∂T
∂t

+∇ · [VT] = ∇2T + SE (18)

dTp

dt
=

1
3Stξς

f (Rep, Pr)
(
T − Tp

)
(19)

As shown by Ranz and Marshall [44], in particular, Equation (19) is valid for
1 < Rep·Pr2/3 < 5 × 104. Furthermore, in the above equations

Rep =
2Rpρ

∣∣∣V −Vp

∣∣∣
µ

(20)

is the particle instantaneous Reynolds number and

St =
2
9

(
Rp

d

)2
<< 1 (21)
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is the so-called particle Stokes number, defined as the ratio between the characteristic times
defined by Equations (6) and (7), respectively. This ratio must be <1 to make the model
valid (i.e., a prerequisite for the applicability of Equations (17) and (19) is that Rp < < d).
Moreover, the following relationships hold:

f (Rep, Pr) = (2 + 0.6Re1/2
p Pr1/3) (22)

Rep = 3
√

2
St1/2

Pr

∣∣∣Vp −V
∣∣∣ (23)

χ =
Npartξ3πSt

A
→ Npart =

A
3πSt

χ

ξ
(24)

where A is the cavity aspect ratio, i.e., A = L/d, and

Sm = −
nij

∑
k=1

ξ
4
3

π
1

δΩ∗ij

R3
p

d3

dVpk

dt
(25)

SE = −
nij

∑
k=1

ξζ
4
3

π
1

δΩ∗ij

R3
p

d3

dTpk

dt
(26)

These last two terms (required to couple Equations (17) and (19) with Equations (16)
and (18), respectively) can be further manipulated by taking into account that the non-
dimensional cell volume δΩ∗ij can be expressed as:

δΩ∗ij = ∆x∗∆y∗2
Rp

d
(27)

where
Rp

d
=

√
9
2

St = 3

√
St√
2

(28)

Substituting these relationships into Equations (25) and (26) yields

Sm = − 3πξ

∆x∗∆y∗
St

nij

∑
k=1

dVpk

dt
(29)

SE = − 3πξζ

∆x∗∆y∗
St

nij

∑
k=1

dTpk

dt
(30)

Finally, to make the overall theoretical architecture physically and numerically con-
sistent (see again [40] and the references therein), the following two inequalities must be
satisfied:

φ =
3πSt

∆x∗∆y∗
< 1 (31)

ϕ =
χ

ξ
=

Npart3πSt
A

≤ O
(

10−2
)

(32)

Their physical significance can be readily justified as follows. As explained before,
the symbol φ accounts for the ratio of the volume of a single particle and of the generic
computational cell. Equation (31) can therefore be seen as the necessary mathematical
pre-requisite at the basis of the overall theoretical strategy implemented in Sections 2.1–2.3
(the size of a particle must be much smaller that the size of the computational cells). The
rationale underpinning the second inequality involving ϕ, i.e., the ratio of the volume
globally taken by the particles and the volume of the entire computational domain, stems
from the need to fulfill the hypothesis that particle-to-particle interactions (lubrication
forces, collisions or other dynamics driven by particle mutual interference, i.e., the so-called
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four-way-coupling effects) are negligible (Greifzu et al. [45]). Equation (32) should therefore
be considered as a condition limiting the range of allowed volume fraction from above. In
the present work, some simulations have also been conducted in the limiting condition in
which ϕ ∼= O(10−2) as some authors have found the inequality (originally derived in the
literature for turbulent flows) to be overly conservative in situations for which the flow
is laminar [37].

2.5. Initial and Boundary Conditions

As initial conditions for the fluid we consider:

t = 0: V(x,y) = 0, T(x,y) = x/A (33)

where V= 0 implies u = v = 0, i.e., the liquid is motionless with a linear temperature profile
along the x coordinate (the temperature is TCold = 0 on the cold sidewall and THot = 1 on the
other side).

Adiabatic conditions are assumed for both the free liquid–gas interface and the bottom
wall. Accordingly, the thermal and kinematic boundary conditions for t > 0 read:

u = 0, v = 0 and T = 0 at x = 0 (left wall) (34)

u = 0, v = 0 and T = 1 at x = A (right wall) (35)

u = 0, v = 0, and ∂T/∂y = 0 at y = 0 (bottom wall) (36)

v = 0, ∂u/∂y = −Ma∂T/∂x, and ∂T/∂y = 0 at y = 1 (free surface) (37)

where Ma is the Marangoni number defined as Ma = σT∆Td/µα (where σT is the surface
tension derivative with respect to temperature).

Solid particles are seeded in the domain when the hydrothermal wave has reached its
asymptotic state in terms of amplitude and frequency (particles being distributed uniformly
and with velocity and temperature initially equal to those of the fluid).

2.6. The Numerical Method

As the solution technique we have implemented a projection method for incompress-
ible fluid flow based on the use of primitive variables (namely, velocity, pressure and
temperature; see, e.g., Lappa [40] for an exhaustive description). Here we limit ourselves to
reporting that this method relies on an intermediate step where the momentum equation is
integrated in time disregarding the pressure gradient. In a second stage, an elliptic (Poisson)
equation, formally obtained by substituting a ‘corrected’ velocity in the continuity equation,
is solved iteratively (the corrected velocity being expressed as a linear combination of the
intermediate velocity and the pressure gradient). This provides the required value of the
pressure needed to close the problem from a mathematical point of view.

In particular, this numerical approach has been implemented here using schemes
explicit in time and standard central differences for the convective and diffusive terms
appearing in both Equations (16) and (18). The coupling between pressure and velocity has
been reinforced through the adoption of a staggered grid arrangement.

Similarly, an explicit in time (4th order Runge–Kutta) scheme has been employed to
integrate Equations (17) and (19). The fluid velocity and temperature at the generic particle
location appearing in these equations have been determined at each time step starting from
nodal values on the staggered grid and using simple linear interpolations.

A relevant validation of both these Eulerian and Lagrangian kernels can be found in [15]
and [28], respectively. In particular, the following benchmark cases were considered in this
regard: the HTW originally examined by Xu and Zebib [13] for pure Marangoni flow in
a rectangular cavity with A = 20, Pr = 10 and Ma = 1.05 × 104 (for which we obtained an
angular frequency ω ∼= 36 matching with an approximation of %2 the value 35.17 reported
by these authors) and the particle accumulation structures emerging in a liquid bridge
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with aspect ratio (height/diameter) A = 0.34, Pr = 8, Ma = 20,600 and particle density
ratio ξ = 1.85 originally investigated numerically by Melnikov et al. [46] (obtaining an
excellent agreement with regard to the topology of the emerging particle structures, see
Figure 2 in [28], and in terms of the emerging HTW, i.e., an angular frequency of 71.4
against the reference value 73.3).

The outcomes of the mesh refinement study conducted for the present case using uni-
form structured grids (assuming the same aspect ratio and Marangoni number considered
in Section 3) are summarized in Table 1.

Table 1. Grid refinement study: angular frequency of the hydrothermal wave as a function of mesh
resolution (Pr = 15, A = 20, Ma = 2 × 104).

Grid Nx × Ny ωHTW

200 × 20 49.5
400 × 20 47.3
300 × 30 46.2
400 × 30 45.4
600 × 30 45.3

As quantitatively substantiated by the data reported in this table, mesh independence
has been achieved with 30 points per unit non-dimensional length.

3. Results

In order to extend the earlier results by Lappa [15] for pure Marangoni flow and no
particles, the following conditions are considered: Pr = 15 (see Table 2 for the related fluid
properties), Ma = 2 × 104 and A = 20 (see Figure 1). Moreover, the following ranges are
examined in terms of particle Stokes number and mass load: 10−6 ≤ St ≤ 10−5, 0 ≤ χ ≤ 0.7.
Particles are assumed to be made of tungsten (Table 3), which makes the corresponding
volume fraction span the interval 0 ≤ ϕ ≤ 2.8 × 10−2 (as in [40]).

Table 2. Physical properties of 1 cSt silicone oil at 25 ◦C.

Property Value

Density ρ (kg/m3) 816
Surface tension σ (N/m) 17.4 × 10−3

σT (N/mK) 6.0 × 10−5

Thermal diffusivity α (m2/s) 6.47 × 10−8

Kinematic viscosity ν (m2/s) 10−6

Specific heat (kJ/kgK) 2.05
Prandtl number 15
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Table 3. Physical properties of tungsten at 25 ◦C.

Property Value

Density ρ (kg/m3) 19,300
Thermal conductivity (W/(m·K)) 174

Specific heat (kJ/kgK) 0.13

For the convenience of the reader, we start the analysis of the numerical results from
the simplest possible situation, namely, the development of the HTW in the absence of
dispersed particles (i.e., χ = 0, see Section 3.1).

3.1. Particle-Free Dynamics

The reader may get a first glimpse of the patterning behavior of such a system by
taking a look at Figure 2, where snapshots of the ‘typical’ flow structure produced by a
two-dimensional simulation of the HTW have been reported in an ordered fashion. It can
be seen that, with the exception of a vortex steadily located in proximity to the hot side, the
wave manifests itself as a disturbance spreading continuously in the upstream direction in
the form of a sequence of rolls (moving in a direction opposite to the surface flow, which in
the figure is directed from the right hot side towards the left cold side). The rolls nucleate
at the cold side (as indicated by the horizontal arrow in the first snapshot) and then travel
towards the hot side, maintaining the same sense of circulation as the main circulation
system in which they are embedded (anti-clockwise rotation in Figure 2).
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gation of the traveling wave (ψmin = 1, ψmax = 27, 15 levels shown, surface fluid moving from left
to right, rolls embedded in the main circulation systems all rotating in a counter-clockwise sense,
hydrothermal disturbance traveling from left to right as indicated by the dashed lines).
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The continuous displacement of rolls from one side of the cavity to the other side
(where they die) produces a time-periodic distortion in the temperature field, which can be
measured by means of ‘numerical’ probes evenly spaced along the horizontal direction (as
shown in Figure 3). The essentially traveling nature of the fluid-dynamic disturbance can
be appreciated in this figure by evaluating the phase shift among different signals (shift
increasing linearly with the horizontal distance between the two considered thermocouples).
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The addition of particles to this fluid-dynamic system leads to two subjects running
in parallel, both deserving investigation, i.e., the patterning phenomena produced by the
interaction of particles with the traveling wave (Section 3.2) and the back influence that
particles exert on the properties of the wave itself (Section 3.3). Both subjects, of course,
display sensitivity to the properties and amount of the dispersed solid mass (particle size
and mass loading).

Along these lines, we should recall that particles are expected to influence the back-
ground flow (the hydrothermal wave) essentially through two different mechanisms: one
related to the finite mass of each particle, physically depending on the different densities
of the considered two phases and scaling with the total amount of solid mass physically
present in the fluid domain (as measured by the non-dimensional parameter χ), and the
other of a purely ‘viscous’ origin (due to the ‘friction’ between the particles and the liquid,
therefore depending on the particle Stokes number St and their overall number).

As outlined at the beginning of Section 3, the material considered for the particles
is tungsten (for which ξ = 24 and ζ = 0.063). Having fixed the liquid (silicone oil) and
the solid (tungsten), we naturally assume χ and St as the main degrees of freedom of the
considered problem (given their expected impact on the properties of the HTW in relation
to the inertial and drag responses of the dispersed matter).

Before embarking onto the description of the related results, it is worth remarking that,
with the present choice of parameters, the three criteria represented by Equations (21), (31)
and (32) about the conditions to be satisfied to make the overall mathematical and numerical
approach applicable (well-posed) are all largely met with St, φ and ϕ being much smaller
than unity. For the considered conditions and mesh, indeed, 8.5 × 10−4 ≤ φ ≤ 8.5 × 10−2

and 4.2 × 10−3 ≤ ϕ ≤ 2.8 × 10−2.
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3.2. Patterning Behavior

As explained in Section 2.6, the considered flow is incompressible, which means that
the volume of fluid parcels is conserved in time. The peculiar properties of particles motion,
however, allow them (their velocity field) to escape this constraint. Indeed, even though
the divergence of the fluid velocity field is zero (Equation (15)), the finite size and mass of
the considered particles can cause compressibility effects in the particle velocity field.

An almost immediate realization of the compressible nature of particle motion can be
obtained by applying the divergence operator to Equation (17):

∇ ·
(dVp

dt

)
=

1
ξ + 1/2

[
−Pr

St
∇ ·Vp +

3
2

(
V · ∇2V

)]
→

∇ ·Vp =
3
2

St
Pr

(
V · ∇2V

)
− (ξ + 1/2)

St
Pr
∇ ·

(dVp

dt

)
6= 0 (38)

In turn, the effects, due to the non-solenoidal nature of the Vp (∇ · Vp 6= 0), can
manifest in the form of depletion of dispersed solid matter occurring in some regions of
the physical domain, and/or as accumulation phenomena in others (such events, generally
known as preferential concentration, typically lead to the formation of sub-domains with
varying particle concentrations such as banded patterns or localized or extended particle
clusters encapsulated in wider areas of clear fluid; see, e.g., Sapsis and Haller [47]).

For the case of flows in normal gravity conditions, there is a vast amount of litera-
ture on this subject for particles interacting with laminar or turbulent background flows,
relevant examples being represented by the works of Raju and Meiburg [48,49], Dávila
and Hunt [50], Eames and Gilbertson [51], Chen et al. [52], Ravichandran et al. [53] and
Bergougnoux et al. [54]. Other efforts (Yarin et al. [55], Gan et al. [56], Akbar et al. [57],
Puragliesi et al. [58], Haeri and Shrimpton [59], Xu et al. [60]) have expressly considered
non-isothermal conditions (leading to thermal buoyancy convection). These studies have
provided evidence that, even in the presence of particle inertia and gravity, some conditions
can be identified, for which near-equilibrium particle recirculation zones are maintained by
thermal convection (particles being allowed to remain suspended in these regions in certain
ranges of the Stokes number and the Rayleigh number).

In the present case, gravity is absent (as we assume the considered system to be in
microgravity conditions). Hence, any processes that depend on gravity are excluded, and
the present situation may be regarded as a particularly suitable testbed for the assessment
and detailed analysis of the role of particle-fluid inertial effects. Along these lines, some
initial insights can be obtained by taking a look at Figure 4, where the particle distribution
associated with the traveling rolls produced by the instability of the Marangoni flow (HTW)
has been reported for a fixed value of the mass loading and different values of the particle
Stokes number.

As a fleeting glimpse into this figure would confirm, the Stokes number has an
appreciable influence on the distribution of particles. In particular, meaningful insights
follow naturally from a comparison of Figure 4a with Figure 4c (please note that, for
illustration purposes, in these figures the depth of the fluid layer is three times its real
dimension). Such effects are evident especially in the vortex being steadily attached to
the hot wall (right side). The strong vorticity being available there causes a centrifugal
force, which can cause the ejection of particles from the core of the vortex if their mass is
sufficiently high. This is actually what can be seen in Figure 4a; a spot of clear (particle free)
fluid is formed in the center of this vortex for St = 10−5. As St is decreased, however, the
size of the clear spot decreases progressively until it is no longer visible for St = 10−6.

Notably, the formation of this clear spot is not a feature of the other rolls pertaining to
the HTW even if the highest value of St is considered, which requires a proper interpretation.
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As qualitatively made evident by Figure 5, a tendency is still present to eject particles
and let them accumulate along particle-dense lines located at the periphery of the rolls,
which display some similarities with the analogous phenomena reported by Lappa [61]
for the case of rising (unsteady) thermal plumes of a buoyant nature interacting with
non-isodense particles. In that study, particle-accumulation loci having the shape of
distorted closed circuits were found in the lobes of the plume cap as a result of the vorticity
concentrated in those regions, which can propel particles along curved (closed in many
circumstances) trajectories.

In the present case, closed ‘loops’ or circuits of particles are not formed, and an
explanation/justification for this trend can be elaborated in its simplest form on the basis
of the argument that the flow consists of a ‘series’ of rolls. The particle-ejecting vortices do
not occupy fixed positions in space (as time progresses these vortices travel towards the
hot side). This means that as time passes, the particle-dense lines formed by one roll at its
periphery due to the centrifugal effects described above are subjected to other influential
factors (essentially of a convective nature).

In particular, a more involved justification of this process requires recalling that, as
an intrinsic feature of HTWs, the rolls traveling in the upstream direction (from the cold
side to the hot side) do not result in a net transport of fluid in the same direction (the
propagation of the disturbance is not associated with the physical displacement of fluid in
the same direction of the wave). This means that, unlike the case of a plume of buoyant
nature transporting fluid, in the present case a particle circuit formed by one roll will not be
able to follow the roll in its migration journey along the spatial extension of the layer. This,
in turn, implies that after a certain time such a circuit will be subjected to the disturbing
action exerted on it by the next roll travelling from the cold side to the hot wall. Obviously,
the particle circuit will also feel the effect of the surface fluid and of the return flow, which
tend to stretch it in the direction of the applied temperature gradient.
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All these effects contribute to prevent the formation of permanent accumulation cir-
cuits (closed particle-dense lines) in the domain. Circuits potentially formed by centrifugal
effects are progressively distorted and finally broken (especially for higher values of the
Stokes number), leading to the apparently random distribution in the flow of parts or
segments resulting from the just discussed circuit rupture events.

The formation of circuits spanning the entire extension of the physical domain, such
as those emerging in the case of liquid bridges [23–39], is also prevented because finite-size
rectangular containers lack the necessary feedback mechanisms which allow particle self-
organization. The closed streamtubes playing the role of templates for the accumulation
of particles in the liquid bridge do not exist in the present case. In liquid bridges they are
made possible by the ‘periodic nature’ of the domain in the circumferential direction. In
the present case the wave is continuously generated at the cold side (where rolls nucleate)
and dies at the opposite size (where rolls are suppressed).

Due to the joint action exerted by all the vortices on the solid mass distributed in the
fluid (propelling particles from the center of rolls in the outward direction) and the intense
descending flow located in proximity to the cold boundary that tends to set a distance
between particles and this wall, particles simply tend to be accumulated (as time increases)
along the lower periphery of the main circulation system. As a result of this mechanism,
a wavy boundary, separating the upper particle-rich area from a relatively depleted area
lying on the bottom, is formed.

As shown by the simulations, the spatial sinusoidal modulations visible in the shape
of this boundary travel in the same direction of the wave, which is also in the direction of
the return flow (from the hot to the cold wall). Such modulations or distortions appear in
the form of patches of clear fluid protruding into the particle-dense region in the limited
portion of space separating consecutive rolls. This evolution is the result of the interplay of
the different velocities of the travelling wave and the return flow.

3.3. Inertial Effects and Wave Propagation

The key aim of this section is to introduce some predictive links between the properties
of the resulting wave and those of the particles and discuss critically the fundamental
mechanism by which energy is channeled from the fluid into the particles (or vice versa).

Along these lines, Figure 6 reveals the increasing attenuation of the angular velocity of
propagation of the HTW that can be obtained for a fixed value of the particle radius when
the mass load is increased (a variation of 14% for χ increasing from 0.2 to 0.7).
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This figure also provides some evidence for the role of the viscous interactions between
the liquid and the particles. While the inertial effects related to the density mismatch are
expected to depend globally on the total amount of solid mass physically added to the fluid
system, the influence of the viscous interactions is much more subtle because it is connected
to the overall number of particles and their effective radius. As quantitatively substantiated
by this figure, however, in the present case, the dependence of the wave angular frequency
on the Stokes number seems to be relatively limited (the induced percentage variation is
less than 3%).

To elucidate further the significance of this observation, one may consider known
analogous dynamics for high-speed regimes, such as those related to the interaction of a
shock wave with a dusty gas (Lappa et al. [43]). For high fluid velocities (high values of the
Reynolds number), in general, the viscous contribution appearing in Equation (17) plays a
dominant role because of the large velocity difference between fluid and particles. Since
in the present case, such a difference is relatively small, the particle-finite-mass-related
effects should be expected to be much more important in the mechanism responsible for
the exchange of momentum between the fluid and the particles. Indeed, this is what can be
inferred from Figure 6.

In turn, the scarce influence of St on the HTW property for a fixed χ may be ascribed
to the fact that for given values of the mass load and density ratio, the overall solid surface
exposed to fluid flow (summation of all particle surfaces) does not change. Indeed, such a
quantity (normalized by the domain area) can be expressed as

℘ =
Npart4πR2

p

Ld
(39)

which, taking into account Equation (24), can be recast as

℘ = 6
χ

ξ
(40)

This supports the observation that the momentum exchange between the particles
and the fluid due to particle drag effects is almost independent from the Stokes number. A
similar concept also holds for the exchanges occurring in terms of thermal energy (heat).
These are expected to scale (for a fixed mass load) with the overall solid surface exposed
to fluid flow and, therefore, again with the parameter ℘. In any case, as a concluding
remark for this section, we wish to highlight that this effect can be considered almost
negligible. Indeed, simulations repeated after disabling the solution of Equation (19) have
revealed no significant changes in terms of hydrothermal disturbance propagation velocity.
Among other things, this is in line with the conclusions that could be drawn by considering
arguments based on the ‘heat capacity’ of each phase. This property can be expressed as
the product of the considered phase specific heat coefficient and mass. Accordingly, the
ratio of these capacities for the solid and liquid phases simply reads

Hc =
Cs

p

Cp

Npartρp
4
3 πR3

p

ρΩ
= ζχ (41)

In the present case ζ = 0.063, and assuming the worst case in terms of χ, one would
get Hc = O(10−2) << 1. As this ratio can be seen as a measure of the thermal inertia of the
dispersed phase, i.e., the degree of slowness with which the temperature of the particles
reaches that of the surroundings or, in an equivalent way, as the capacity of the solid mass
to store heat and to delay its transmission, it can be concluded that the solid phase can be
considered in thermal equilibrium with the liquid one (i.e., at the same temperature).

4. Conclusions

A focused analysis of the phenomenon related to the emergence and propagation of
hydrothermal waves in Marangoni flows has been conducted in a situation for which the
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considered fluid is a mixture of oil and solid particles having a density significantly larger
than that of the carrier fluid. Although the particle volume fraction has been limited to
situations for which the assumption of non-interacting particles can still be considered
valid, values of the mass load have been examined for which the back influence of the
dispersed solid mass on fluid flow is not negligible.

It has been found that, on increasing the mass load, the velocity of propagation of
the hydrothermal disturbances undergoes shrinkage, while it displays a weak sensitivity
to the particle Stokes number. This indicates that the two phases are coupled within
an interlocking ensemble of mutual interferences, where while frictional effects play an
important role in determining the transfer of momentum from the fluid to the particles,
the back influence of particles on the hydrothermal wave is exerted primarily through
inertial effects stemming from the different densities of the two phases. Moreover, in such
a hierarchy of interactions, the tertiary influence represented by heat exchange effects can
be considered negligible.

The lack of particle accumulation structures similar to those observed in the case of
liquid bridges has been justified considering that, as a result of the multicellular nature of
the HTW and geometrical constraints due to the rectangular shape of the container, the
tendency of this system to form particle-dense lines due to inertial effects is hindered.

An exciting prospect for the future is to extend these studies to the case of three-
dimensional configurations in order to determine the influence of the dispersed phase
on the angle of propagation of the HTW with respect to the direction of the imposed
temperature gradient.
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Abbreviations
Nomenclature
A Aspect ratio
C Specific heat
d Layer thickness
h Heat convective transfer coefficient
m Particle mass
Ma Marangoni number
N Number of particles
p Pressure
Pr Prandtl number
R Particle radius
Re Reynolds number
S Interphase exchange term
St Particle Stokes number
T Temperature
t Time
u Velocity component along x
V Velocity
v Velocity component along y
x Horizontal coordinate

https://doi.org/10.15129/9f4d022e-dfd8-4d58-a2ec-72c322803598
https://doi.org/10.15129/9f4d022e-dfd8-4d58-a2ec-72c322803598
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y Vertical coordinate
Greek Symbols
λ Thermal conductivity
ω Angular frequency
Ω Area
ξ Density ratio
µ Dynamic viscosity
ρ Fluid density
ν Kinematic viscosity
χ Mass load
φ Particle to computational cell volume ratio
τ Relaxation time
ζ Specific heat ratio
ψ Stream function
α Thermal diffusivity
ϕ Particles volume fraction
∆T Temperature difference
Subscripts
E Energy
HTW Hydrothermal wave
m Momentum
p Particle or pressure
v Volume
Superscripts
s Solid phase
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