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Abstract: The paper is devoted to an experimental study of the fluid motion excited by a light
spherical body floating along the axis of a rotating vertical cylinder. The experiments are performed
with fast rotation. The high-speed video recording examines the behavior of the body depending
on the rotation rate and liquid viscosity. PIV-method is used to investigate the velocity fields of
liquid. In the cavity frame, the body excites the motion liquid in the form of a Taylor–Proudman
column, the diameter of which is consistent with the body diameter. In the upper column, the liquid
performs a retrograde differential rotation, and in the lower, a prograde one. Outside the columns,
the differential rotation is practically absent. It is found that the intensity of the retrograde azimuthal
motion in the frontal column increases as the body goes up, while the intensity of the prograde
rotation in the rear column decreases. As a result, the free body simultaneously with motion along
the axis performs differential rotation: in the lower part of the cavity it is prograde, while in the
upper one it is retrograde. The intensity of the body differential rotation varies with the longitudinal
coordinate linearly and decreases with the dimensionless rotation velocity.

Keywords: rotation; spherical body; Taylor–Proudman column; motion velocity; differential rotation

1. Introduction

The motion of bodies in a rotating fluid is an object of great interest. We encounter
rotational motion every day, as it is an integral part of many devices used in everyday life.
The planets of the Solar system could be an example of systems in which the movement
of fluid occurs against the background of rotation. A number of additional forces appear
in the rotating system, such as the Coriolis force and centrifugal force of inertia. The
complex behavior of the fluid in this case requires a comprehensive, experimental and
theoretical study.

The features of the motion of a body in a rotating fluid were considered about one
hundred years ago by Taylor [1], who showed that the motion of a fluid in a rapidly rotating
cavity is two-dimensional; the flows excited by a solid spherical body moving in a rotating
fluid were later called Taylor–Proudman columns (Greenspan [2]). The papers (Moore and
Saffman [3], Maxworthy [4]) are devoted to theoretical and experimental studies of the
drag experienced by a sphere moving in a low-viscosity fluid in a rotating cylinder of finite
length. The articles (Moore and Saffman [5], Maxworthy [6]) present further development
of this topic. The governing parameters are the Ekman number, E ≡ ν/(Ωrota2) and
the Rossby number, Ro ≡ vb/Ωrota, where ν is the kinematic viscosity, a is the body
radius, vb is the body velocity, and Ωrot is the angular velocity of cavity rotation. The
main attention in theory and experiments was directed to the study of the structure of
flows and forces acting on a body. A large number of papers have been devoted to the
study of the problem of motion and flow around a body moving in a rotating fluid after
these pioneering works. A list of these works can be found in (Minkov et al. [7]; Stone [8];
Tanzosh and Stone [9]). These studies also include the movement of drop inclusions in
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rotating liquids (Bush et al. [10]). The problem of capturing the Taylor column phenomena
numerically attracts great attention of scientists nowadays: the review of scientific results
in this direction can be found in (Sahoo et al. [11]); the article (Sarkar et al. [12]) is devoted
to the influence of magnetic fields in the control of the Taylor column phenomenon.

The boundary of the Taylor–Proudman column is formed by the Stewartson boundary
layer (Stewartson [13]). Its function is to ensure the continuity of the azimuthal flow velocity
between the internal content of the column and the external surrounding fluid. An actual
problem is the stability of the Stewartson layer (stability of the Taylor–Proudman column).
This problem is well studied theoretically and experimentally in the case of the differential
rotation of the body in a rotating fluid (Schaeffer and Cardin [14], Hollerbach [15], Holler-
bach et al. [16], Kozlov et al. [17]). At this, the fluid motion in the form of Taylor–Proudman
columns appears in the absence of longitudinal or transverse body motion.

Consider in more detail the practically important case: the motion of a rigid spherical
body in a rotating cavity of definite length, started in famous works (Moore and Saffman [3],
Maxworthy [4]) where the theoretical description and experimental study are done. It is
shown that the drag force acting on the spherical body, moving along the axis of a rotating
cylinder, is about twice as large as theoretically predicted in the limit of infinite cavity length
and high rotation velocity. It happens because of the interaction of the Taylor columns
in front and behind the moving body with the cavity end-walls. Outside these columns,
in the limit of high rotational velocities (small Ekman numbers), the liquid performs an
unperturbed solid-state rotation together with the cavity. At this, the fluid flows around
the body only in a thin viscous Ekman layer, which forms near the body surface. All this
leads to the generation of a vortex motion in the Taylor–Proudman columns themselves,
retrograde in the frontal column and prograde in the column behind the moving body.

Ungarish and Vedensky [18] considered, theoretically, the motion of a disk rising
steadily along the axis in a rotating fluid between two infinite plates. In the limit of zero
Rossby number and with the disk in the middle position, the ‘exact’ solutions for arbitrary
values of the Ekman number, and relative cavity length, H/a, was found. The investigation
is focused on the drag and the flow field when E is small (but finite) for various H/a.

The numerical solution on the disk moving in a ‘short container’ was found in
(Minkov et al. [19]). The numerical solution is in good agreement with the exact linear
solution (Ungarish and Vedensky [18]) for a very small Ro, with the disk moving in the
center of the container in a quasi-steady state. An important result is the solutions with a
small Ro with the disk in a non-symmetric position. The differential rotation of a disk is
found in this case. This result correlates with (Ungarish [20], Ungarish and Vedensky [18]),
which by using the quasi-geostrophic model, estimated the influence of the non-symmetric
position of the disk as follows: as the asymmetry increases, the drag increases monotoni-
cally but by a small amount, and the body acquires a small (compared to the value of the
column rotation) differential angular velocity, which is prograde when the height of frontal
Taylor column is larger than the rear one, and vice versa.

As can be seen from the literature review, the bulk is theoretical research, and the num-
ber of experimental studies is limited. Known experimental studies refer to relatively large
Rossby numbers (Pritchard [21]), or relatively large Ekman numbers (Makarikhin et al. [22]),
or drops motion (Bush et al. [10]). To the best of our knowledge, with the exception of the
famous works by Maxworthy [4,6], in which the main attention was paid to the drag force
and the structure of flows around a spherical body moving with a given velocity along
the axis of a rotating cavity, experimental studies of the dynamics of a free sphere moving
in a rotating cavity of finite length at small Ekman numbers and small Rossby numbers,
are absent.

The purpose of the present study is to experimentally study the motion of a free
spherical body in a vertical rotating cavity of finite length during fast rotation (at low Ekman
numbers) and low Rossby numbers using modern methods for measuring the velocity
fields. The results of drag force are in agreement with experiments of Maxworthy [4], and
tends to the theoretical value (Moore and Saffman [3]) with further decrease in Rossby and
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Ekman numbers. The differential rotation of the moving body is found and investigated
versus the body position in the cavity and its axial velocity. The phenomenon of Taylor
column instability is found.

2. Experimental Setup and Methodic

The experimental setup (Figure 1) consists of a cylindrical cell 1, in which there is
a light spherical body 2 and a stepper motor providing the cuvette rotation. One of the
ends of the cuvette is fixed in a large-diameter ball bearing. The transparent wide flange
of the cell, fixed in this ball bearing, serves to observe the movement of the liquid and
study of the azimuthal velocity field in the cross sections of the rotating cylinder at various
heights (distance from the bottom flange). At the other end of the cylinder there is an
easily removable flange, which is mounted in a conventional ball bearing. This flange has a
hollow axis that serves to fill the cuvette with working fluid. The axis is connected through
a coupling to a stepper motor, which rotates the cuvette.
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Figure 1. Experimental setup: 1—cavity, 2—moving solid, 3—laser, 4—high-speed video camera,
5—conventional video camera.

The cuvette is made of a plexiglass tube with an inner diameter of 5.3 cm and a length
of 22.5 cm. To rotate the cuvette, a stepper motor FL86STH118-6004A with a driver SMD-4.2
and a DC source Mastech HY5005E are used. The signal to control the rotation of the motor
is given by the generator of the Zet 210 Sigma USB module, connected to a computer.
The rotational velocity varies in the range of f ≡ Ωrot/(2π) = 0− 25 rps and is set with
a precision of 10−3 rps. Here, Ωrot is the angular velocity. The main results refer to the
interval f = 10–21 rps when the body under the action of centrifugal force takes a stable
position on the axis of rotation. The orientation of the cuvette in the gravity field (horizontal,
at an angle to the horizon, or vertical) can change, including during the experiment. The
vertical position of the cuvette is set with an accuracy of 0.5 degrees.

A light spherical body is a rubber ball with a diameter of 2.40 cm and a density
ρS = 0.90 g/cm3. Meridians and the equator are drawn on the ball with a marker, which
allows one to follow its rotation.

To measure the rotation of the body relative to the cuvette, the latter has a longitudinal
mark along its entire length. To study the velocity of the body movement and its rotation
relative to the cavity in the process of ascent, a high-speed video filming of the body by a
camera located on the side is used.
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The purpose of this work is experiments with the use of water-glycerol solutions.
The main experiments were carried out on liquids with density and kinematic viscosity:
ρL = 1.0 g/cm3 and ν = 1.0 · 10−2 St (pure water); 1.12 g/cm3, 0.034 St; 1.17 g/cm3,
0.107 St. The use of water-glycerol solutions, the viscosity of which differed by two orders
of magnitude, provided a change in the dimensionless rotational speed ω ≡ Ωrotd2/ν
(governing dimensionless parameter, characterizing the Ekman number, ω ∼ E−1) in
a wide range ω = 103 − 105. At the same time, the use of relatively viscous liquids in
experiments suppressed the effect of sedimentation in the centrifugal force field of light-
scattering particles, used in the study of velocity fields by the PIV-method (Particle Image
Velocimetry). The essence of the method is to measure the displacement of light-scattering
particles in some selected section of the cavity during a known period of time. The choice
of this method is determined by its efficiency (velocity fields are measured), as well as good
software (Thielicke and Stamhuis [23]).

The velocity fields in the cavity are studied in the cross sections at various heights, as
well as in a vertical axial section. For this purpose, the light-scattering visualizer particles
of almost zero buoyancy and a diameter of 20 µm are added to the working fluid. The
location of the particles in the plane of the light sheet, which is created by a laser 3 (Figure 1)
of type KLM-532 with power 1W, is recorded by the immovable in the laboratory reference
frame high-speed camera 4 of the type Optronis CamRecord CL600x2. To work with the
camcorder, the application CoreView is used. The laser sheet thickness is 2 mm. A cross-
correlation processing of the velocity field is carried out using the program PIVlab [23].

The main task is to study the motion of the body and fluid in the reference frame
of the cavity. To do this, the frequency of the video recording is selected equal to (or a
multiple of) the rotation frequency, and due to the stroboscopic effect, the movement of the
body and fluid is observed in the reference frame of the cavity. For example, at a rotation
frequency of f = 15 rps, the recording frequency is 15 frames per second. It is important to
note that, in this case, the exposure time for an individual frame does not exceed 0.3 ms.
The latter provides a clear image of light-scattering particles moving along with the liquid
on separate frames, which is necessary for the applicability of the PIV method. Thus, all
the results of the body velocity and fluid velocity measurements refer to the differential
motion of the body and fluid in a rotating frame.

When studying the velocity fields in the cross-section of the cavity behind the floating
body, the setup is positioned strictly vertically so that the wide transparent flange is at the
bottom (Figure 1). In this case, the high-speed video camera is installed from below and its
optical axis coincides with the axis of rotation.

When measuring the velocity fields in front of a moving body, the same technique is
used, but the installation is turned over. The transparent bottom in this case is located on
top, and the high-speed camera is installed above the transparent flange of the cavity.

Synchronously with the operation of the high-speed camera, which records the move-
ment of the liquid in a given cross-section of the cavity, the position of the body along the
length of the cavity could be recorded using a conventional video camera 5. The camera 5
is located on the side of the rotating cuvette. The records from a conventional camera by
saving frames are processed using the program Image J. The synchronous registration using
two cameras (high-speed camera 4 and the conventional one 5) allows one to correlate the
velocity field in a certain section, with the position of the body relative to the bottom of the
cuvette at the same moment.

Experimental methodology is the next. At the beginning of the experiment, the cavity
located horizontally rotates with a given velocity while the body is on the axis of the cavity
near its bottom. After that, the cuvette is placed vertically smoothly for 1–2 s. A light body
located near the bottom of the cuvette begins to float in the gravity field. The perturbations
introduced in this case into the motion of the fluid in the cavity are not significant, and
the transient processes were completed before the body moved away from the bottom to
a distance comparable to its diameter. Such a setup and method are original and have
not been used in previous studies. It is quite effective given the long duration of the body
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ascent process, which takes from 10 to 103 s. At the moment, when the sphere starts to
ascend, the high-speed video camera begins to capture the location of the light-scattering
particles in the selected cross-section of the channel (at a distance h from the cavity bottom,
Figure 1). The recording continues during the process of the body floating. Simultaneously,
camera 5, located on the side, captures the distance of the body from the bottom of the
cavity Lz (Figure 1). The video recording ends after the body reaches the top end. The
experiment is repeated at different rotational velocities (f = 10–21 rps) with different liquids
(ν = 0.01− 0.107 St); the velocity field of the azimuthal motion of the liquid in the reference
frame of the cavity is studied in the cross-section of different heights h both in the upper
(in front of the body) and in the lower columns.

3. Results
3.1. Motion of a Light Sphere in a Rotating Cavity

Experiments show that the lifting velocity of the body decreases with an increase in
the cuvette rotation frequency, regardless of the liquid viscosity. At the same time, with an
increase in the viscosity of the liquid, the ascent velocity of the spherical body increases
(Figure 2).

Observations show that, along with the longitudinal movement, the body performs a
differential rotation relative to the cavity. The velocity of the axial movement of the body vb
remains practically constant and weakly depends on the position of the body relative to the
bottom of the cavity, especially in low-viscosity liquid and a relatively high rotation rate:
it is only near the ends of the cavity, that the velocity of the longitudinal motion slightly
decreases (Figure 3).
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Figure 2. The dependence of the sphere ascent velocity on the frequency of rotation in liquids of
different viscosities (the average velocity calculated from the time of lifting the body in the interval
z = 5–18 cm).

In contrast to the ascend velocity vb, which in low-viscosity liquids remains almost con-
stant (Figure 3), the body differential rotation velocity Ωb changes significantly (Figure 4):
at the lower end, it has a positive sign (the body rotates ahead of the cavity) and decreases as
the body rises. In the middle part of the cuvette, it vanishes (the body performs a rigid-body
rotation together with the cuvette), then the differential velocity changes its sign to negative,
and as the body approaches the upper end, it continues to increase in magnitude. With an
increase in the viscosity of the liquid, the velocity of differential rotation of the body in-
creases, while maintaining the same linear dependence on the longitudinal coordinate. An
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increase in the rotation frequency in experiments with a liquid of the same viscosity, leads
to a decrease in the rate of change in velocity with the longitudinal coordinate |dΩb/dz|.
The change in the angular velocity of differential rotation of the body with the longitudinal
coordinate can be approximated by a linear relationship. From the comparison of Figures 3
and 4, one can conclude that the velocity of longitudinal motion does not depend on the
velocity of differential rotation of the body.
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Thus, when ascending (comparatively uniform for given parameters of rotation and
fluid viscosity), the body performs a differential rotation with the angular velocity, which
decreases linearly with the distance to the bottom of the cavity, while in the middle of the
cavity it vanishes. It should be noted that at the initial stage of ascent when the body is still
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near the bottom, its behavior is not regular, while the body can perform not advancing, but
lagging the differential rotation. We assume that this is due to transient processes associated
with a change in the orientation of the cavity, so this area is not shown in Figures 3 and 4.
The transient process ends when the body moves to a distance comparable to its radius, and
the behavior of the body (ascent rate and differential rotation rate) is regularized. There are
no singularities near the upper boundary; the behavior of the body changes monotonously
up to touching the upper end of the cavity.

3.2. The Movement of Fluid in the Cavity during the Ascent of a Light Spherical Body

Observations show that under the conditions of the experiment, fluid motion is formed
in a rotating cavity in the form of an axisymmetric Taylor–Proudman column located along
the rotation axis, in which the azimuthal velocity of fluid motion differs from the cavity
rotation velocity. The diameter of the column is consistent with the diameter of the moving
body. In the frontal column, in front of the body, the liquid in it makes a retrograde
rotation (Figure 5a). In the Taylor–Proudman column behind the floating sphere, the liquid
moves in the leading direction (Figure 5b). Outside the Taylor–Proudman columns, there is
practically no differential motion of the liquid; the liquid performs a solid-state rotation at
a velocity close to the rotation velocity of the cavity.

A general feature is that the differential angular velocity of fluid rotation has a max-
imum value in the center of the Taylor–Proudman column; with the distance to the axis
of rotation, the angular velocity decreases to zero (at the boundary of the column), after
which it remains equal to or close to zero; i.e., outside the column, the liquid performs a
solid-state rotation together with the cuvette.
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Figure 5. Azimuthal fluid velocity field in a cross-section: (a)—in front of the body (h = 15.4 cm,
Lz = 11.5 cm), (b)—behind the body (h = 7.1 cm, Lz = 19.5 cm). The cavity rotates clockwise,
ν = 0.034 St, f = 15 rps (ω = 16,000).

Fluid velocity distribution in a vertical section in a plane (r, z), when the laser sheet cuts
the cavity in the axial section, is shown in Figure 6. Note that the body and the boundaries
of the cavity (proportions of the body diameter to the cavity diameter) in the figure are
distorted as a result of the refraction of light rays at the lateral cylindrical boundary of the
cavity. The diameter of the Taylor–Proudman columns is consistent with the diameter of
the spherical body. In the central part of the columns, in front of the ball and behind it,
an upward movement of the liquid is formed. The velocity of this motion is close to the
velocity of the longitudinal movement of the spherical body. Near the boundary of the
Taylor–Proudman columns, downward fluid flows are observed. Outside the columns,
there is practically no differential motion of the liquid (the liquid performs a solid motion
together with the cell), except for a thin layer near the column boundary, where a slight
upward movement is observed.
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Thus, the Taylor–Proudman columns in front of the body and behind it are almost
similar. They differ only in the direction of differential rotation.

The graphs of the dependence of the azimuthal velocity of the liquid v on the distance
to the axis of rotation r (Figure 7) show that the velocity of the liquid in the middle part of
the columns increases with the distance to the axis and reaches a maximum value, after
which it decreases and beyond the boundaries of the T-P column becomes equal to zero. To
the right of the graph there is a diagram explaining the position of the laser sheet and body
positions when measuring the radial distribution of azimuth velocity in the region behind
the receding body. In this case, the high-velocity camera is located below the rotating cavity.
The numbers 1, 2, and 3 show the body positions corresponding to the numbered curves in
the graph on the left.
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Figure 6. Fluid movement in a vertical axial section, ν = 0.034 St, f = 10 rps (ω = 10,600).

As can be seen from the graph, the intensity of the azimuth prograde movement of
the fluid in the rear column (light marks in Figure 7) decreases with the rise of the body
(with an increase in the length of the lower column).

A similar process is also observed in the upper column, where the intensity of the
retrograde rotation increases as the body moves up (dark marks); that is, with a decrease in
the length of the upper column. At the same time, the velocity distributions in sections of
the upper column with different heights at the same positions of the body are consistent;
that is, at high rotation velocities, the movement in the columns is almost two-dimensional,
that is geostrophic. It should be noted that in some experiments, the fluid motion in the
columns remains irregular during the entire process of the body ascent. This is primarily
observed in the lower column. The typical Reynolds number in this case is relatively small
Re ≡ vbd/2ν ∼ 10. It is important to note that the regime of fluid motion in the column
(laminar or perturbed) does not affect either the velocity of the longitudinal motion of the
body, or the velocity of its differential rotation.



Fluids 2023, 8, 49 9 of 15Fluids 2023, 8, x FOR PEER REVIEW 10 of 17 
 

  

Figure 7. Azimuthal (tangential) velocity of fluid differential motion depending on the distance to 
the axis of rotation in different sections of the cavity at different positions of the body in the cavity. 
Scheme for measuring the velocity field behind a moving body is to the right, 0.034 St , (

16,000 ). 

4. Discussion 
As a unit of the body velocity, we use the value that characterizes the velocity of a 

sphere in an infinite viscous fluid in the Stokes laminar flow regime, when the force ap-
plied to the body is balanced by viscous friction. Under the conditions of the experiment, 
when the Archimedes force acts on the body, such a unit 2 (1 ) /   Av d g  up to a nu-
merical coefficient (1/18) coincides with the velocity of a free ascent of the sphere. Here 

/  S L —relative body density. 
In this case, the dimensionless velocity of the body (control dimensionless parameter) 

takes the form 

 2 1








V bv

gd
.  

Thus, the selected parameter has a clear physical sense, which is the speed of the 
body ascent compared to no rotation. As another dimensionless parameter, we choose the 
dimensionless rotation velocity 2 /  rotd , which characterizes the ratio of the Coriolis 
force and the viscous force. In the literature, this parameter is often called the Taylor pa-
rameter, and its reciprocal 1/ E  is the Ekman number. 

As can be seen from Figure 8, all the experimental results obtained on liquids of dif-
ferent viscosities, with a variation in the rotation velocity over a wide range, are in good 
agreement with each other on the plane ( , V)  and can be approximated by a single law 

1.5615  V . The value of the Rossby number, 2 / ( ) b rotRo v d , corresponding to the ex-
perimental points in Figure 8, could be estimated according to the formula 

3

2

(1 )
2





 
V g d

Ro , in the experiments it varies in the range 2 410 10  Ro . With re-

gards to the Reynolds number, / 2 / 4  bRe v d Ro , in our experiments its value is rel-
atively small, 20Re . 

Figure 7. Azimuthal (tangential) velocity of fluid differential motion depending on the distance
to the axis of rotation in different sections of the cavity at different positions of the body in the
cavity. Scheme for measuring the velocity field behind a moving body is to the right, ν = 0.034 St,
(ω = 16,000).

4. Discussion

As a unit of the body velocity, we use the value that characterizes the velocity of
a sphere in an infinite viscous fluid in the Stokes laminar flow regime, when the force
applied to the body is balanced by viscous friction. Under the conditions of the experiment,
when the Archimedes force acts on the body, such a unit vA = d2(1 − ρ)g/ν up to a
numerical coefficient (1/18) coincides with the velocity of a free ascent of the sphere. Here
ρ ≡ ρS/ρL—relative body density.

In this case, the dimensionless velocity of the body (control dimensionless parameter)
takes the form

V =
vb · ν

gd2(1− ρ)

Thus, the selected parameter has a clear physical sense, which is the speed of the
body ascent compared to no rotation. As another dimensionless parameter, we choose
the dimensionless rotation velocity ω ≡ Ωrotd2/ν, which characterizes the ratio of the
Coriolis force and the viscous force. In the literature, this parameter is often called the
Taylor parameter, and its reciprocal E ≡ 1/ω is the Ekman number.

As can be seen from Figure 8, all the experimental results obtained on liquids of
different viscosities, with a variation in the rotation velocity over a wide range, are in
good agreement with each other on the plane (ω, V) and can be approximated by a single
law V = 15 ω−1.56. The value of the Rossby number, Ro ≡ 2vb/(Ωrotd), corresponding
to the experimental points in Figure 8, could be estimated according to the formula Ro ≡
2 V

ω
g (1−ρ) d3

ν2 , in the experiments it varies in the range Ro = 10−2 − 10−4. With regards to
the Reynolds number, Re ≡ vbd/2ν = Ro ω/4, in our experiments its value is relatively
small, Re < 20.

One can see a good agreement between our experimental data and the experimental
results of Maxworthy [6], represented by crosses in Figure 8. Maxworthy used a different
experimental technique and changed the Rossby number at a certain dimensionless rota-
tional speed. At low Rossby numbers, our results coincide completely, and the distance of
crosses from the theoretical curve in Figure 8 (growth of V at certain ω) is associated with
an increase in the Rossby number.
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Figure 8. Dependence of the dimensionless velocity of the body on the dimensionless rotation velocity.

The solid line in the figure shows the theoretical dependence (Moore and Saffman [3]),
which on the plane of the chosen parameters has the form V = 6.51ω−3/2. The theoretical
curve corresponds to the limiting case of low Rossby number, Ro << 1, and high rotational
velocity, ω >> 1, when the dominant role is played by the Coriolis force. As can be seen,
the experimental results are in good agreement with the theoretical curve, and at low Ro
tend to approach it with an increase in the dimensionless rotation velocity.

From Figure 3, it follows that the velocity of the body ascent slightly and decreases
near the ends of the cavity. At the same time, the dependences of the velocity on the
coordinate obtained in liquids of different viscosities at different rotation velocities in
Figure 3 have a similar form, although they differ significantly in magnitude. Let us use the
dimensionless velocity ṽb = vbω1.56ν/(15gd2(1− ρ)), where the unit of measurement is
the experimental mean velocity of the body (taking into account the dimensionless rotation
velocity). This allows one to compare the results of measurements with different values of
the dimensionless velocity of rotation (Figure 9). As can be seen, the velocity distributions
of the body along the length of the cavity at different values of the dimensionless rotation
velocity are in satisfactory agreement with each other. This means that in the entire studied
range of parameters, the longitudinal motion of the body obeys one law, and its intensity is
determined by a single dimensionless parameter—the dimensionless velocity of the cavity
rotation. At the same time, the velocity of the body remains almost constant along the
entire length of the cavity.
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Let us dwell on the angular velocity of the liquid differential rotation in the reference
frame of the cavity, Ωliq ≡ v/r, depending on the dimensionless distance to the axis of
rotation r/rb (here rb = d/2 is the sphere radius). In Figure 10, the experimental results
of Figure 7 are shown at the plane of these parameters. The points corresponding to very
small distances from the axis of rotation are omitted, due to the significant relative error in
measuring the distance to the axis. The dependences show that in the middle part of the
Taylor–Proudman column, the angular velocity of the liquid rotation practically does not
change; that is, the liquid rotates as a solid. This applies both to the frontal column (solid
marks) and to the rear one (light marks). The angular velocity of the fluid rotation decreases
with distance to the axis, and vanishes at a distance greater than the radius of the body by
20 percent, thereby showing the boundary of the Taylor–Proudman column. Note that the
value of the angular velocity of rotation in both columns in the same way depends on their
length; the shorter the columns, the higher the velocity of their rotation. The velocity of
the retrograde rotation of the upper column increases as the body approaches the upper
boundary, while the velocity of the prograde rotation of the lower column decreases.

Fluids 2023, 8, x FOR PEER REVIEW 13 of 17 
 

 
Figure 10. Angular velocity of differential rotation of a liquid depending on the dimensionless dis-
tance to the axis of rotation in various sections h  at different positions of the body relative to the 
ends, 16,000 . 

What about the differential rotation of a body moving in a rotating cavity of finite 
length, when the distance to the ends of the cavity varies? This behavior was observed 
when performing numerical and analytical calculations (Minkov et al. [19]) of the motion 
of a body in the form of a disk in a short cylindrical cavity. Despite the difference in the 
shape of the moving body (sphere and disk) and the relative length of the cavity (in our 
case / 9.4L d , and / 2L d  in (Minkov et al. [19])), we can conclude that the results 
are in good qualitative agreement; in the lower part of the cavity the body performs an 
advanced differential rotation, while in the upper part it lags behind. Let us dwell on the 
question of the nature of the body differential rotation. The rotation of the body is deter-
mined by the asymmetry of fluid motion in the frontal and rear Taylor–Proudman col-
umns. In the case of an infinitely long cavity with symmetrical conditions on the end 
boundaries, this asymmetry is absent, and the rotation of the body is also absent (Moore 
and Saffman [3]) and, conversely, if one end boundary is free and the other is solid, then 
this leads to the rotation of the sphere. The fact that there is no differential rotation of the 
body in our experiments when the body is in the middle of the cavity indicates that, in 
this case, the frontal and rearguard columns are identical and only rotate in opposite di-
rections. 

The analysis shows that all the results of the differential rotation of the body, ob-
tained in experiments with different fluids at different cavity rotation rates, are consistent 
with each other if we introduce a dimensionless complex 2/ /d dzb bd v . This complex 
characterizes the ratio of the tangential velocity of the equatorial point of a rotating body 

2/d dzb d  to the velocity of its ascent v , when the body is at a distance of twice its own 
diameter from the middle of the cavity (where there is no differential rotation of the body). 
Interestingly, in the region 3000 , the dependence obeys the law 

2 1/2/ / 0.02  d dzb bd v  (Figure 11). It should be noted that a similar dependence of the 
differential velocity of rotation of the body on the dimensionless rotation velocity 

1/2 b  is noted in (Ungarish and Vedensky [18]; Minkov et al. [19])), where the influence 
of the body position asymmetry was considered by using the quasi-geostrophic model. 

Figure 10. Angular velocity of differential rotation of a liquid depending on the dimensionless
distance to the axis of rotation in various sections h at different positions of the body relative to the
ends, ω = 16,000.

What about the differential rotation of a body moving in a rotating cavity of finite
length, when the distance to the ends of the cavity varies? This behavior was observed
when performing numerical and analytical calculations (Minkov et al. [19]) of the motion
of a body in the form of a disk in a short cylindrical cavity. Despite the difference in the
shape of the moving body (sphere and disk) and the relative length of the cavity (in our
case L/d = 9.4, and L/d = 2 in (Minkov et al. [19])), we can conclude that the results are in
good qualitative agreement; in the lower part of the cavity the body performs an advanced
differential rotation, while in the upper part it lags behind. Let us dwell on the question
of the nature of the body differential rotation. The rotation of the body is determined by
the asymmetry of fluid motion in the frontal and rear Taylor–Proudman columns. In the
case of an infinitely long cavity with symmetrical conditions on the end boundaries, this
asymmetry is absent, and the rotation of the body is also absent (Moore and Saffman [3])
and, conversely, if one end boundary is free and the other is solid, then this leads to the
rotation of the sphere. The fact that there is no differential rotation of the body in our
experiments when the body is in the middle of the cavity indicates that, in this case, the
frontal and rearguard columns are identical and only rotate in opposite directions.
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The analysis shows that all the results of the differential rotation of the body, obtained
in experiments with different fluids at different cavity rotation rates, are consistent with each
other if we introduce a dimensionless complex |dΩb/dz|d2/vb. This complex characterizes
the ratio of the tangential velocity of the equatorial point of a rotating body |dΩb/dz|d2 to
the velocity of its ascent v, when the body is at a distance of twice its own diameter from the
middle of the cavity (where there is no differential rotation of the body). Interestingly, in the
region ω > 3000, the dependence obeys the law |dΩb/dz|d2/vb = 0.02 ω1/2 (Figure 11). It
should be noted that a similar dependence of the differential velocity of rotation of the body
on the dimensionless rotation velocity Ωb ∼ ω1/2 is noted in (Ungarish and Vedensky [18];
Minkov et al. [19])), where the influence of the body position asymmetry was considered
by using the quasi-geostrophic model.
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The dependency change (Figure 11) in the area ω < 3000 may indicate a qualitative
change in the structure of the columns with a decrease in ω. The answer to the question of
what happens to the columns with a decrease in the rotation velocity follows from (Tanzosh
and Stone [9]). The paper shows that the column in front (behind) of a sphere moving along
the axis of rotation changes qualitatively with distance. The column can be divided into
regions (the Ekman layer, the geostrophic region, recirculating region, and the far zone)
whose length depends on the dimensionless frequency. As the dimensionless frequency
increases, the size of all zones, except for the Ekman layer, increase. For sufficiently
large dimensionless frequencies, the dimensionless height of the Ekman layer scales as
2.5 ω−1/2, the geostrophic region as (h− d/2)/d = 0.0015ω and the recirculating region
as (h− d/2)/d = 0.013ω. The relative length of the working cavity (Taylor–Proudman
column) in our experiments is L/d = 9.4. Interestingly, this length qualitatively agrees
with the boundary of the geostrophic region and the transition to a recirculation flow at
ω < 3000. This supports the assumption that the break in the dependence (Figure 11)
is associated with a change in the structure of the Taylor–Proudman columns, and the
transition from the geostrophic flow regime to the recirculation regime with a decrease in
the dimensionless rotation velocity.

The analysis shows that the differential rotation of a moving body is determined by the
asymmetry of the frontal and rear Taylor–Proudman columns, the intensity of rotation of
which decreases with their length. As a result of the fact that as the body rises, the length of
the lower column increases, the upper column decreases, and the velocity of the differential
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rotation of the body changes. When the body is near the bottom of the cavity, the lower
column which performs a prograde rotation plays a dominant role, as a result of which
the body also performs a prograde differential rotation. Near the upper boundary the
situation is reversed. With a decrease in the length of the upper column, which performs a
retrograde rotation, and an intensification of its rotation, the body also acquires a negative
differential rotation.

It should be noted that a body that performs the differential rotation in a rotating
cavity (regardless of the mechanism for its generation) generates the motion in the form
of a Taylor–Proudman column. Both halves of this column (on both sides of the body)
perform the same rotation in the direction of differential rotation of the body, in the limit
of large ω the rotation velocity of the column is half of the body rotation velocity. In the
case under consideration, the resulting motion of the fluid in the columns is determined
by the superposition of flows caused by the action of both mechanisms listed above: (a)
rotation of the front and rear columns in opposite directions, caused by the moving body;
(b) the rotation of both columns with the same velocity in the same direction, caused by the
body’s differential rotation. The estimates show that the second mechanism can slightly
enhance the observed phenomenon |dΩb/dz|.

5. Conclusions and Plans

Experimental studies have shown that in the studied range of parameters, the longitu-
dinal motion of the body is consistent with the theoretical calculations, and approaches
them with an increase in the dimensionless frequency. In the frame of a rotating cavity, a
body moving along the axis forms a two-dimensional Taylor–Proudman column, the diam-
eter of which is consistent with the diameter of the sphere. The frontal part of the column
performs a retrograde rotation, and the rear area a prograde one rotation. The intensity of
the azimuthal rotation of the liquid in the cross sections of the columns decreases with an
increase in their length.

It was shown that in a channel of finite length, the ascent velocity depends on the
distance to the ends; near the ends, at a distance comparable to the diameter of the sphere,
the velocity of the longitudinal motion of the body slightly decreases.

It is found that in a cavity of finite length (L/d = 9.4) simultaneously with the
movement along the axis, the free body performs a differential rotation relative to the cavity.
The velocity of the rotation depends on the longitudinal coordinate of the body and the
dimensionless velocity of cavity rotation. In the lower part of the cavity, the body performs
a prograde differential rotation, and in the upper part, a retrograde one. In the middle
(along the length of the cavity) there is no differential rotation of the body. It is shown
that the differential rotation of the body is determined by the asymmetry of the anterior
and posterior columns, which depends on the ratio of their lengths. It is shown that the
velocity of the body’s differential rotation, and the rate of its change with the longitudinal
coordinate, are determined by the dimensionless velocity of the body’s longitudinal motion
and the frequency of the cavity rotation.

It is found that with an increase in the velocity of the body, the Taylor–Proudman
column behind the body (that performs the prograde rotation) loses stability, and a system
of longitudinal rolls develops on its boundary. The characteristic velocity field in the
cross-section of the channel in the supercritical region is shown in Figure 12. To the best
of our knowledge, such instability of the Taylor–Proudman column, excited by the body
moving along the axis of the rotating cavity, has been observed for the first time. The found
phenomenon is an object of further experimental research.
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