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Abstract: We identify and quantify a seemingly overlook mechanism for energy transfer between
adjacent frequency disturbances in the Nonlinear Parabolized Stability Equations method. Physically,
this energy transfer results from the finite-bandwidth nature of actual disturbance spectrums versus
the common numerical assumption of a discrete spectrum representation. Both quiet wind tunnel
and flight conditions are considered and it is found that, for Mack’s second-mode instability, the
mechanism is most significant in the 0.1–1% disturbance amplitude range (based on normalized
pressure) and is responsible for a 15–30% increase in predicted disturbance amplitude.

Keywords: hypersonic boundary layer; stability and transition; second mode; nonlinear dynamics

1. Introduction

Sustained and controlled hypersonic flight remains an open and active field of research
with important implications to both private corporations and government agencies. To
achieve vehicle control at flight conditions [1–3], accurate prediction of boundary layer
laminar-turbulent transition is imperative; however, the fundamental, physical processes
governing the transition are not fully understood [4,5]. A precursor to the highly non-
linear process of transition prediction is the accurate modeling and stability analyses of
the mechanisms governing disturbance growth within high-speed boundary layers. The
Nonlinear Parabolized Stability Equations (NPSE) technique is an often employed and
powerful method for conducting such numerical analysis. Here, we point out a seem-
ingly overlooked aspect of NPSE energetics that appears to be important (and potentially
dominant) during the early stages of disturbance growth.

The modal growth scenario for boundary layer transition is as follows [6–9]. First,
small disturbances introduced into a boundary layer will experience linear growth [10–18].
Next, the disturbances experience moderate nonlinearity as their amplitudes increase via
harmonic generation and energy exchange with other disturbances [19]. Finally, highly
nonlinear growth ensues via mean flow distortion and secondary instabilities [20] before
transitioning to turbulence. The current goal of the hypersonics community is to compare
numerical data with high-quality quiet wind-tunnel and flight experimental measurements,
in order to elucidate the physical processes governing linear and nonlinear disturbance
growth estimates. The implication of our findings extend to predictions directly appli-
cable to hypersonic boundary layer stability and transition (BLST) flight tests such as
BOLT [21–25] and HIFiRE [26–28]).

Numerical–experimental comparison usually starts with linear stability theory (LST).
The LST remains an important tool to assess the quality of the numerical methodol-
ogy applied (grid/shock resolutions, wall temperature and nose bluntness [29]). Com-
parison of LST with experimental data provides an important check on experimental
methodologies (model alignment, flow quality, and sensor performance [30]). Only a
decade ago such agreement was not to be taken for granted [31,32]. The next level of
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sophistication includes more advance techniques including linear parabolized stability
equations (LPSE) or linearized Navier–Stokes equations solvers. Such techniques cap-
ture non-parallel flow effects and serve as a first estimate for amplitude-based compari-
son. Associated with such linear analysis, comes the concept of an N-factor: defined as
N = ln(A/A0) where A0 and A are the disturbance amplitudes at some initial and final
location, respectively . By definition, the N-factor is a function of initial disturbance ampli-
tude (A0), and its use is usually restricted to linear calculations. Traditionally, the N-factor
envelope is often considered to be an upper estimate on the amplitude a disturbance can
reach, because as the amplitude of the disturbance grows nonlinear, saturation occurs.
That is, it is commonly expected that nonlinear effects prevent disturbances from reaching
their linear growth potential. For further details and exceptions, see [33–35]. Finally, more
sophisticated tools account for nonlinear and multiple-mode interactions such as nonlinear
parabolized stability equations (NPSE) or direct numerical simulations (DNS).

The nonlinear techniques described above require an estimate of the initial distur-
bance amplitude and structure [36]. Such small initial amplitude disturbances are quite
challenging to measure experimentally, and may even be close to the noise floor of the
some computation. To overcome this challenge, the aerospace community has borrowed
from the dynamical systems and other fluid dynamics communities [37–41] to rapidly
develop adjoint-based and input–output/resolvent based tools to solve this receptivity
problem (i.e., how freestream disturbances are mapped into boundary layer disturbances).
Since it is extremely difficult to obtain experimental data for such small amplitude distur-
bances, the approach is to correlate small disturbance measurements with linear growth
calculations under the inherent assumption that the dynamics at small amplitudes are suffi-
ciently linear (i.e., small in amplitude). Based on the second-mode experimental work of
Marineau [42–44], Chynoweth and Schneider [45,46], and others [28,47,48], a reasonable
lower bound on observable disturbance amplitudes is around 0.5–1% based on wall pres-
sure measurements normalized by the freestream pressure. Naturally, details concerning
tunnel facilities, measurement techniques, and data processing are important. Time har-
monic disturbances in this amplitude range have harmonics on the order of 0.0025–0.01%
amplitude, which are less than 1% of the primary disturbance. Hence, in this amplitude
range one considers linear analysis to apply at least for the initial growth phase of these
observable disturbances. However, Marineau et al. (2017 [44], Figures 7–13 ) showed a case
where LPSE analysis underpredicts disturbance growth by approximately 10–20%.

While Marineau’s results are just a single example of this phenomena, the meticulous
experimental and computation treatment of their study caught our attention and motivated
this study. The discrepancy between computed and observed disturbance growth, partic-
ularly in the early stages of growth, being the primary motivation for the current study.
Further, this is exacerbated by the traditional view described above, that suggests LPSE
analysis should overpredict disturbance growth. To address this discrepancy, we pose the
question: How “receptive” are downstream disturbances to upstream disturbances? That
is, the traditional interpretation of boundary layer stability experimental and numerical
data follows the very linear hypothesis that disturbances are spectrally decomposed and
that neighboring disturbances in frequency space do not significantly interact. While in
the limit of vanishing amplitude, this would appear to hold, in this manuscript, we show
that there is a seemingly overlooked mechanism by which energy from high-frequency
upstream disturbances transfer to neighboring frequencies, particularly lower-frequency
downstream disturbances. Then, we estimate the potential size of this effect for typical
hypersonic wind tunnel experimental and flight conditions.

2. Basic States

Our stability analysis begins with calculations of high-fidelity, laminar basic states.
Based on previous work [49,50], we choose to focus our investigation on: (1) A 1 m long, 7◦

half opening angle, 1mm circular nose bluntness, flared cone (with a flare radius of 4 m)
at flow conditions consistent with those expected in AFOSR-Notre Dame Large Mach 6
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Quiet Tunnel [51]. (2) A 1 m long, 7◦ half opening angle, 1mm circular nose bluntness,
straight cone at flow conditions consistent with those expected in AFOSR-Notre Dame
Large Mach 6 Quiet Tunnel (Figure 1). (3) A 1 m long, 7◦ half opening angle, 1 mm
circular nose bluntness, straight cone at flow conditions consistent with the HIFiRE flight
experiments [27]. Flow conditions are provided in Table 1 and calculated using standard
isentropic relationships.

Figure 1. Mach contours for Case B: A 1 m long, 7◦ half opening angle, 1 mm circular nose bluntness,
straight cone at flow conditions consistent with those expected in AFOSR-Notre Dame Large Mach 6
Quiet Tunnel. Distance along the axis of the cone is given in meters.

Table 1. Test conditions.

Mach Re/m ρ∞

[kg/m3] T∞ [K] u∞ [m/s] Twall [K]

Tunnel 6 11.0 × 106 0.0432 53.0488 875.9795 300

Flight 5.3 13.42 × 106 0.1190 201.4 1509.2075 393.4

US3D inflow free-stream conditions for Re/m = 11.0 × 106, corresponding to AFOSR-Notre Dame Large Mach 6
Quiet Tunnel conditions and flight conditions from HIFiRE experiment 21.5 s data [27].

Basic state calculations are generated using US3D, a CFD software package specifically
designed for high-speed flows [52–54]. US3D uses the finite volume method to calculate
fluxes across cells, where each grid has 1000 streamwise points and 690 wall normal
points. The grid and numerical convergence of our computational methodology has been
established in the literature [30,31], but is not presented here. Wall normal basic state
boundary layer profiles are extracted using in-house scripts to prepare the data for stability
analysis. The 4 m flared cone is chosen as an idealized example to isolate the effect of
energy transfer among disturbances that is anticipated to be experimentally reproducible.
Note, most of the investigation presented here is confined to the initial 0.5 m of the cones
considered, which is consistent with other quiet tunnel experimental entries.

3. Stability Analysis
3.1. Jokher

The JoKHeR Parabolized Stability Equations (PSE) package by Kuehl et al. [19,33] was
developed in collaboration with Dr. Helen Reed at Texas A&M as part of the efforts of the
National Center for Hypersonic Laminar-Turbulent Transition Research. The code employs a
quasi-3D, compressible, ideal gas, primitive variable formulation, that is, it marches disturbances
along a predefined path with the assumption of uniformity in the perpendicular direction. The
package consists of Linear Stability Theory (LST), Linear Parabolized Stability Equations (LPSE),
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and Nonlinear Parabolized Stability Equations (NPSE) codes. These codes have been extensively
validated against experimental [19,30,31,55,56] and numerical [29,31,56–59] datasets. A unique
feature of JoKHeR is that it employs a nonlinear wave packet formulation for NPSE implemen-
tation which allows for the modeling of finite bandwidth disturbances [19,60]. Thus, it accounts
for spectral broadening and low-frequency content generation, which is important for the
accurate prediction of nonlinear energy exchanges [33,60–62]. Note, in addition to the reference
just cited, this manuscript represents another example of such nonlinear energy exchange.

3.1.1. Linear Stability Theory

LST considers a linear, steady, and parallel basic flow state determined from separate
CFD simulations, and solves the disturbance equations via substitution of Equation (1)
into the Navier–Stokes equations. The disturbance is assumed of the form indicated by
Equation (2), and is substituted into the disturbance equations. This leads to the generalized
eigenvalue problem with α, β and ω being the streamwise wave number, spanwise wave
number, and the frequency, respectively. The resulting eigenvalues are used to determine
instability, and the corresponding eigenvectors represent the shape of the disturbance in
the wall normal direction.

φ(x, y, z, t) = φ̄(y)︸︷︷︸
basicstate

+ φ′(x, y, z, t)︸ ︷︷ ︸
disturbance

(1)

φ′ = φ̂(y)ei(αx+βz−ωt) (2)

3.1.2. Parabolized Stability Equations

Originally identified by Herbert [63] and Bertolotti [64], during a critical review of
Gaster [65] early nonparallel work, the parabolized stability equations have been developed
as an efficient and powerful tool for studying the stability of advection-dominated laminar
flows. Excellent introductions to the PSE method and summary of its early development
were provided by Herbert [63]. During the early stages of both linear and nonlinear
development of this technique, much was established related to basic marching procedures,
curvature, normalization conditions and numerical stability of the method itself [64,66–69].
In a relatively short time, the field rapidly expanded [55,59,70–78] to include complex
geometries, compressible flow, and finite-rate thermodynamics.

PSE is similar to the Fourier/Laplace transform, where an initial-value problem is
considered. However, the slowly varying basic state assumption is made in the streamwise
direction where a slow variable x̄ = x

Re is introduced. Ultimately, disturbances are assumed
of the form

F[φ′] = φ̃(x̄, y)︸ ︷︷ ︸
shape

Φ(x, t)︸ ︷︷ ︸
wave

where the wave part satisfies

∂Φ
∂x

= iα(x̄)Φ (3)

∂Φ
∂t

= −iωΦ, (4)

and Re = Ueδr
νe

is a Reynolds number based on characteristic values of edge velocity (Ue),
edge kinematic viscosity (νe), and reference boundary-layer length scale (δr). Thus, PSE
considers disturbances of the form

φ′ =

∞∫
−∞

φ̃(x̄, y, ω)︸ ︷︷ ︸
shape

A(x̄, ω)e−iωt︸ ︷︷ ︸
wave

dω (5)
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where A(x̄, ω) = ei
∫

α(x̄,ω)dx. The dependence of the shape function (φ̃) and amplitude
function (A) on ω are made explicit. The shape and amplitude functions are essentially the
Fourier transform of the disturbance. Upon expansion of the streamwise derivatives

∂φ′

∂x
=

∞∫
−∞

(
1

Re
∂φ̃

∂x̄
+ iαφ̃

)
Ae−iωtdω

∂2φ′

∂x2 =

∞∫
−∞

(
1

Re2
∂2φ̃

∂x̄2 +
2iα
Re

∂φ̃

∂x̄
+

iφ̃
Re

∂α

∂x̄
− α2φ̃

)
Ae−iωtdω,

it is found that the second spatial derivative ∂2φ̃

∂x̄2 is of the highest order, and a pertur-
bation expansion is consistently truncated, thus the term is neglected. This leaves the
disturbance equations nearly parabolized, and an efficient marching solution is sought.
JoKHeR implements a wave packet formulation that improves representation of energy
transfer among modes in a nonlinear calculation, compared to the traditional discrete mode
formulation [33]. Ultimately, in the Quasi-3D formulation, the disturbance is discretely
represented as φ′ = ∑k φ̃(x̄, y)k A(x̄)kW(ω)ke−iωkt, and a frequency content for each mode

is assumed of the form W0 = 1
σ0
√

2π
e
− (ω−ω0)

2

2σ2
0 . Whereas, the standard, discrete mode NPSE

formulation uses W0 = δ(ω−ω0). The bandwidth of harmonics obeys σi =
√

i + 1σ0, and
harmonic balancing is used to calculate nonlinear interactions [33]. The finite bandwidth
representation of spectral energy is crucial for modeling certain nonlinear phenomena,
such as spectral broadening and low frequency content generation, which is observed in
experiments [31,32].

4. Linear Results

Our stability analysis begin with a LST investigation, which is summarized in Figure 2.
Much experimental hypersonic second-mode dominated transition work focuses on flared
cones (i.e., Purdue 3 m flared cone) as a way to isolate a particular frequency instability via
controlling the boundary layer height. This methodology achieves maximum growth in the
limited streamwise length available in most quiet hypersonic tunnels. Consistent with the
hypothesis of this manuscript, such results have led to the neglect of energy transfer among
neighboring frequencies, while still achieving good experimental–numerical agreement.
Notice that in both straight cone cases, there is an appreciable span of unstable frequencies,
i.e., ≈400–150 kHz at tunnel conditions and ≈1300–500 kHz at flight conditions. For our
4m flared case, we have isolated the shifting frequency region (≈525–325 kHz) to the front
0.35 m of the cone, leaving the latter part of the cone with a nearly constant boundary
layer height.
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Figure 2. LST results—Upper: Notre Dame tunnel conditions 4 m flared cone. Middle: Notre Dame
tunnel conditions straight cone. Lower: HIFiRE flight conditions straight cone.
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The aforementioned second-mode frequency isolation or “tuning” [60,79] is further
clarified from the LPSE investigation shown in Figure 3. The LPSE N-factor plots are usually
interpreted via the envelope method, in which one hypothesizes a transitional N-factor,
for a given set of conditions, then determines which disturbance first reaches that N-factor.
For example, in Figure 3 (lower panel), a transitional N-factor of 10 would correspond to
a 750 kHz disturbance transitioning at about 0.5 m. It is also evident from the upper panel,
that once the boundary layer height stabilizes, the transition is dominated by a much
narrower frequency band. Conversely, the straight cones show a strong dependence of
transition on disturbance frequency. Thus, there exists a fundamental difference between
the commonly used flared cones in wind-tunnel experiments, and the canonical straight
cone geometries typical in flight. If energy transfers among neighboring frequencies,
as speculated by Batista [50], and is consistent with the calculations of Khan [49]), one
anticipates the effects to be more significant for typical flight geometries.

Figure 3. LPSE results—Upper: Notre Dame tunnel conditions 4 m flared cone. Middle: Notre Dame
tunnel conditions straight cone. Lower: HIFiRE flight conditions straight cone.
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5. Nonlinear Energy Transfer Mechanism

The finite bandwidth disturbance representation is necessary to properly represent
spectral energy redistribution as nonlinearities become important [30,45]. Graphically, this
situation is illustrated in Figure 4. The top panel depicts quadratic nonlinearity, i.e., the
convolution of the spectral weighting functions of a 300 kHz second-mode (bandwidth of
σ0) with itself. This nonlinear interaction results in a 600 kHz first harmonic (middle top
panel) of bandwidth

√
2σ0. Depicted in the middle lower panel, this first harmonic feeds

back onto the primary second-mode via another quadratic interaction with the complex
conjugate of the primary second-mode. Notice that this nonlinear feedback term is forcing
a larger bandwidth than that of the primary mode. Not all of the forcing is applied directly
to the primary mode, but instead ≈40% of the forcing is projected onto “side lobes”. The
side lobe frequencies are represented discretely in the NPSE code, and are depicted as
vertical bars at 240 kHz and 360 kHz in the lower panel. Thus, in addition to the linear
growth a particular frequency disturbance experiences, there is a secondary forcing applied
to disturbances who have neighbors in frequency space of sufficient amplitude. Later
we show that a “sufficient” amplitude is around 0.5–1.0% of normalized pressure. In
contrast to the traditional "envelope" method, an interesting consequence of such energy
redistribution provides a pathway along which energy shifts frequencies as a disturbance
propagates downstream.

100 150 200 250 300 350 400 450 500
0

0.01

0.02
(1,0)

400 450 500 550 600 650 700 750 800

A
m

pl
itu

de 0

0.01

0.02
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Figure 4. Illustration of quadratic nonlinear interactions for finite bandwidth disturbances.

Re-consider the stability diagram for the 4 m flared cone at tunnel conditions (Figure 2
upper) and the corresponding LPSE results (Figure 3 upper). Eventually, the boundary
layer is dominated by a≈340 kHz frequency disturbance. Now, assume that the transitional
N-factor in this case is estimated to the exceptionally large value of 30. Traditionally, one
would initialize this 340 kHz disturbance at its N1 neutral point (at ≈0.15 m) with some
small initial amplitude and evolve the disturbance downstream. However, it is often
neglected that this initial amplitude is itself a function of the upstream instabilities.

Meaning, through the nonlinear spectral broadening mechanism described above,
upstream disturbance evolution influences the initial amplitude condition for disturbances
farther downstream. As an example, considering Figure 2 (upper), a 460 kHz disturbance
begins to grow around 0.075 m from the nose tip. Despite the small amplitude achieved
due to the limited extent of its streamwise growth, some energy will be transferred to
its side lobe frequencies, particularly the frequencies slightly below 460 kHz. When the
460-∆ω kHz disturbance begins linear growth, at its neutral point, it already has experi-
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enced slight forcing due to the presence of the 460 kHz mode. This energy transfer will
repeat itself from the 460-∆ω kHz disturbance to the 460-2∆ω kHz disturbance, and the
cycle continues to cascade energy from the higher frequency upstream disturbances to the
lower frequency downstream disturbances (or vice versa depending on boundary layer
height evolution). Each step builds upon the previous, increasing the initial amplitude
until transition. Thus, this scenario is valid in the weak to medium nonlinear regime (i.e.,
prior to the onset of high nonlinearity) and suggests the envelope method should serve
as a lower bound to disturbance growth, however the effect of nonlinear saturation may
reduce the disturbance amplitude below the envelope prediction level before transition.

6. NPSE Results

To illustrate the integrated effect of this energy transfer mechanism, we first con-
sider the 4 m flared cone case at Notre Dame tunnel conditions (Figure 5). In this case,
the most unstable frequency shifts from around 525 kHz down to around 350 kHz within the
first 0.3 m. NPSE calculations are presented which span the frequency range
from 460–370 kHz at 15 kHz intervals. The traditional discrete frequency methodology
(blue), which neglects finite bandwidth effects is compared to the wavepacket methodol-
ogy (black), which accounts for finite bandwidth effects. The energy shifting mechanism
described above is readily observed and it is found that the discrete methodology under-
predicts disturbance amplitude by approximately 15% within the first ≈ 0.28 m of the cone.
Note, this effect becomes significant in the disturbance amplitude range from about 0.5–1%
amplitude based on normalized pressure. Initial disturbance amplitudes of 6.5× 10−5 are
chosen to illustrate the effect.

Figure 5. NPSE results for the 4 m flared cone at Notre Dame Tunnel conditions.

The 4 m flared cone geometry was chosen to isolate this seemingly overlooked energy
transfer mechanism, and may provide an experimentally viable test case. However, actual
flight vehicles are more appropriately represented by straight cone geometries. As such, 1m
long straight cones at Notre Dame quiet tunnel conditions and typical flight conditions are
considered to determine the extent of the “energy frequency shifting” effects on disturbance
amplitude prediction. Figure 6 illustrates the comparison between discrete and finite
bandwidth methodologies for Notre Dame quite tunnel conditions, while Figure 7 considers
flight conditions, specifically those experienced during a HIFiRE flight [27]. In both cases,
we again see the energy shifting mechanism is active.
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Figure 6. At Notre Dame Tunnel conditions-Upper: NPSE results for a straight cone. Lower: N-factor
comparison between traditional discrete (delta-function) and wave packet (WP) methodologies.

For the Notre Dame tunnel conditions, a frequency range between 200–300 kHz (with
a ∆ω = 20) kHz was considered and the disturbances were initialized with an amplitude of
9× 10−5 at their respective neutral points. As the disturbances grow, the energy transfer be-
comes noticeable once the disturbances reach an amplitude of
roughly 0.5% and becomes significant as the disturbances reach 1% amplitude. Ultimately,
the finite bandwidth formulation results in a 35% larger disturbance amplitude than the
discrete formulation at 0.65 m from the nose tip. Despite the nonlinear nature of these
calculations, and for convenience, the lower panel of Figure 6 shows an N-factor compari-
son between the discrete and finite bandwidth calculations. The energy frequency shifting
has resulted in a N-factor difference of approximately 0.3 at 0.65 m. Or, in other words,
the energy frequency shifting mechanism is responsible for a 35% increase in disturbance
amplitude prediction compared with the traditional discrete formulation.

For the HIFiRE flight conditions, a frequency range between 725–850 kHz, with a
∆ω = 25 kHz is considered. The disturbances are initiated with an amplitude of 2.5× 10−5

at their respective neutral points. Again, as the disturbances grow, the energy transfer
becomes noticeable once the disturbances reach an amplitude of roughly 0.5%, and becomes
significant in this case as the disturbances reach 1–2% amplitude. Ultimately, the finite
bandwidth formulation results in a 22% larger disturbance amplitude than the discrete
formulation near the middle of the cone (0.49 m from the nose tip). The energy frequency
shifting has resulted in a N-factor difference of approximately 0.2 by the mid point of the
cone, meaning the energy frequency shifting mechanism is responsible for a 22% increase
in disturbance amplitude.
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Figure 7. At HIFiRE flight conditions-Upper: NPSE results for a straight cone. Lower: N-factor
comparison between traditional discrete (delta-function) and wave packet (WP) methodologies.

7. Conclusions

In this manuscript, we have begun to address the question: How “receptive” are
downstream disturbances to upstream disturbances? This question was motivated by
experimental observations which indicated a numerical under-prediction of second-mode
wave amplitudes in a hypersonic boundary layer. The wave packet NPSE formulations
was compared to the traditional discrete methodology, to verify a seemingly overlooked
mechanism by which energy is transferred between neighboring disturbances in frequency
space. Such a mechanism appears to have been unaccounted for, due to an emphasis on
the linear interpretation of experimental and numerical datasets. This mechanism appears
most active (and possibly dominant) in the 0.1–2% disturbance amplitude range (based on
normalized pressure measurements of second-mode instability waves), and is important for
accurate receptivity calculations. The results suggest that this amplitude range is also near
the limit of experimental observations, so knowledge of this mechanism is important when
interpreting numerical-experimental data comparisons. It was shown that the “energy-
frequency-shifting” mechanism is geometry and flow condition dependent, but in general
is expected to account for a 20–30% underprediction in disturbance amplitude, over a 0.5 m
streamwise distance, when using the traditional (discrete) PSE formulation.
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