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Abstract: The numerical solution of hyperbolic conservation laws requires algorithms with upwind
characteristics. Conventional methods such as the numerical difference method can realize this
characteristic by constructing special distributions of nodes. However, there are still no reports
on how to construct algorithms with upwind characteristics through wavelet theory. To solve this
problem, a system of high-order and stable wavelet collocation upwind schemes was successfully
proposed by constructing interpolation wavelets with specific symmetry and smoothness. The effects
of the characteristics of the scaling functions on the schemes were explored based on numerical
tests and Fourier analysis. The numerical results revealed that the stability of the constructed
scheme is affected by the smoothness order, N, and the asymmetry of the scaling function. The
dissipation analysis suggested that schemes with N ∈ even have negative dissipation coefficients,
leading to unstable behaviors. Only scaling functions with N ∈ odd and a bias magnitude of 1 can be
used to construct stable upwind schemes due to the non-negative dissipation coefficients. Typical
numerical examples verified the effectiveness of the proposed method, which is proved to have high
accuracy and efficiency in solving high-speed flow problems with multi-scale smooth structures
and discontinuities.

Keywords: stability; resolution; wavelet upwind scheme; hyperbolic conservation laws

1. Introduction

High-speed flows governed by hyperbolic conservation laws often contain steep
gradient regions or even discontinuities, such as shock waves and contact discontinuities.
Pirozzoli [1] pointed out that ideal numerical methods for such problems should be of
high accuracy and free from numerical dissipation in smooth regions of the flows, and
they should capture steep gradient regions and discontinuities robustly without significant
spurious oscillations. The numerical methods for the high-speed flows can be classified
into two classes, one dealing with smooth flows and the other with shock waves. The
central finite difference schemes with null dissipation error and spectral-like resolution are
the ideal candidates for computations in smooth regions [2]. However, it is well known that
the central discretization for the smooth flows will induce severe spurious oscillations and
lead to numerical instability in the presence of the discontinuities, where extra techniques
are required to distinguish the shocks [1]. Although artificial viscosity added near the
discontinuities may help to suppress oscillations and stabilize calculations, it is quite
difficult to introduce the corresponding appropriate numerical viscosity to suppress these
oscillations successfully [3]. Hence, a preferable choice is to design schemes that can achieve
stable solutions in the inviscid limit.

The upwind methods based on the philosophy that a stable numerical method should
propagate the information along the directions of characteristic waves have been proven as
a good choice [4,5]. The upwind schemes can introduce the appropriate implicit numerical
viscosity to ensure the stability for solving hyperbolic conservation laws [6]. High-order
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upwind schemes have been widely investigated on numerical simulations of high-speed
flows during the last decades, owing to their capability in obtaining satisfactory resolu-
tion and high-order accuracy [7]. Typical examples of these schemes include essentially
non-oscillatory (ENO) schemes [8], weighted ENO (WENO) schemes [9], multi-moment
constrained finite volume (MCV) methods [10], discontinuous Galerkin (DG) schemes [11],
and streamline-upwind/Petrov–Galerkin (SUPG) schemes [12], etc.

Multiresolution analysis in wavelet theory provides an effective approach to capture
localized structures of functions in both physical and frequency domains, which is suitable
for simulations of the high-speed flows. Many wavelet-based numerical methods have
been developed in computational fluid dynamics [13], which can be categorized into two
types. The first one only embeds the wavelet multiresolution analysis into the traditional
high-order schemes. The remainder is called a pure wavelet numerical method, which uses
the wavelets as a set of bases to discretize partial differential equations (PDEs). Vasilyev
and the co-authors have conducted much pioneering work in wavelet-based numerical
methods for computational fluid dynamics, which have been used successfully in solving
the Burgers Equation with viscosity [14], laminar flame–vortex interaction [15], homoge-
neous turbulence problems [16] and supersonic channel flow [17]. Chaurasiya et al. [18]
applied the finite element Legendre wavelet Galerkin method to solve the initial value
problem describing the inward melting process of a phase change material in the presence
of convection successfully. The Legendre wavelet residual approach with high accuracy
has been utilized to resolve the uni-dimensional moving boundary problem with the con-
duction and convection effect; the Galerkin and collocation techniques were applied for
problems with constant and variable thermal physical properties, respectively [19]. Engels
et al. [20] developed a wavelet-based adaptive method for solving 3D multiscale flows in
complex, time-dependent geometries, and pointed out that the method can be used for
other flow problems.

However, comparatively few research works are dedicated to hyperbolic PDEs. Wavelet
methods coupled with the DG schemes [21], the finite difference WENO [22], and the FDM
with artificial viscosity [6] are devised for the hyperbolic PDEs. These methods use the
wavelets to detect the localized steep structures and implement the adaptive or recon-
struction process, but omit the merit of adaptive wavelet approximation on arbitrary finite
domains. In the pure wavelet method framework, Restrepo and Leaf [23] applied the
classic wavelet Galerkin schemes with uniform nodes to solve hyperbolic equations, and
concluded that spurious oscillations would spread further away from the shock, leading to
numerical instability, which was also encountered in other classic Galerkin schemes [24].
Recently, a dynamical wavelet Galerkin scheme was proposed by Pereira et al. [25] that over-
comes the above drawback successfully based on the energy dissipation introduced by a
non-smooth projection operator. The collocation methods are more efficient compared with
the wavelet Galerkin ones. Although adaptive wavelet collocation methods are developed
for solving parabolic problems successfully based on symmetrical interpolation wavelet
basis [14,26,27], no attempts have been carried out to use the wavelet collocation method
to construct the upwind schemes for the hyperbolic problems. The effects of the scaling
function characteristics on the wavelet schemes have also been unexposed until now.

Motivated by the idea of the upwind schemes, we have considered building asymmet-
rical interpolation wavelets to achieve the upwind property, and have proposed high-order
wavelet collocation upwind schemes based on the asymmetrical interpolation wavelets
and corresponding function approximation theory in our recent work [28]. The numerical
results show that the orders of accuracy of the wavelet schemes agree with the expected
ones. Unfortunately, this only provides information on the asymptotic convergence rate to
the exact solution, and nothing is known about the stability and resolution of the schemes.
Dissipation and dispersion analysis can reveal more details of the schemes. Taylor expan-
sion analysis [29] and Fourier analysis [30] are the two main methods in evaluating the
dissipation and dispersion properties of numerical schemes. For the former, Taylor expan-
sion of the equation is conducted to obtain the modified equation, which represents the
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actual partial differential equation solved by the numerical schemes, and a truncated ver-
sion of the modified equation is applied to gain both dissipative and dispersive errors [29].
The Fourier analysis method is founded on the basis of the Fourier series and its derivative
operator to examine the dissipative and dispersive properties of the equation, which can be
implemented more conveniently and applied in more situations [30]. In addition, a numeri-
cal analysis method is proposed by Pirozzoli [31] to evaluate dissipation and dispersion
performance for the nonlinear high-order schemes for hyperbolic conservation laws.

The goal of the present paper is to explore the effects of characteristics of the scaling
functions on wavelet collocation upwind schemes by conducting numerical tests and
the Fourier analysis on several wavelet upwind schemes. We obtain the dissipation and
dispersion properties, and analyze the stability and resolution properties of these schemes.
Then, we provide a fundamental rule to construct stable, high-order and high-resolution
schemes and verify the rule by conducting two typical numerical tests.

The remainder of the paper is organized as follows. In Section 2, we briefly introduce
the wavelet approximation theory and wavelet collocation upwind schemes for uniform
node distribution, and define parameters to describe the asymmetry of a scaling function.
Numerical experiments for the linear scalar equation and Fourier analysis on the schemes
are carried out in Section 3. Finally, the main conclusion is summarized in Section 4.

2. Wavelet Collocation Upwind Schemes

In the present work, we consider one-dimensional scalar conservation laws to analyze
the stability of the wavelet collocation upwind schemes:

ut + f (u)x = 0 (1)

2.1. Wavelet Approximation Theory
2.1.1. Preliminaries

The Hilbert space L2(Ω) is defined as the collection of square integrable functions
that satisfy

∫
Ω| f (x)|2dx < ∞, where Ω is any open subset of R [32]. The space is equipped

with the inner product:

( f , g) :=
∫

Ω
f (x)g(x) dx < ∞ for all f , g ∈ L2(Ω). (2)

The corresponding L2(Ω)-norm is defined by

‖ f ‖L2(Ω) =

(∫
Ω
| f (x)|

2
dx
)1/2

for all f ∈ L2(Ω). (3)

The definition of L∞(Ω)-norm is expressed as

‖ f ‖L∞(Ω) = sup
x∈Ω

{ f (x)}. (4)

For any integer m ≥ 1, a space of all functions which are m times continuously
differentiable over Ω is denoted by Cm(Ω).

2.1.2. Approximation of Functions on a Finite Domain

For general practical problems, Ω is a finite domain. We apply the boundary extension
technique in our previous study based on the Lagrange interpolation to remove local errors
induced by a loss of information outside the domain [33,34]. For all functions in L2(Ω), the
modified wavelet approximation at the resolution level J can be written as

PJ f (x) = ∑
k∈RJ

f (xk)ΦJ,k(x), (5)
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in which the modified wavelet basis is given by

ΦJ,k(x) = ϕJ,k(x) + ∑
n∈Ξk

Πn
k (xn)ϕJ,n(x) = ∑

n∈Ξk

Πn
k (xn)ϕJ,n(x), (6)

Πn
k (xn) =

η

∏
i = 1
i 6= n

xn − x̃i
x̃k − x̃i

, (7)

where Ξk is the set of serial number n denoting the external point xn such that f (xn) is
exactly all the Lagrange interpolations; xk = k/2J is the coordinate of the node located
inside the domain Ω; ϕJ,k(x) = ϕ(2J x− k). In Equation (7) the set {x̃i, i = 1, 2, . . . , η} is the
collection of selected Lagrange interpolation nodes inside the Ω for the external point xn and
Ξk = Ξk ∪ {k} with the coefficient Πk

k(xk) ≡ 1. Next, we give two wavelet approximation
theorems without proof, which can be proved by using approaches presented in the
references [33,35].

Theorem 1. For all f ∈L2(Ω)∩Cm(Ω), suppose that m is large enough and let η = min
{

ηk, k ∈ Ξk
}

;
approximation errors in L2-norm and L∞-norm can be estimated by

‖PJ f − f ‖L2(Ω) ≤ C1,L2−Jλ (8)

‖PJ f − f ‖L∞(Ω) ≤ C1,∞2−Jλ (9)

where λ = min {N, η}. Constants C1,L and C1,∞ are dependent on the regularity of the derivatives
f (n)(x) but independent of the resolution level J [33].

Theorem 2. For all f ∈L2(Ω)∩Cm(Ω), suppose that m is large enough and let η = min
{

ηk, k ∈ Ξk
}

;
approximation errors of the first order derivative in L2-norm and L∞-norm can be estimated by

‖
dPJ f
dx
− d f

dx
‖

L2(Ω)
≤ C2,L2−J(λ−1), (10)

‖
dPJ f
dx
− d f

dx
‖

L∞(Ω)
≤ C2,∞2−J(λ−1), (11)

where λ = min {N, η}. Constants C2, L and C2, ∞ are dependent on the regularity of the derivatives
f (n)(x) but independent of the resolution level J [33].

2.2. Wavelet Collocation Upwind Schemes

Inspired by the concept of the upwind schemes, we have proposed pure adaptive
wavelet collocation upwind schemes to resolve hyperbolic conservation laws in our re-
cent research, which have been used in solving 1D hyperbolic conservation laws success-
fully [28]. The upwind property is achieved by building a couple of asymmetrical wavelets.
We can calculate the derivative based on the wavelet approximation:

u′(xJ,l) = ∑
k∈RJ

uJ,kΦ′ J,k(xJ,l). (12)

Owing to the interpolation property of the scaling functions, we can discretize nonlin-
ear terms in the conservative equations directly [36]:

f (u(x)) = ∑
k∈RJ

f
(
uJ,k
)
ΦJ,k(x), (13)
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where f satisfies a uniform Lipschitz condition of order α with respect to u, α ≥ 1. We
observe that decomposition coefficients of f (u) can be evaluated by computing value of
f
(
uJ,k
)

in a very high efficiency.
To concentrate on the stability and resolution analysis of the wavelet schemes, only

the linear scalar equation with a periodic boundary condition and f ′(u) ≥ 0 is consid-
ered. We conduct spatial discretization at the resolution level J by the wavelet collocation
upwind schemes in the uniform node distribution framework. The foundation of the
wavelet collocation method is the wavelet approximation of the functions in L2(Ω). The
hyperbolic partial differential Equation (1) can be approximated spatially using the wavelet
approximation, resulting in the corresponding ordinary differential equation expressed
as follows:

d

(
∑

k∈RJ

uJ(xk, t)ΦJ,k,+(x)

)
dt

+ ∑
k∈RJ

f
(
uJ(xk, t)

)
Φ′ J,k,+(x) = ET , k ∈ Ω, (14)

where ΦJ,k,+(x) denotes the scaling function of the positive upwind wavelet; ET is the
truncation error. The collocation approach can be viewed as a weighted residual method
that uses the Kronecker delta function δJ,l (x) = δ(2Jx − l) as the weighted function. The
collocation discretization is realized by letting the projection of the ET on a space spanned
by the basis {δJ,l (x)} equal to zero. Then, the following weighted form can be obtained:

d

(
∑

k∈RJ

uJ(xk, t)
∫

Ω ΦJ,k,+(x)δJ,l(x)dx

)
dt

+ ∑
k∈RJ

f
(
uJ(xk, t)

)∫
Ω

Φ′ J,k,+(x)δJ,l(x)dx = 0, k, l ∈ Ω. (15)

Reducing Equation (15) based on the interpolation property of the scaling function,
we can achieve the following semi-discretized system:

duJ(xl , t)
dt

+ ∑
k∈RJ

f
(
uJ(xk, t)

)
Φ′ J,k,+(xl) = 0, k, l ∈ Ω. (16)

Finally, we can solve the above ordinary partial equations by the classic explicit
fourth-order Runge–Kutta method for time integration.

2.3. Asymmetrical Wavelets

The detailed procedures of constructing the asymmetrical wavelets can be found
in Appendix A. We establish a number of asymmetrical wavelets from N = 3 to N = 10
to examine the stability and resolution of these wavelet schemes. Here, N describes the
regularity of the scaling function and means that the corresponding scaling function can
reproduce polynomials up to the degree (N − 1).

For convenience of discussion, we define two parameters to depict asymmetrical
properties. We take scaling functions with N = 6 and N = 7 as examples. The stencils for the
scaling functions are shown in Figure 1. The bias magnitude of the stencil is defined by the
difference between the number of nodes on the left side of xJ+1,l and that on the right side
of xJ+1,l as denoted by the BM. To evaluate the symmetry of the scaling functions, we also
use symmetry factor (SF) to evaluate the symmetry of the scaling functions, which can be
calculated by

SF =
IL
IR

, (17)

where IL is the length of the support interval on the left side of the zero point, and IR is the
length of the support interval on the right side of the zero point. The scaling function is
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exactly symmetrical when SF = 1. We can provide an explicit formula to compute the SF
base on the BM as follows:

SF =
N − (BM + 1)
N + (BM− 1)

. (18)
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It can be observed from Equation (18) that the SF approaches to 1 as N tends to infinity,
which reveals that the symmetry of the scaling function is improved as N increases. For
a specified N, the SF decreases with an increment in BM. The BM and SF of the scaling
functions used in the present paper for analyzing the stability and resolution of the wavelet
upwind schemes are listed in Table 1. We note that the BM has the same parity with the
N. The SF with the Nodd is greater than that with the Neven when the BModd and Nodd are
both smaller than the BMeven and Neven by one, respectively. Here, the subscript represents
the parity of the N. Some scaling functions are shown in Figure 2 as examples.

Table 1. BM and SF for the scaling functions.

N 3 4 5 6 7 7 8 9 9 10

BM 1 2 1 2 1 3 2 1 3 2
SF 0.33 0.20 0.60 0.43 0.71 0.33 0.56 0.78 0.45 0.64
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3. Stability and Resolution Analysis of Wavelet Upwind Schemes

In this section, we conduct two benchmark tests by applying different schemes from
N = 3 to N = 10. Two kinds of norms are defined to evaluate numerical errors, as follows:

‖e‖l∞ = max
k
{ |ue

k − un
k | }, (19)
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‖e‖l2 =

(
∑
k

∣∣ue
k − un

k
∣∣2∆x

) 1
2

, (20)

where ue
k is the exact solution and un

k is the numerical one.
Numerical examples are performed to the following one-dimensional linear scalar

equation:
ut + aux = 0, x ∈ [−1, 1], (21)

where a = 1.

3.1. Advection of a Sine Wave

At first, we verify orders of accuracy and explore the stability of the proposed schemes
by refinement tests. A sine wave as the initial condition is presented as follows:

u(x, 0) = sin(πx) periodic. (22)

The periodic boundary condition is addressed based on the extension method for
periodic functions proposed in our previous work [37].

The numerical errors are calculated at t = 2. BModd = 1 and BMeven = 2 are taken for
the different schemes. The time steps are set small enough to remove the influence of time
integration. The numerical errors and orders of accuracy for all schemes are shown in
Table 2. It should be noted that errors which are smaller than 5.0× 10−13 are removed from
the table since they approach the machine precision of the double type. Theorem 2 shows
that the theoretical order of accuracy of the scheme is (N – 1) order. It can be seen that the
orders of accuracy are consistent with the expected ones for the schemes where N is smaller
than 8. Higher order schemes give the expected orders of accuracy when the number of
nodes is small. The N = 4 scheme is unstable even for this smooth wave evolution in our
tests. Therefore, the result is absent from Table 2.

Table 2. Numerical results for the sine wave advection.

Method N1 l∞ Error l∞ Order l2 Error l2 Order

N = 3
(2nd order)

32 8.00 × 10−2 — 8.24 × 10−2 —
64 2.02 × 10−2 1.99 2.05 × 10−2 2.01

128 5.05 × 10−3 2.00 5.08 × 10−3 2.01
256 1.26 × 10−3 2.00 1.27 × 10−3 2.01
512 3.15 × 10−4 2.00 3.16 × 10−4 2.00

N = 5
(4th order)

32 1.84 × 10−4 — 1.90 × 10−4 —
64 1.15 × 10−5 4.01 1.16 × 10−5 4.03

128 7.15 × 10−7 4.00 7.21 × 10−7 4.01
256 4.47 × 10−8 4.00 4.49 × 10−8 4.01
512 2.79 × 10−9 4.00 2.80 × 10−9 4.00

N = 6
(5th order)

32 3.78 × 10−5 — 3.80 × 10−5 —
64 1.18 × 10−6 4.99 1.19 × 10−6 5.00

128 3.71 × 10−8 5.00 3.71 × 10−8 5.00
256 1.16 × 10−9 5.00 1.16 × 10−9 5.00
512 3.64 × 10−11 4.99 3.64 × 10−11 4.99

N = 7
(6th order)

32 1.02 × 10−6 — 1.04 × 10−6 —
64 1.46 × 10−8 6.12 1.48 × 10−8 6.14

128 1.71 × 10−10 6.42 1.73 × 10−10 6.42
256 8.70 × 10−13 7.61 8.75 × 10−13 7.62

N = 8
(7th order)

32 2.12 × 10−7 — 2.13 × 10−7 —
64 1.64 × 10−9 7.01 1.64 × 10−9 7.02

128 1.33 × 10−11 6.95 1.33 × 10−11 6.95
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Table 2. Cont.

Method N1 l∞ Error l∞ Order l2 Error l2 Order

N = 9
(8th order)

32 7.18 × 10−9 — 7.38 × 10−9 —
64 2.27 × 10−11 8.31 2.30 × 10−11 8.33

N = 10
(9th order)

32 1.45 × 10−9 — 1.46 × 10−9 —
64 2.77 × 10−12 9.03 2.77 × 10−12 9.04

To explore the effects of the asymmetry of the scaling function on stability, we also
compute the numerical results by, respectively, using the wavelet schemes with N = 7,
N = 9, and different BM values, as shown in Table 3. It can be observed that the scheme
with N = 7 and BM = 3 is unstable because the error increases significantly as J goes up to 8.
We conclude that the scheme with the same N will be unstable when the asymmetry of the
scaling function increases.

Table 3. Numerical errors and order of accuracy for one-dimensional linear scalar equation.

Method N1 l∞ Error l∞ Order l2 Error l2 Order

N = 7 BM = 1
(6th order)

32 1.02 × 10−6 — 1.04 × 10−6 —
64 1.46 × 10−8 6.12 1.48 × 10−8 6.14

128 1.71 × 10−10 6.42 1.73 × 10−10 6.42
256 8.70 × 10−13 7.61 8.75 × 10−13 7.62

N = 7 BM = 3
(6th order)

32 6.94 × 10−6 — 7.13 × 10−6 —
64 1.10 × 10−7 5.98 1.12 × 10−7 6.00

128 1.78 × 10−9 5.95 1.79 × 10−9 5.96
256 4.20 × 10−11 5.40 3.41 × 10−11 5.72
512 2.01 × 10−6 −15.54 1.33 × 10−6 −15.25

N = 9 BM = 1
(8th order)

32 7.18 × 10−9 — 7.38 × 10−9 —
64 2.27 × 10−11 8.31 2.30 × 10−11 8.33

N = 9 BM = 3
(8th order)

32 3.79 × 10−8 — 3.89 × 10−8 —
64 1.53 × 10−10 7.95 1.56 × 10−10 7.97

128 8.73 × 10−13 7.46 8.79 × 10−13 7.47

3.2. Advection of a Square Wave

To validate the stability of the schemes to solve a jump discontinuity problem, we
conduct the advection of a square wave, which has the following initial distribution:

u(x, 0) =
{

1 − 0.4 ≤ x ≤ 0.4,
0 otherwise,

periodic. (23)

The Fourier series of the square wave is the infinite superposition of sine and cosine
waves, and contains all frequency components. Numerical results at t = 8 obtained by
different wavelet schemes at the resolution level J = 8 are illustrated in Figure 3. It can be
seen that spurious oscillations pollute numerical solutions near the jump discontinuities
for almost all schemes. Figure 3b shows that the oscillations obtained by the scheme with
N = 6 are gradually amplified in the positive direction, which indicates that the scheme
is unstable for discontinuity problems. For all the schemes with a specified parity of N,
the length of the oscillation interval decreases with an increment in N. We continue to
compute the results at t = 32, as shown in Figure 4. The results for the scheme with N = 6 are
divergent for long-term time integration, which is not depicted in the figure. Although this
scheme is stable for the single sine wave advection, it behaves unstably for that of the waves
with multiple or infinite frequencies. It can be observed that the schemes with N ∈ odd
confine spurious oscillations to the thinner region, and the amplitude of the oscillations
attenuates rapidly. In addition, N = 7, BM = 3 and N = 9, BM = 3 schemes are unstable for
the current problem.
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3.3. Dissipation and Dispersion Analysis

Although we can devise wavelet upwind schemes based on our proposed method,
the above numerical tests suggest that some of the wavelet schemes are unstable even for
the linear scalar advection problems. Therefore, it is crucial to investigate the dissipation
and dispersion properties and provide an instruction to choose “good” wavelets for stable
wavelet upwind schemes.

We examine the dissipation and dispersion properties of the schemes based on the
Fourier analysis method [2,30]. Suppose that u(xl) = eikxl , then we can obtain the numeri-
cal derivative:

δxul =
k̃

∆x
eikxl , (24)

where k̃ is the corrected wavenumber, which is a complex variable, and ∆x = 1/2J . There-
fore, k̃ can be rewritten as k̃ = kr + iki. The exact derivative is given by

d
dx

ul = ikeikxl . (25)
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Comparing the above relation, we can find that kr = 0 and ki = k∆x for ideal numer-
ical schemes. When conducting Fourier analysis on Equation (21), we can calculate the
following numerical solution:

u(xl , t) = e−krat/∆xeik(xl−atki/(k∆x)), (26)

where kr is the dissipation coefficient and ki is the dispersion coefficient. The exact solution
for Equation (21) can be computed by

u(xl , t) = eik(xl−at) (27)

Then, we can give the physical meaning of kr and ki. kr depicts the attenuation of
the wave amplitude at t induced by the numerical error, and ki describes the change in
propagation speed of the wave caused by the numerical method. It can be noted that the
wave amplitude will be amplified over time if kr is a negative value. The corresponding
scheme shows the instability when solving the advection problems. Therefore, kr for
stable numerical schemes should be non-negative. Here, k∆x is defined as an effective
wavenumber and denoted by α. When ki/α > 1, the numerical wave will run faster than
the exact one. Additionally, the numerical wave will fall behind the exact wave for ki/α < 1.
We remark that only the spectral method has the ideal dispersion property, which means
that ki/α = 1.

We compute the dissipation coefficient of the different wavelet schemes as shown in
Figure 5. For a specified parity of N, it can be seen that kr decreases with an increase of
N. The kr of the scheme with N ∈ odd is smaller than that with N ∈ even, indicating that
the wavelet upwind schemes with N ∈ odd show better dissipation property. To seek the
reason for the instability of several schemes, we analyze the kr for all the above schemes.
We find that the negative kr exists for schemes with N ∈ even. To clarify this fact, the locally
enlarged version of Figure 5b is illustrated in Figure 6. It can be observed that kr are all
negative when α < 0.8. This suggests that the schemes with N ∈ even will show a negative
diffusion phenomenon when J is large enough, and the error will be amplified over time.
This actually induces the instability of the wavelet schemes. We also find that the local
extreme value approaches to 0 as N increases for N ∈ even, which means that the negative
diffusion process is weakened and the stability of the schemes is improved. This explains
how the numerical tests for the schemes with N ∈ even in Sections 3.1 and 3.2 are still stable.
However, for longer time integration and some α near the local extreme value, the results
might be divergent. In addition, the reason that the scheme with N = 4, BM = 2 is unstable
for the sine wave evolution can also be uncovered based on the dissipation analysis. It can
be observed that the scheme with N = 4, BM = 2 has the largest negative dissipation zone
of the effective wavenumber α among all the candidates of the wavelet schemes caused by
the severest asymmetry, leading to the instability for solving the smooth wave evolution
even with far fewer nodes.

Based on the above analysis, we can conclude that only N ∈ odd schemes provide the
correct implicit viscosity for solving the hyperbolic conservation laws. However, numerical
tests in Section 3.1 show that the scheme with N = 7 and BM = 3 is still unstable. As has
been discussed, the asymmetry of the scaling function is another factor influencing the
stability of the wavelet schemes. We further evaluate the dissipation coefficients of the
schemes with N = 7, BM = 3 and N = 9, BM = 3 as shown in Figure 7. It can be found that kr
is negative when α is smaller than the specified value. Therefore, the schemes with BM = 3
are unstable. Now, we can achieve a basic instruction that N ∈ odd, BM = 1 schemes have
non-negative dissipation coefficients and are stable for hyperbolic conservation laws.
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Then, we will explore the dispersion property related to the resolution of the schemes.
For a specified wavelet scheme, an effective node number is defined by the point per
wavelength, abbreviated as PPW, which can be computed by the following relation:

PPW =
λ

∆x
=

2π

k∆x
=

2π

α
. (28)

The spectral method has the optimal resolution corresponding to α = π and PPW = 2.
It can be seen from Equation (28) that PPW is inversely proportional to α. The length of
the interval α that ki / α is approximately equal to 1 depicts the ability of the scheme to
trace the wave accurately. We choose the interval of α that satisfies |1− ki/α| < 5% and
|1− ki/α| < 2% to measure the maximum α, which reflects the resolution of the schemes
directly. The dispersion coefficients against α are plotted in Figure 8. It can be observed
that N < 5 schemes have a large dispersion error and a low resolution. The maximum α
where ki/α meets the tolerance relation increases with an increment in N for the specified
parity. To clarify the resolution more clearly, we list the maximum α in the tolerance range
in Table 4. It can be seen that the maximum α gradually tends to π as N increases, and
the schemes with N ∈ even behave better in resolution when N > 6. On the basis of the
above analysis, we can find that the wavelets are more applicable to design the high-order
schemes, and the scheme with larger N has the higher accuracy and better resolution.
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Table 4. The maximum α for the different schemes.

N |1−ki/α|< 5% |1−ki/α|< 2% N |1−ki/α|< 5% |1−ki/α|< 2%

3 0.397 0.247 4 0.639 0.500
5 1.689 1.532 6 1.249 1.012
7 1.742 1.547 8 2.190 1.423
9 1.847 1.652 10 2.165 2.058

Next, we conduct a numerical test with a smooth initial distribution to verify the
theoretical analysis of the dissipation and dispersion performance. The test is the advection
of a sine wave described in Section 3.1 with u (x, 0) = sin (5πx) as the initial condition.
The PPW is approximately equal to 6 at the resolution level J = 4. The numerical results
obtained by the schemes with N ∈ odd and BM = 1 at t = 2 are shown in Figure 9. It can be
seen that the higher order schemes show themselves to be less dissipative, approach the
exact solution more accurately and reveal a higher resolution for the wave. Therefore, the
numerical results are in accordance with the stability and resolution analysis.
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Finally, a numerical test of the advection of a multi-scale function is devised to show
the capability of the wavelet schemes in recognizing smooth and discontinuous solutions
in the high-speed flows. The initial condition consists of step functions, saw-tooth function
and sine waves in different frequencies, which is shown as:

u(x, 0) =



0.5 −0.8 ≤ x ≤ −0.6,
−1.25x + 0.25 −0.6 ≤ x ≤ −0.2,
0.5 −0.2 ≤ x ≤ −0.1,
0.5(1 + sin(40πx)) −0.1 ≤ x ≤ 0.1,
0.5 0.1 ≤ x ≤ 0.2,
0.5 + 0.2 sin(5π(x− 0.2)) 0.2 ≤ x ≤ 0.6,
0.5 0.6 ≤ x ≤ 0.8,
0 otherwise

(29)

For this numerical test, we apply the adaptive wavelet upwind schemes proposed
in our previous study [28]. The main idea of adaptive node generation is to recognize
trouble nodes based on the wavelet coefficients that are larger than a threshold parameter
ε = 10−5, and insert nodes in the adjacent zones near the trouble nodes. Moreover, an
integration reconstruction method is designed based on the Lebesgue differentiation theo-
rem to suppress the spurious oscillations. We choose the basic resolution level J0 = 6, the
maximum resolution level Jmax = 12, and the same adaptive and reconstruction parameters
for different schemes. The numerical results obtained by the adaptive wavelet schemes
with N ∈ odd and BM = 1 at t = 2 are compared with that of the classic fifth-order finite
difference WENO scheme (WENO-5) proposed by Jiang and Shu [38], as illustrated in
Figure 10. It can be found that the higher order wavelet schemes can capture the disconti-
nuities without spurious oscillations and distinguish different scale structures accurately
with fewer nodes, which also verifies the better resolution of the higher order schemes. For
the WENO-5 scheme, a uniform node distribution with N1 = 2048 is required to depict all
the details of the solution. The nodes required in the adaptive wavelet upwind schemes are
about half of the WENO-5 scheme, showing that the adaptive wavelet schemes with the
integration reconstruction can capture discontinuities free from the numerical oscillations
and distinguish complex solutions efficiently.
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4. Conclusions

In the present paper, we constructed a system of wavelet collocation upwind schemes
and conducted linear advection tests and Fourier analysis to uncover the effects of the
characteristics of scaling functions on the stability and resolution of the constructed schemes.
The convergence rates of the schemes were consistent with our expectations. The dissipation
analysis suggested that one can apply scaling functions of the wavelets with N ∈ odd,
BM = 1 to construct the high-order and stable upwind schemes for hyperbolic conservation
laws. The higher order scheme had a better resolution, which tended to the spectral
resolution as N increased. Two typical numerical tests verified that the constructed wavelet
collocation upwind schemes had the desired properties and can be used to solve high-speed
flows with multi-scale smooth structures and discontinuities in an efficient way.
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Appendix A

The auto correlation of Daubechies scaling functions [33,39] and the interpolation
method [40] are the main techniques to devise scaling functions of interpolation wavelets.
The interpolation method provides more freedom to construct symmetric and asymmetric
scaling functions. Therefore, we apply the interpolation method to devise the scaling func-
tions of the interpolation wavelets. The procedure of building positive upwind wavelets is
elaborated as follows:

First, we choose the smoothness parameter N. For an asymmetrical wavelet, N ∈ even
or N ∈ odd is optional.

Second, we select the BM and the node stencil. Specify N nodes uniformly distributed
in VJ as the base and locate one node in WJ. The BM has the same parity with N. Several
candidates are allowed for the positive upwind wavelets with BM > 0.

Third, we approximate ϕJ,k
(
xJ+1,l

)
by the (N − 1)th order Lagrange interpolation

polynomial and calculate the filter coefficients. The following relation is derived:

ϕJ,k
(
xJ,k1

)
= δk,k1 ,

ϕJ,k
(
xJ+1,l

)
=

kR
∑

k1=kL
ϕJ,k
(
xJ,k1

)
LJ,k1(xJ+1,l),

(A1)

where xJ,k1 = k1/2J and xJ+1,l = l/2J+1. On the basis of the refinement relation,

ϕJ,k
(
xJ+1,l

)
= ∑

l1

hl1 ϕJ+1,l1
(
xJ+1,l

)
. (A2)

Substituting (A2) into (A1), hl = δ0,l can be easily calculated when l ∈ even. For l ∈ odd,
hl can be computed by

hl = LJ,k(xJ+1,l) =
kR

∏
i = kL
i 6= k

xJ+1,l − xJ,i

xJ,k − xJ,i
. (A3)

To compute the coefficients more efficiently, supposing that J = 0 and k = 0 can obtain

hl =
kR

∏
i = kL
i 6= 0

l/2− i
−i

. (A4)

Finally, we calculate the derivatives and integrals of the scaling function by algorithms
proposed by Wang [41] and Chen et al. [42]. Applying the refinement relation and the
cascade algorithm, the values of the scaling function, its derivatives and integrals at dyadic
points at arbitrary refined resolution levels can be obtained.

The filter coefficients of the negative upwind wavelets are of mirror symmetry with
those of the corresponding positive upwind wavelets. Following the above steps, a de-
sirable scaling function can be built. For the interpolation method, the Kronecker delta
function is chosen as the dual scaling function [40]:

ϕ̃J,k = δ
(
x− xJ,k

)
. (A5)

Finally, the idea proposed by Donoho [39], which constructs a wavelet function from
the scaling function, is followed:

ψ(x) = ϕ(2x− 1),
ψJ,k(x) = ϕ

(
2J+1x− (2k + 1)

)
.

(A6)
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