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Abstract: The study is dedicated to the peculiarities of implementing the flux limiter of the flow quan-
tity gradient when solving 3D aerodynamic problems using the system of Navier–Stokes equations
on unstructured meshes. The paper describes discretisation of the system of Navier–Stokes equations
on a finite-volume method and a mathematical model including Spalart–Allmaras turbulence model
and the Advection Upstream Splitting Method (AUSM+) computational scheme for convective fluxes
that use a second-order approximation scheme for reconstruction of the solution on a facet. A solution
of problems with shock wave structures is considered, where, to prevent oscillations at discontinuous
solutions, the order of accuracy is reduced due to the implementation of the limiter function of the
gradient. In particular, the Venkatakrishnan limiter was chosen. The study analyses this limiter as
it impacts the accuracy of the results and monotonicity of the solution. It is shown that, when the
limiter is used in a classical formulation, when the operation threshold is based on the characteristic
size of the cell of the mesh, it facilitates suppression of non-physical oscillations in the solution and
the upgrade of its monotonicity. However, when computing on unstructured meshes, the Venkatakr-
ishnan limiter in this setup can result in the occurrence of the areas of its accidental activation, and
that influences the accuracy of the produced result. The Venkatakrishnan limiter is proposed for
unstructured meshes, where the formulation of the operation threshold is proposed based on the
gas dynamics parameters of the flow. The proposed option of the function is characterized by the
absence of parasite regions of accidental activation and ensures its operation only in the region of
high gradients. Monotonicity properties, as compared to the classical formulation, are preserved.
Constants of operation thresholds are compared for both options using the example of numerical
solution of the problem with shock wave processes on different meshes. Recommendations regarding
optimum values of these quantities are provided. Problems with a supersonic flow in a channel with
a wedge and transonic flow over NACA0012 airfoil were selected for the examination of the limiter
functions applicability. The computation was carried out using unstructured meshes consisting of
tetrahedrons, truncated hexahedrons, and polyhedrons. The region of accidental activation of the
Venkatakrishnan limiter in a classical formulation, and the absence of such regions in case a modified
option of the limiter function, is implemented. The analysis of the flow field around a NACA0012
indicates that the proposed improved implementation of the Venkatakrishnan limiter enables an
increase in the accuracy of the solution.

Keywords: numerical simulation; Navier–Stokes equations; flux limiter; shock waves; gradient;
unstructured mesh
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1. Introduction

Unstructured meshes are most preferable currently in computations of aerodynamic
flows for industrial applications [1,2]. Implementation of these meshes requires adaptation
of the numerical methods being used, for example, in the part of numerical schemes
construction, rated quantities approximation, and computation of flows and gradients.

One of specific features of the computations of aerodynamic flows is the possible
availability of high-gradient areas in the flow, e.g., a shock wave. Robustness of the
implemented algorithm depends on the stability of the discretisation scheme of convective
fluxes when simulating such flows [3–6]. It is known that it is strictly recommended to
implement schemes of an upgraded order of accuracy in the computations of the flows
with shock waves and rarefaction waves, as the schemes of a lower order of accuracy tend
to cause considerable “smearing” of the solution. However, they are more reliable in the
way of fail-safe features than higher-order schemes.

It is possible to improve robustness of a high accuracy order scheme through the
implementation of a scalar limiter of the gradient of the flow quantities. A gradient limiter
is basically used in upwind schemes of the second order of accuracy. It allows preventing
non-physical oscillations in the solution that are characteristic in computations of shock
wave flows. A similar technique of limiter implementation is used in hydrodynamics [7].
Gradient limiters there prevent the value produced in gradient reconstruction of the quan-
tity at the facet of the cell from violating the limits of its minimum and maximum in the
cells neighboring the given one. The Venkatakrishnan limiter [8] is one of the most popular
options in practice.

The experience in the implementation of limiters is long and initially appeared regard-
ing structured meshes and the meshes with cells of a regular geometric shape [7,8]. It is
evident, for example, from the summands as a part of the limiter expression, that they are
related to the particular cell size of the computational mesh. In the case of unstructured
meshes, it is difficult to find a characteristic size of a cell in the form of a random polyhe-
dron. In this case, it appears logical and reasonable to set the operation threshold based
solely on the flow quantities.

This work studies the implementation of the Venkatakrishnan limiter. Unstructured
meshes consisting of tetrahedrons, truncated hexahedrons, and polyhedrons are used for
the computation. A modified option of the Venkatakrishnan limiter is offered based on the
results produced, and its advantages are shown in comparison to the initial option of the
function when solving the problems with shock wave processes that occur at supersonic
flow around the wedge and transonic flow around NACA0012 airfoil.

The paper is organized in three main sections. The section of basic equations describes
the mathematical model used to simulate gas flow. The next section describes implementa-
tion of the flow limiter and solution of practical problems. The main conclusions are given
in the final part of the paper.

2. Governing Equations

The physical and mathematical model to describe 3D flows is realized in the Russian
software package called LOGOS. The LOGOS software package is designed for computa-
tional hydro- and aero-dynamics problems on parallel systems [9–12].

Non-stationary 3D turbulent flows of a viscous thermally conductive gas are described
with Reynolds-averaged Navier–Stokes equations [13,14]. In a conservative form in Carte-
sian coordinates, the system of equations has the following form (averaging signs are
skipped): 

∂ρ
∂t +∇

(
ρ
→
u
)
= 0,

∂
(

ρ
→
u
)

∂t +∇
(

ρ
→
u
→
u
)
= −∇p +∇

(
τµ + τt

)
,

∂(ρE)
∂t +∇

(
ρ
→
u h
)
= ∇

[→
u
(
τµ + τt

)
−
(→

q µ +
→
q t

)]
.

(1)



Fluids 2023, 8, 31 3 of 18

Here, ρ is density;
→
u is the vector of the flow velocity with components u, v, w; p is

pressure; E = CvT + 0.5
(
u2 + v2 + w2) is total energy; h = CpT + 0.5

(
u2 + v2 + w2) is total

enthalpy; τµ and τt are molecular and turbulent components of the tensor of tangential
stresses, respectively; qµ and qt are molecular and turbulent heat flux, respectively; T is
temperature; Cv =

(
CpT − R/m

)
is specific heat capacity at constant volume; Cp is specific

heat capacity at constant pressure; R is a universal gas constant; and m is a molar mass of
the gas.

The values of the molecular component of the tangential stress tensor of the Newtonian
medium meet the rheological Newton's law, and the components of the density vector of
the heat flow are connected with the local temperature gradient by Fourier’s law [13,14]:

τµ = 2µ(T)
(

S− 1
3

I∇→u
)

, (2)

S =
1
2

(
∇→u +

[
∇→u

]t
)

, (3)

qµ = λ(T)∇T. (4)

The dynamic viscosity, µ(T), and heat conductivity, λ(T), are found from the Suther-
land formula as a function of the flow temperature [14,15].

µ = µ0

(
T
T0

)0.5 T0 + Ts

T + Ts
, (5)

λ = λ0

(
T
T0

)0.5 T0 + Ts

T + Ts
, (6)

where µ0 and λ0 are dynamic viscosity and heat conductivity at temperature T0; Ts is the
Sutherland constant.

System of Equation (1) is open due to the unknown connection of some of the basic
variables of this system with averaged parameters of the flow. This connection can be
established with additional ratios that, in a general case, are called turbulent models. Linear
differential models of turbulence use empirical ratios for the turbulent viscosity factor.
Here, the Spalart–Allmaras model [16,17] proved to be effective.

In the Spalart–Allmaras model, a single transport equation is considered. The transport
equation is written with respect to the modified kinematic turbulent viscosity ν̃.

∂ρν̃

∂t
+

∂ρujν̃

∂xj
=

1
σ

 ∂

∂xj

[
(µ + ρν̃)

∂ν̃

∂xj

]
+ cb2ρ

(
∂ν̃

∂xj

)2
+ Pv − Dv (7)

The generation and dissipation terms in Equation (7) are the source terms and they
are expressed

Dv =
(

cw1 fw −
cb1

κ2 ft2

)( ν̃

d

)2
(8)

Pv = cb1ρS̃ν̃− cb1ρ ft2S̃ν̃ (9)

where d is the closet distance to the rigid wall, k is the von Karman constant.
The other parameters in the transport equation of turbulent viscosity can be found as

follows:

S̃ = Ω + fv2
ν̃

κ2d2 . (10)

Here, Ω is the rate of vorticity tensor

Ω =
(
2ΩijΩij

)1/2 (11)
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Ωij =
1
2

(
∂uj

∂xi
− ∂ui

∂xj

)
(12)

fw = g

(
1 + C6

w3

g6 + C6
w3

)1/6

(13)

g = r + Cw2

(
r6 − r

)
(14)

r =
ν̃

S̃κ2d2
(15)

Cw1 =
cb1

κ2 +
(1 + cb1)

σ
(16)

where the ft2 function provides the suppression of the transition from the laminar flow
calculations in the boundary layer to the turbulent flow calculations, and is expressed as

ft2 = Ct3 exp
(
−Ct4χ2

)
. (17)

Effective turbulent viscosity of the model is given next expression:

µt = ρν̃ fv1 (18)

fv1 =
χ3

χ3 + C3
v1

, (19)

χ =
ν̃t

ν
. (20)

Empirical constants of the model are as follows: σ = 2
3 , κ = 0.41, cb1 = 0.1355,

cb2 = 0.622, Cw2 = 0.3, Cw3 = 2, Cv1 = 7.1, and Ct3 = 1.2, Ct4 = 0.5.

3. Numerical Method

The system above is approximated with the finite element method and it uses an
integral formulation of the basic conservation laws. Discrete analogs of summands are
written for the reference volume by summation over facets.

A finite volume method is based on integration of initial differential equations by the
reference volume. Reference volumes (cells of the mesh) are arbitrary polyhedrons that
cover the domain without gaps and overlaps. Each polyhedron is limited with a random
number of facets. The vertices of the facets are the nodes of the mesh. A general view of
the cell is given in Figure 1.

Fluids 2022, 7, x FOR PEER REVIEW 5 of 21 
 

t .νχ
ν

=


 (20)

Empirical constants of the model are as follows: 1,
2

, 0.41 0.1355
3 bcσ κ= = = , 

2 2 30.622, 0.3, 2b w wc C C= = = , 1 7.1vC = , and 3 1.2tC = , 4 0.5tC = . 

3. Numerical Method 
The system above is approximated with the finite element method and it uses an 

integral formulation of the basic conservation laws. Discrete analogs of summands are 
written for the reference volume by summation over facets. 

A finite volume method is based on integration of initial differential equations by the 
reference volume. Reference volumes (cells of the mesh) are arbitrary polyhedrons that 
cover the domain without gaps and overlaps. Each polyhedron is limited with a random 
number of facets. The vertices of the facets are the nodes of the mesh. A general view of 
the cell is given in Figure 1. 

 
Figure 1. Control volume. 

A system of the Navier–Stokes equation is written in a vector form for numerical 
solution using a finite volume method: 

( ) ,
PV V

d
WdV F G dS H dV

dt Δ Δ Δ

+ − =    (21)

where W is a vector of conservative variables, F and G are vectors of convective and dif-
fusion fluxes, and H is a source term 

0

, , ,

n

n x nx

n y ny

n z nz

n n

u

uu pnu

W F Gvu pnv

wu pnw

Hu puE u q

ρρ

ρρ τ

ρρ τ

ρρ τ

ρρ τ

+

= = =+

+

+ +

    
    
    
    
    
    

        

 (22)

where un is a normal component of the velocity, q is a heat flux, and τij are components of 
the tensor of viscous stresses. 

The full description of the way of approximation of the system of Equation (22) is 
given in [18,19]. 

  

Figure 1. Control volume.



Fluids 2023, 8, 31 5 of 18

A system of the Navier–Stokes equation is written in a vector form for numerical
solution using a finite volume method:

d
dt

∫
∆V

WdV +
∮

∆ ∑P

(F− G)dS =
∫

∆V

H dV, (21)

where W is a vector of conservative variables, F and G are vectors of convective and
diffusion fluxes, and H is a source term

W =


ρ

ρu
ρv
ρw
ρE

, F =


ρun

ρuun + pnx
ρvun + pny
ρwun + pnz
ρHun + pun

, G =


0

τnx
τny
τnz

τu + q

, (22)

where un is a normal component of the velocity, q is a heat flux, and τij are components of
the tensor of viscous stresses.

The full description of the way of approximation of the system of Equation (22) is
given in [18,19].

4. Flux Limiters

When solving a problem, computation accuracy for the convective flows is of great
importance. Schemes on the basis of the Riemann problem solution became quite popular in
the case of aerodynamic problems. Such schemes comprise Advection Upstream Splitting
Method (AUSM)–family schemes [20–24], and in particular AUSM+ scheme [21–24].

According to [25], a convective flow through the facet is computed in AUSM+ as
follows:

Ff = c f

(
M+

L UL + M−R UR

)
+
(

P+
L

∣∣
α= 3

16
PL + P−R

∣∣
α= 3

16
PR

)
(23)

where c f is the sound velocity at the facet; UL and UR are vectors of primitive variables on

the left and on the right facet f ; PL and PR are vectors of pressure P = P
{

0, nx, ny, nz, 0
}T

on the left and on the right facet f , M+
L , M−R , P+

L

∣∣
α= 3

16
, and P−R

∣∣
α= 3

16
are parameters of the

scheme.

• If M+
L + M−R ≥ 0, where ML and MR are Mach numbers on the left and on the right of

the facet, then
M+

L = M+
L + M−R [(1−ω)(1 + fR) + fR − fL]. (24)

• If M+
L + M−R < 0, then

M−R = M−R + M+
L [(1−ω)(1 + fL) + fL − fR]. (25)

Parameter ω is set by the function that depends on cubes of relations of pressure, and
takes a minimum value in the larger part of the domain, except for the areas with a high
gradient of pressure, such as the areas of shock waves and discontinuities

ω(pL, pR) = 1−min
(

pL
pR

,
pR
pL

)3
. (26)

Parameter fL,R also takes a minimum value, except for the areas with oscillations of
the solution

fL,R =

{ (
pL,R
ps
− 1
)

0
min

(
1,

min(p1,L, p1,R, p2,L, p2,R)

min(pL, pR)

)2

, P+
L pL + P−R pR 6= 0. (27)

Second-order polynomials are used to find parameters on the facet:
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M± =

{
± 1

4 (M± 1)2, |M| ≤ 1,
1
2 (M± |M|), |M| > 1,

, P±α =

{
1
4 (M± 1)2(2∓M)± αM(M2 − 1), |M| ≤ 1,
1
2 (1± sign(M), |M| > 1.

(28)

In order to compute convective fluxes, reconstruction of the solution is conducted. It
lies in the definition of parameters on the left and on the right of facet f . When solving flow
problems, reconstruction of the solution is performed with regard to primitive variables
Q, conservative variables W, and with regard to acoustic invariants. For the first order
of approximation, the values from the center of a respective cell (Figure 2) are taken as
parameters on the right and on the left from the facet:

φ−f = φP, φ+
f = φE. (29)
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Reconstruction of the solution of the second-order approximation is usually taken to
find the value on the facet [26,27].

φ−f = φP + α−f (∆
→
RP f · ∇φP)

φ+
f = φE + α+f (∆

→
RE f · ∇φE)

(30)

where φ−f and φ+
f are values of the variable on the left and right facet, φP and φE are the

values of the variable in the center of cells E and P (Figure 2),
→
RP f and ∆

→
RE f are the distance

from the center of cells E and P to the center of the facet, ∇φE and ∇φP are the values of
the gradient in cells E and P, and α−f and α+f are limiters designed to prevent oscillations at
discontinuous solutions. Implementation of the limiter function allows for controlling the
gradient value on unstructured grids (decreasing the gradient value multiplying it by value
α f ≤ 1); it is used to restore the value on the left and on the right from the facet [28,29].

5. Implementation of Flux Limiters

Implementation of so-called limiter functions is necessary to preserve monotonicity
property of the solution in the areas with high gradients. In fact, introduction of the limiter
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of the scheme comes to “smoothening” of false maximum extremums of the values in
the flow.

For example, in [28], as a result of limiter implementation, they managed to produce a
smooth solution of trans-sonic flow without oscillations even on irregular meshes. The lim-
iter function should be equal to zero in case of strong ruptures to produce the scheme of the
first order that would guarantee monotonicity property, but in the areas of “monotonous”
flow, the limiter function takes the value of a unit, and reconstruction of values at the facet
is not limited. Transition from the limited value to the unlimited one should be smooth;
only in this case would you expect upgraded convergence. Implementation of limiters is
described in [29–35].

Correct behaviour of the limiter function is especially important when it is used in
engineering codes to solve industrially specific problems on unstructured meshes.

More than a dozen different limiter functions were made available and published;
they were reviewed in [36], for example. The most often used ones are:

• Barth–Jespersen limiter [37]: its general view is α f = min(r f , 1);

• Van Albada–Leer [7]: its general view is α f = min(
r2

f +r f

r2
f +1

, 1);

• Venkatakrishnan [38]: its general view is α f = min(
r2

f +2r f

r2
f +r f +2

, 1).

Figure 3 shows a Sweby diagram [29] that demonstrates dependence of α f values on
factor r f .
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The α f = 0 values correspond to the scheme of the first order of accuracy, and α f = 1
to the scheme of the second order of accuracy. You see that that “strict” limiter function is
the Venkatakrishnan limiter that makes transition to the scheme of the second order the
latest of all (at r f = 2), which will provide high stability and ensure good monotonous
property [7,8,38].
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The Venkatakrishnan limiter controls the value of gradient φE in cell E according to
the expression:

αE =


1

∆2

[
(∆2

l,max+ε2)∆2+2∆2
2∆l,max

∆2
l,max+2∆2

2+∆l,max∆2+ε2

]
, ∆2 > 0

1
∆2

[
(∆2

l,min+ε2)∆2+2∆2
2∆l,min

∆2
l,min+2∆2

2+∆l,min∆2+ε2

]
, ∆2 < 0

1, ∆2 = 0

(31)

∆l,max = φmax − φE,
∆l,min = φmin − φE,

∆2 = 1
2 (∇φ f · ∆

→
RE f ).

(32)

ε2 = (K∆h)3 (33)

where φmax and φmin are maximum and minimum values in all neighboring cells, including

the values in cell E itself, and ∆
→
RE f is the distance from the center of cell E (or P) to the

center of the facet. Parameter ε2 controls the value of the limiter, where K is a constant (a
normalizing coefficient), ∆h is a characteristic size of the cell.

In (31), ε2 is a symbolic operation threshold of the limiting function. Oscillations lower
than this threshold are allowed in the solution and are not considered by the limiter. A
zero value of parameter ε2 means that the limiter is active even in the near-constant regions,
when a very high value of parameter ε2 means practically no limit. Such modification
of the limiting function makes it possible to protect from random operations and reach
improvement of convergence and stable solution on unstructured meshes.

Let us mark

y =
∆l,max

∆2
or
(

y =
∆l,min

∆2

)
and write the function from expression (31) as follows [8,37]:

αE =
y2 + 2y + ε

y2 + y + 2 + ε
(34)

where ∆l,max or ∆l,min from (32) is increment of the solution.
With quantity ε exceeding the increment value of the solution, or with the unlimited

quantity ε, the limiter takes the value of a unity, i.e., the value of the gradient (in the
expression to find the value per facet) is not limited to anything. Where the increment of
the solution exceeds quantity ε (e.g., in the region with large gradients or at a small value

of ε), the solution itself determines the value of the limiting function (summand y2+2y
y2+y+2 of

expression (34)); in this way, it sets the degree of limitation.

6. Results and Discussion

Several CFD benchmark problems are considered to validate the robustness of the flux
limiters and their parameters.

6.1. Flow in a Channel with Wedge

The operation of the limiter (at various values of parameter K) is considered using
the example of the problem of supersonic flow around the wedge, where the parameters
of the incident flow are as follows: Mach number is 2, the pressure is 101,325 Pa, and the
temperature is 300 K [39]. Structured computational mesh is used for simulation with the
number of cells at 95,000. General view of the computation domain and mesh are shown in
Figure 4.
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Figure 4. General view of the computation domain and mesh.

At supersonic flow in the channel with a wedge, an attached compression shock is
formed, which results in the formation of the shock wave structure of the flow in the
channel. Figure 5 shows the origination of the compression shock, its development and
reflection from the walls of the channel, and its interaction with the system (finitary spread)
of rarefaction waves [39].
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Figure 5. Contours of total pressure.

Each shock wave is characterized with its front (the surface where flow quantities have
a jump in the development, whereas outside the front they change continuously). From the
practical point of view, the implemented numerical scheme should provide stability and
preserve monotonicity of the solution in all regions of the flow, including the shock wave
fronts.

Let us study the section of the first series of compression shocks to explore the solution
as a function of the limiter in Figure 5. Look at the plot in Figure 6, of the distribution of the
full pressure along the line in Figure 4 in the specified region produced with and without
the limiter (Venkatakrishnan limiter) for different values of parameter K in expression (33).
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According to the plot, at K = 0.1 and K = 1 the produced result complies with the
computation result without a limiter, i.e., at such values of K, the solution is fully unlimited
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(complete computed value of the gradient is taken at the reconstruction step). The solution
produced at K = 0.01 is characterized with local maximums that have a non-physical
(fictitious) origination character that can cause a considerable error in the solution, as it
acquires extremely non-monotonic behaviour.

The solution has the best accuracy (as compared to the analytical solution) and mono-
tonicity properties at K = 0 and K = 0.001. However, K = 0 means probability of switching
on the limiter in the entire domain, i.e., it has a random reaction character in Figure 7, and
this is also intolerable.
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The solution at K = 0.001 has a minimum amplitude of oscillations and, in general, is
characterized with a good monotonicity property. However, due to a very small value of
parameter K, the limiter is practically always activated (random cases of operation on other
mesh models can be revealed), and the picture of the produced solution actually reflects
the property of this limiter that depends on the size of the mesh cell.

Computation of parameter ε by formula (33) is related to the characteristic cell size
only, and the function depends only on the geometric parameters of the mesh. In this
case, the limiter operation depends only on the parameters of the computation model and
increases the probability of the limiter’s reaction in the regions of the local refinement mesh
model. At the same time, in this formulation parameter, ε is not related in any way to
the flow quantities. This also increases the probability of random operation of the limiter
function for a particular flow quantity. The characteristic cell size is valid only in the case
of cells of a regular geometric shape; whereas, in the case of a cell with a shape of a random
polynomial, this value does not have a clear definition.

Modification of expression (33) to compute ε is necessary to use the limiter on cells
of a random shape. The idea is to make parameter ε the function of the flow quantities,
i.e., the function of that quantity, for which the limiter is implemented. Another option to
define ε is

ε̃ = Kφ (35)

where K is an operation threshold of function and φ is a flow variable. The value of the
limiter is computed on the basis of the flow variable itself, for which the limiter is computed
(when pressure is computed, φ shows pressure, and when density is computed, it shows
density; same for velocity).

Introduction of a flow variable as a parameter when computing ε̃ disconnects the
limiter from geometric parameters of the mesh cells. In the current formulation parameter,
ε̃ has a physical sense. Changing constant K, the value of oscillations of computational flow
quantities filtered with the limiter is found. For example, K = 0.01 means that the operation
threshold of the limiter is equal to 1% from flow quantity φ, i.e., the limiter is switched on
when the solution becomes oscillating and the increment of the solution in the cell is higher
than 1% of the solution in the cell.

Let us analyse the implementation of the modified formula for the problem of a
supersonic flow in the channel with a wedge in Figure 8, and look at the case when K = 0.01
in (35).
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Distribution of total pressure in case K = 0.01 from (35) has a comparable solution
with the one produced in case K = 0.001 in (33), the property of monotonicity. However, if
expression (35) is implemented, the limiter function has a clear physical interpretation. In
this case, the region of activation of the limiter is characterized by the absence of random
reactions in Figure 9.
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To study the implementation on unstructured meshes, 3D meshes (one-cell thick)
were generated for this geometry consisting of polynomials, tetrahedrons, and truncated
hexahedrons. The behaviour of the limiters is shown in Figure 10. Note that, when K = 0.001
in (33), multiple areas of random reactions are observed in all options of mesh models.
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So, having analysed quantity ε as it influences the behaviour of the solution, it can be
concluded that implementation of the Venkatakrishnan limiter, where ε is computed by
expression (33) at K = 0.001, contributes to the monotonicity of the convergence process
of the solution and reduces the number of non-physical oscillations. However, ε depends
on geometric sizes of the cell of the computation mesh. This could be the reason for the
possible random character of the reaction of the function under consideration (revealed
on unstructured meshes) and introduces a numerical error into the solution. To eliminate
this problem, option (35) was suggested at K = 0.01, which has comparable monotonicity
properties. However, it is characterized with no random character of the reaction of the
limiter on random unstructured meshes. Form (35) provides dependence of quantity ε on
the intensity of the flow, allowing for more precise definition of the activation threshold of
the limiter.

6.2. Flow around Airfoil

Let us consider the limiter as it influences the accuracy of the produced solution on
the example of transonic flow around NACA0012 airfoil [40,41]. The mesh is one cell thick
in Figure 11. The total number of mesh elements is 731,000.
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According to the research on the components of the drag of aerodynamic airfoils [13],
the basic constituent of the drag for a medium-thick airfoil at small attack angles is friction
resistance. The airfoil drag (pressure drag) due to the incomplete restoration of pressure in
the tail part of the airfoil is 20–30% of the total profile drag (at small attack angles of 0–3◦

for symmetric and slightly bended airfoils with an average relative thickness of 11–15%).
As [13,39] show, the accuracy of the pressure drag computation depends directly on

the level of so-called numerical viscosity (approximation errors that work as additional
dissipation, resulting in the loss of complete pressure in the flow and growth of the
resistance of the object under investigation). It can be caused by some peculiarities of the
numerical method. For example, the selection of the limiter of the gradient increment could
reduce the accuracy order greatly in the regions with large gradients of gas parameters. As
a result of the incorrect operation of the limiter, not enough rarefaction can be observed in
the region of minimum values of the pressure coefficient on the upper surface of the airfoil.

Let us consider this problem with the following boundary conditions. Parameters of
the incident flow at the external boundary of the computational domain correspond to the
values: the pressure is 46,066.2 Pa, the temperature is 248 K, the Mach number is 0.7, and
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the angle of attack is 1.489◦ and 3.046◦ [39–41]. The surface of the airfoil is considered to be
a no-penetrated wall; a symmetric boundary condition is set at the sides.

At the set parameters of the airfoil overflow, the formation of the tear-off zone takes
place on its leeside. A curvilinear shock wave is formed near the surface of the airfoil. It
corresponds to the normal that transforms a supersonic flow into the subsonic flow. In case
the angle of attack is 1.489◦, a low-intensity compression shock is formed with smeared
boundaries of the transfer of the supersonic flow into the subsonic flow in Figure 12.
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Figure 12. Contours of Mach number (a–c) and contours of pressure (d–f): computation without a
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When increasing the angle of attack to 3.046◦, a more intensive compression shock is
formed above the airfoil. It has a more expressed front and creates a large area of decreased
pressure. Mach number and pressure contours are presented in Figure 13.
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No differences in the solution with different options of the limiter are observed in the
general structure of the flow (in the shock wave generation above the airfoil). Cognominal
fields correspond to each other. However, the differences in the solution are evident if
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integral characteristics are estimated, for example, the value of the drag force coefficient,
Cdrag, as compared to the experimental data in Table 1, [39–41].

Table 1. Drag coefficients.

No Computation
α = 1.489◦ α = 3.046◦

Cdrag ∆Cdrag, % Cdrag ∆Cdrag, %

0 Experiment 0.00819 – 0.01267 –

1 Without limiter 0.00848 3.6 0.01423 12.3

2 ε (33) at K = 0.001 0.00850 3.7 0.01425 12.5

3
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(35) at K = 0.01 0.00838 2.3 0.01382 9.1

Maximum error in the solution for both angles of attack is produced in the case of
computation No 2. The main contribution into the error in the resistance computation
is due to the pressure force component that happens to be overestimated by more than
10%. One of the most probable reasons for these results could be the work of the gradients
increment limiter, which is of a random reaction character in all the computation domains
revealed in this mesh model in Figure 14.
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(35)
dependent on the flow quantities.

As a result, a solution was produced that has a minimum deviation from the experi-
mental data (2.3% and 9.1%). It is worth noting that the error in the computation grows
with the increase in the angle of attack, and it is approaching the critical values. It is
connected to the formation of a more intensive shock wave above the surface of the airfoil
and a more complicated operation of the limiter in this region. In particular, it reduces the
accuracy order of the scheme most precisely in the regions with large gradients of flow
quantities and not to introduce additional numerical viscosity. So, evident advantages of
implementation of the limiter in combination with parameter
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at K = 0.01 are shown using
this problem.

6.3. Flow around Bullet

A modified option of the limiter can also be applied to compute supersonic flow
around the “168 Grain Sierra International Bullet” [42]. An unstructured mesh of truncated
hexahedrons with a general number of elements of 386 thousand was generated for the
computation of this problem in Figure 15.
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Regions of the flow, where the Mach number is close to 1, are characterized with
complexity due to the formation of compression shocks and possible separation of the flow
that influence aerodynamic properties of the object considerably. The results produced here
can also be generalized for the solids geometrically similar to the object under consideration.

The geometry of the bullet, the properties of the flow, and experimental aerodynamic
parameters are taken from the work of Author [42]. Let us take the problem with the
following boundary conditions. Parameters of the striking flow at the external boundary
of the domain correspond to the following quantities: the pressure is 101,325 Pa, the
temperature is 288.15 K, the angle of attack is 0◦, and the Mach number is 1.05 and 1.6 [42].
The surface of the bullet is taken as a solid wall, and a symmetric boundary condition is set
on the side boundary.

In case Mach number is equal to 1.05 and 1.6, the flow is characterized by the presence
of the head shock wave in Figure 16. Distribution of flow quantities near the surface of
the object influences aerodynamic properties considerably. That is why it is necessary to
provide correct operation of the limiter in this region to get a high-quality solution. There
are no differences in the solutions with different variants of the limiter function in the
general structure of the flow in Figures 16 and 17.
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Let us estimate the value of the drag force coefficient, Cdrag, in comparison with
experimental data in Table 2, [42]. The largest deviation of the results from the experimental
data are observed in the computation with limiter ε (33) at K = 0.001 for both modes. So,
the modified form of the limiter allows for producing a more accurate solution in case the
flow with shock wave processes is considered on an unstructured mesh.

Table 2. Drag coefficient.

No Computation
M = 1.05 M = 1.6

Cdrag ∆Cdrag, % Cdrag ∆Cdrag, %

1 Experiment 0.449 – 0.385 –

2 ε (33) at K = 0.001 0.4589 2.2 0.4219 9.6
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The study analyses implementation of the system of Navier–Stokes equations to
simulate the problems of aerodynamics. A mathematical model is supplemented with
equations of the Spalart–Allmaras turbulence model and AUSM+ scheme to compute
convective fluxes that use a second-order approximation scheme for reconstruction of the
solution on the facet. The Venkatakrishnan limiter is implemented to prevent the generation
of false oscillations of the solution when computing shock wave processes.

The work describes the research on the influence of this limiter on the behaviour of the
numerical solution of aerodynamic problems. It shows that implementation of the gradient
limiter helps to improve monotonicity of the convergence when simulating the problems
with shock waves and local compression shocks. Venkatakrishnan limiter implementation
was studied on structured and unstructured meshes. It was found out that the initial
option of the Venkatakrishnan limiter on unstructured meshes can produce the regions
of its random activation. To eliminate this phenomenon, it was suggested to modify the
summand that controls the limiter operation threshold. The suggested option is based on
the flow quantities, and it showed correct behaviour on unstructured meshes that helps to
improve the accuracy of the produced solution.
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The proposed option of the limiter allows for producing a more accurate solution for
the problems of trans- and supersonic flows, and that was demonstrated on the example of
overflowing an airfoil and a bullet.

Computations on hypersonic flows are planned, as well the study of their peculiarities.
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