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Abstract: The dynamics of coalescence of small Lennard–Jones droplets as a function of droplet
size and temperature is explored with molecular simulations. Droplet sizes vary from several
hundred to several thousand molecules, and three different temperatures are explored. As the
droplets establish contact, a liquid-like bridge between them forms and grows, ultimately leading
to a complete coalescence. The dynamics of the bridge growth are consistent with the “collective
molecular jumps” mechanism reported in the literature rather than with the continuous interpretation
of the coalescence process in terms of capillary and viscous forces. The effective coalescence time
shows a linear growth with the droplet sizes. The influence of the larger droplet size is weaker but
non-negligible. Surprisingly, practically no dependence of the coalescence time on the temperature is
observed. Comparison of the coalescence times with the droplet lifespan in a suspension shows that
for reasonably dense suspensions and small droplet sizes, the coalescence time becomes significant
and should be accounted for in the theoretical models of aggregation.
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1. Introduction

Droplet collision is an integral part of many natural and industrial processes, such
as cloud formation [1,2], suspension aggregation [3,4], inkjet printing [5,6], etc. The major
mechanisms of droplet aggregation in vapor are (1) classical Ostwald ripening that occurs
via evaporation of fluid from smaller droplets and condensation at the surfaces of larger
droplets (because the equilibrium pressure over small droplets is higher); this process
is described by the Lifshitz–Slyozov theory [7] and its various modifications [8]; (2) the
coalescence of droplets upon a physical contact induced by the capillary forces. The higher
the equilibrium vapor pressure over the droplets, the faster the Ostwald ripening. The
contact coalescence is usually controlled by the diffusion of droplets in the atmosphere
of vapor (unless the droplets experience long-range forces, e.g., electrostatic repulsion
between charged droplets). The overall kinetics of the contact-driven aggregation in
droplet suspensions is routinely described by the Smoluchowski equation [9], which (in the
classical version) considers the relaxation of the coalescing droplets into one larger droplet
as a very fast process in comparison with the droplet motion in the vapor atmosphere.

The dynamics of droplet coalescence upon contact have been examined in the literature,
with most attention paid to collision-driven coalescence. Droplet collision could result in
“shattering,” “stretching separation,” or “coalescence” [10–16]. Shattering means that two
droplets split into several smaller ones due to the mechanical impact; in the stretching
separation, they temporarily unite only to separate shortly afterward. The published statistical
analysis includes the dependence of the outcome probability on the relative velocity, surface
tension, angle of impact, and other parameters. The process of droplet coalescence was
mostly explored for pendant or sessile droplets, with the attention primarily focused on the
progression of the liquid bridge, which forms as the droplets come into contact. Negative
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curvature of the bridge region causes the flow of the molecules from the bulk of the droplets
towards the meniscus, leading to the gradual expansion of the bridge. The evolution of
the meniscus in time was explored experimentally [17,18] and via various hydrodynamics
simulations, including Lattice–Boltzmann [19] and Smoothed Particle Hydrodynamics [20].
Quantification of the bridge growth rate allows analysis of the internal flow, i.e., the interplay
between the capillary and viscous forces. First estimations under the assumption of Stokes
flow were made by Frenkel [21] and then expanded by Hopper [22], who provided an
analytical solution for the coalescence of two viscous liquid cylinders. Later, Eggers et al. [23]
considered the coalescence of spherical droplets in 3D and argued that the Stokes regime was
only valid for Reynolds numbers up to Re ≈ 1, after which the flow transitioned to a regime
dominated by inertial forces. If described in terms of the reduced bridge radius R = rb/R0,
where rb is the bridge radius and R0 is the initial droplet radius (parent droplets of equal
sizes are assumed), then for the initial viscous regime R ∼ t/τν ln(t/τν) for R < 0.03, where
τν = ηR0/γ. For larger R, the flow transitions to the inertial regime, and the scaling becomes
R ∼ (t/τi)

1/2 with the time scale τi = (ρR3
0/γ)1/2. Here, t is the time passed since the droplets

came in contact, η is the dynamic viscosity, γ is the surface tension, and ρ is the mass density.
Although the scaling for the inertial regime was confirmed by both experiment [18,24] and
simulations [25], the logarithmic correction to the viscous scaling caused some discussions. For
example, in an experimental study by Aarts et al. [18], the viscous regime was found to be well
described by a linear scaling R ∼ t/τν. This inconsistency was resolved by Paulsen et al. [26],
who proposed the existence of the inertia-limited viscous (ILV) asymptotic regime preceding
the Hopper–Stokes regime. They argued that the viscous regime could not start until the
surface tension forces were strong enough to initiate the translation of the droplets’ center of
mass. Until then, the coalescence process is defined by viscous, inertial, and surface tension
forces together. Recently, Xia et al. [27] proposed a universality theory that combines the
coalescence regimes described above, with ILV and inertial regimes being its two asymptotic
approximations. Hence, we will refer to it as the “hydrodynamic regime” below.

Molecular simulations can help bypass some of the restrictions faced by empirical
models and provide more physical details, as they do not require any assumptions about
the nature of the system beyond the molecular interaction potential and can capture
processes on scales that are out of reach of the current experimental methods. Recently,
Perumanath et al. [28] peeked into the initial stages of the coalescence process with MD
simulations. While from the hydrodynamics standpoint, the moment of contact creates
a singularity due to infinite surface curvature, MD allows inspecting this moment more
carefully. The authors proposed that the contact between the two droplets is initiated by
thermal fluctuations on their surfaces. As the droplets approach each other, the surface
molecules in an area around the line of approach randomly start “jumping” across the gap
due to thermal motion and proximity to the opposing surface. These “collective molecular
jumps” constitute a new coalescence regime, which the authors call the “thermal regime,”
preceding the hydrodynamic regime described above. This regime holds until the bridge
radius grows to a certain threshold value lT proportional to the width of the contact area
on the surface, i.e., the area from which spontaneous molecular jumps can occur. MD is
also used in the studies of more complicated cases of droplet collision, e.g., the collision of
conducting droplets in an electric field [29]. In this case, droplets deform into a conical
shape as they approach each other due to the electrostatic force, and the outcome of the
collision depends on the cone angle and the critical electrical field strength. Nanoparticles
covered by an adsorbed liquid-like film also show a bridge formation and growth that
results in an effective attraction between them, although they cannot coalesce [30]. Another
example is the recent study of the coalescence/sintering bifurcation phenomenon for
nanoparticles [31]. With the help of isothermal MD simulations, the authors discovered
that the temperature of the transition from sintering to coalescence for Au nanoparticles
is lower than the nanoparticle melting point. In the vicinity of that critical temperature,
the child particle can have either a crystalline structure or a liquid-like structure at the
same temperature.
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In this research note, we explore the characteristic time of the coalescence of two
nanodroplets once contact between them has been established. The coalescence time is
determined as a function of the sizes of the parent droplets and the temperature. We
examine the meniscus evolution and compare the coalescence timescale with the charac-
teristic lifetime of a droplet in a dense suspension to check whether the finite coalescence
time can influence the aggregation dynamics. The study aims at shedding light on the
coalescence mechanism at spatial and temporal scales unavailable for experimental studies.
In particular:

• we explore the dependence of the characteristic coalescence time on the temperature
and sizes of both droplets, which has not been explored in the experimental, simulation,
and theoretical studies, as the literature review shows

• by examining the bridge growth and coalescence time, we explore in detail the recently
discovered “thermal scaling regime” of the contact coalescence, which cannot be
experimentally observed for the small temporal and spatial scales

• the characteristic coalescence times are for the first time compared with the charac-
teristic lifetime of a droplet before it contacts another one in a suspension during the
aggregation process; this comparison shows in what cases the finite coalescence times
should be taken into account in the theoretical models and anticipates the studies of
multiparticle collisions in the aggregation kinetics.

2. The Model and Simulation Details

The droplets are composed of Lennard–Jones (LJ) molecules. The LJ model is widely
accepted for fluids with van der Waals interactions and quantitatively describes noble gases,
nitrogen, and methane [32,33]. When working with the LJ potential, it is convenient to use
the so-called reduced units, in which distances, masses, and energies are multiples of the
parameters of the LJ potential σ (the effective molecular diameter), m (the molecular mass),
and ε (the depth of the LJ potential, that is the minimum energy of interaction between two
LJ particles), respectively. The density ρ is the number of LJ particles per volume equal
to the cube of the effective diameter σ3, thus ρσ3 = 1 in a simple cubic lattice, where the
neighboring particles contact each other. All the values below are given in reduced units if
not stated otherwise. The potential is cut and shifted at rc = 2.5 σ. Critical properties for such
system are kTc/ε = 0.937 and ρcσ3 = 0.320 [34,35]. Three temperatures were considered:
kT/ε = 0.65, 0.70, and 0.75. The corresponding saturated vapor densities, pressures,
and viscosities are shown in Table 1. The rectangular simulation box has dimensions of
(113.18 σ, 56.59 σ, 56.59 σ), (94.36 σ, 47.18 σ, 47.18 σ) and (80.08 σ, 40.04 σ, 40.04 σ) for
the three temperatures, correspondingly. Periodic boundary conditions are applied to
ensure constant volume and the number of LJ particles. Droplets are generated as spheres
filled with LJ atoms arranged in face-centered cubic lattices and placed at a distance of
2.0 σ between their surfaces. This arrangement ensures that coalescence does not start
right away, but rather the system equilibrates for a while, and droplets come in contact
naturally by drifting towards each other due to the dispersion attraction. The moment
of contact was determined using a clustering algorithm adopted from [36]. Initial radii
of droplets span from 6.0 to 12.0 σ and vary by 0.5 σ steps. In the initial configuration,
the droplets are aligned along the x-axis, and the left droplet is smaller or equal in size to
the right one. In every particular simulation, the configuration is characterized by three
parameters (T, rl, rr), where T is the system temperature, rl is the radius of the smaller (left)
droplet and rr is the radius of the larger (right) droplet, e.g. (0.65, 7.0, 10.0) corresponds to a
configuration of temperature 0.65 and initial droplet radii of 7.0 and 10.0 σ. Initial velocities
of the molecules are randomly generated according to the temperature. One hundred
simulations for each parameter set are performed to collect statistics. The necessity to
conduct a large number of simulations to collect reasonable statistics prevents simulations
of larger droplets due to computational expenses.
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Table 1. Simulation parameters.

T ρv ηv psat ρl ηl

0.65 0.0113 0.0241 0.0067 0.762 1.86
0.70 0.0195 0.0333 0.0119 0.729 1.50
0.75 0.0319 0.0490 0.0195 0.693 1.27

It should be noted that the vapor pressure (as well as the equilibrium density) depends
on the droplet size, which means that the capillary coalescence and Ostwald ripening
proceed concurrently. In the initial configuration, the two parts of the box are filled with
LJ vapor in equilibrium with the droplet of particular radii (rl, rm). That is, the density is
different in the two halves of the box, and after the start, the vapor starts mixing, which
leads to evaporation from the surface of the smaller droplet and condensation at the surface
of the larger one. The resulting droplet is larger than the parent droplets, and, therefore, the
saturated vapor has a lower density, which has to be taken into account in the calculation
of the coalescence time.

The simulations are carried out with LAMMPS [37,38], and the temperature is main-
tained with the Nose thermostat [39]. The simulation is gradually sped up: it is started
by performing 30,000 timesteps of size 0.0001 in reduced units, then 30,000 timesteps of
0.001, and finally 45,000 timesteps of 0.01. For trajectories, the coordinates were stored
every 1000 steps for the first two stages and every 250 steps for the last stage.

3. Results and Discussion

Figure 1 illustrates the coalescence process. The droplets attracted to each other by
the van der Waals forces eventually establish contact. A bridge forms and grows around
the point of contact until the parent droplets finally merge into a larger one. To follow the
process, we apply a clusterization algorithm that assigns any two atoms located closer than
1.3σ to each other to the same cluster. The frame when the algorithm detected only one large
cluster is identified as the moment when the contact is established and, therefore, as the
starting moment of the coalescence process (t = 0). Correspondingly, the radius of gyration
of the cluster is assumed as the main order parameter that describes the coalescence process.
The characteristic coalescence time is estimated from its evolution, as described below.
At the same time, we follow the dynamics of the liquid bridge growth characterized by
the density profile built in two dimensions: tangential, i.e., along the line connecting the
centers of mass of the merging droplets (identified as the axis with respect to which the
cluster had the lowest radius of inertia at any given moment) and the radial one. The
number density profiles are built in this coordinate system with the droplet domain divided
into cylindrical slices of equal width of about 2σ/3 along the tangential direction. From
the profile and the liquid density, the bridge radius is calculated. Figure 2 shows the
dependence of the evolution of the average bridge radius on the time after the contact for
select sets of parameters. At the starting moment of coalescence rb ≈ 1σ, because the bridge
consists of one molecule. The bridge radius grows approximately linearly with time, and
then saturation is observed as the bridge radius becomes comparable to the droplet radius.
The steep linear growth is consistent with the “collective molecular jumps” mechanism
observed first by Perumanath et al. [28]. Heinen et al. [40] also observed a linear bridge
growth in the initial stages of their MD simulations of droplet coalescence. The linear
thermal regime then seemingly shifts to the less steep ILV regime and comes to a plateau
shortly after. The dynamics of other scaling regimes are difficult to determine because
the curve flattens too quickly. At higher temperatures, the thermal regime has a longer
duration. However, the plateau value depends only on the radii of the coalescing droplets.
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(a) (b)

(c) (d)

Figure 1. Snapshots of molecular configurations at different stages of coalescence process. (a) Before
coalescence; (b) Beginning of coalescence; (c) In the process of relaxation; (d) Coalescence finished.

Figure 2. Mean radius of the liquid bridge as a function of reduced time for three different
system configurations.

The bridge formation is accompanied by the reduction of the gyration radius of the
newly forming droplet. A set of typical examples is shown in Figure 3a. The vdW attraction
causes particle motion to the bridge zone resulting in a rapid decrease of the gyration radius
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until the parent droplets finally merge into a new one. It should be noted that along with
the capillary-driven coalescence, we concurrently observed the ripening mechanism: the LJ
molecules evaporated from the areas of high curvature and condensed at the areas of lower
curvature (rl < rr). Since the radius of the resulting droplet is higher, and the curvature
is lower than those of the parent droplets, the resulting droplet actually somewhat grows
in size after the shape relaxation has finished due to vapor condensation on its surface
(Figure 3a).

The calculation of the coalescence time is demonstrated in Figure 3b. The Rg(t)
dependence is augmented with an interval of constant radius Ru(t) = Rg(t = 0), effectively
assuming that before the contact Rg(t) is the same as at the moment of the contact. Then
we assume that during the condensation rebound, the droplet size linearly increases with
time Rg, and the condensation rebound process starts after time tm that corresponds to the
maximum slope of Rg(t) dependence. These assumptions create the “upper” and “lower”
baselines. Ru(t) is constant, while Rl(t) is a piece-linear function, constant at t ≤ tm and
fitting the condensation rebound regime at t > tm (Figure 3b). The Rg(t) dependence is
fitted using the hyperbolic tangent as:

R∗
g(t) = Ru tanh(−D(t + tT)) + Rl(t)(1 − tanh(D(t + tT))) , (1)

where tT and D are the adjustable parameters, which characterize the “turning point” of the
coalescence and the half-duration of the relaxation process. The moment tc that corresponds
to the minimum value of R∗

g was assumed as the end of the coalescence and, therefore, as
the characteristic coalescence time.

(a) (b)

Figure 3. (a) Gyration radius of the composite droplet as a function of time for 10 simulations of
configuration (0.65, 7.0, 10.0). The sharp exponential drop corresponds to coalescence, followed by
fluctuations around the “equilibrium” value. (b) Demonstration of the coalescence time approxima-
tion procedure.

With this procedure, the dependence of tc(rl, rr, T) is obtained. Figure 4 shows how
coalescence time depends on three major configuration parameters. The mean values of
time obtained for each set of conditions are plotted. It can be seen that the coalescence time
scales linearly with both initial droplet sizes. Interestingly enough, the temperature does
not seem to accelerate the coalescence process in the mean but rather increases the standard
deviation from the fitted plane. We trained linear regression models for every temperature
separately and found the scores to be approximately equal 0.85 for T = 0.65kT/ε, 0.69 for
T = 0.70kT/ε and 0.77 for T = 0.75kT/ε. The fairly unrestricted nature of our simulation
setup is partly to blame since the 2.0 σ of initial separation between the outer droplet
surfaces does not guarantee an immediate coalescence after equilibration, so by the time the
droplets eventually come into contact, their sizes may have changed somewhat from the
initial values. Since the droplet radii features have the same span of values, we can judge
their importance based on the fitted weight coefficients. The smaller droplet has the larger
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weight between the two, making it the main parameter. The weight of the larger droplet is
about 20 times smaller for all temperatures. To determine the influence of the temperature,
we trained the linear regression model on the entire dataset. Considering the scatter of
target values at higher temperatures and the span of considered temperature values, the
corresponding weight is insignificant. The addition of Lasso regularization with constant
α = 0.15 sets the temperature weight to zero and gives an overall better fit for temperatures
T = 0.65kT/ε and T = 0.75kT/ε. It should be noted that the larger droplet’s coefficient
does not vanish in this model: the role of the size of the larger droplet remains significant.
The above Lasso model predicts zero coalescence time for two droplets of size 1 σ (that
is, containing only one molecule), which is the correct asymptotic limit since merging of
two single LJ molecules into a dimer “droplet” needs no internal restructuring. It was
reported that an increase in temperature difference between the parent droplets accelerates
the mixing between their particles [41]. We did not attempt to validate those claims during
the current work, but the temperature difference between the coalescing drops would lead
to non-uniformity of the particle diffusion, which, in turn, could affect the coalescence time.

Figure 4. Coalescence time plotted as a function of initial droplet radii (rl ≤ rr). Different colors
represent different system temperatures.

It is interesting to compare the coalescence times with the characteristic lifetimes of
the droplet in a droplet suspension in vapor. To estimate the characteristic lifetimes, we
conducted Langevin dynamics (LD) simulations. Each simulation modeled the Brownian
motion of a particle whose mass and size corresponded to a liquid droplet at certain
conditions in the medium with characteristics (density and viscosity) corresponding to the
equilibrium vapor. The trajectory of the Brownian motion is recorded; after the simulation,
we calculate the volume of the exclusion sphere (the exclusion sphere radius equals the
particle diameter) covered during its motion per unit of time. The product of the volume by
the concentration is the inverse average lifetime of the droplet with respect to the contact-
driven coalescence if we assume that each contact leads to the merging of the two droplets
(which is reasonable since the droplet velocities are very low). This estimation is fully
similar to that of the free path of a molecule in a gas, but in the Brownian, rather than in
the ballistic, regime of motion.

Here we consider only equally sized droplets. The larger the droplet sizes, the slower
their motion is due to the increased mass, but the lower the viscosity of the vapor. Obviously,
the droplet lifetime with the current assumptions decreases linearly with the volume
fraction occupied by the liquid phase. LD simulations are carried out for the spherical
particles with the mass and size corresponding to droplets containing 500, 750, 1000, 2500,
5000, and 10,000 molecules with the time step of 5 × 10−5. Reduced temperatures are once
again 0.65, 0.70, and 0.75 kT/ε. The coalescence times reported above only depend on the
droplet size and grow proportional to r3.

Figure 5 shows the ratio of the droplet lifetime to the coalescence time. The plot
spans the values of liquid phase volume fractions from 0.01 to 0.1 with a step of 0.01. The
ratio decreases exponentially with the increase in liquid volume fraction, and for smaller
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droplets with N ≈ 1000 reaches the value of 10 at 0.07–0.08 volume fraction, meaning the
characteristic times become quite comparable at that point. Hence, for denser suspensions,
coalescence time probably should be taken into account in aggregation theories. Tempera-
ture also has an influence on the ratio; although weaker than the dependence on the droplet
size, it is still considerable for smaller droplets.

Figure 5. Dependence of the droplet lifetime to coalescence time ratio on the volume fraction of the
liquid phase for the reduced temperatures of 0.65 (green line), 0.70 (blue line) and 0.75 (red line) kT/ε.
Linestyle represents the droplet size in particle number N: N = 750 – dotted line, N = 1000 – solid line,
N = 2500 – dash-dotted line, N = 5000 – dashed line.

4. Conclusions

We have performed molecular dynamics simulations of LJ nanodroplet contact-driven
coalescence (that is, merging of two droplets into a larger one) in quasi-equilibrium vapor. The
droplet sizes ranged from 6 to 12 molecular diameters σ, and the reduced temperature kT/ε
ranged from 0.65 to 0.75. Upon establishing contact, the parent droplets form a bridge, with
the radius growing linearly with time. This scaling regime is consistent with the “collective
molecular jumps” mechanism described recently [28] and is dominant for the considered
length scales, with its duration increasing with temperature. Currently, this regime cannot
be captured by experimental studies. Thus, for small droplets, the classical hydrodynamic
regimes characterized by the power law (inertial) or the logarithmically corrected linear
(viscous) bridge diameter dependence on time are not observed. The characteristic duration
of the coalescence tc is determined from the analysis of the gyration radius devolution in
time. tc shows a linear dependence on the initial radii of the smaller and larger droplets Rl, Rr
with Rl as the main parameter with the largest weight. This is expected, because if Rl << Rr,
tc should depend on Rl only. Obviously, a twofold difference in the spatial size (eight-fold
mass difference) is not sufficient to break the linear dependence. It is interesting that the
temperature does not show a significant influence on tc in the mean, despite the far greater
molecular mobilities in the liquid phase. Removing the temperature feature from the model
altogether even produces a better fit to the simulation results.

In practical conditions, the droplets are not spherical, and their motion is not purely
diffusive; they often collide at considerable velocities. Since Perumanath et al. [28], in the
original article mentioning the “thermal scaling regime,” considered both cylindrical and
spherical droplets and obtained qualitatively similar results, we would expect that the
linear scaling of the characteristic time observed in this work would be valid for droplets
whose shape is substantially non-spherical. Droplet velocities (especially for smaller



Fluids 2023, 8, 77 9 of 10

droplets because that case corresponds to higher Reynolds numbers) should qualitatively
affect the coalescence time. We may speculate that the linear scaling will hold when
the droplet velocities are low (that is if the time within which the droplet travels the
distance equal to its diameter is larger than the droplet coalescence time) and will break
at higher velocities. However, the Reynolds number threshold for transitions between
coalescence/stretching separation/shattering for nanodroplets is a potentially fruitful topic
for future investigations.

Another outcome of this work is the comparison of the coalescence time tc to the “free
diffusion time” td in dense suspensions. This comparison also sheds light on the importance
of multiparticle collisions in liquid droplet suspensions because if the coalescence time
is negligible, the number of multiparticle contacts is negligible as well. The td/tc ratio
appears to show a strong dependence on size (as droplet diffusion slows down faster than
coalescence as the droplet grows) and a much weaker dependence on temperature. The
results show that in very dense suspensions (droplet volume fraction above 0.1) and small
sizes (N ≈ 1000), the coalescence time is undoubtedly comparable with the droplet lifetime
and should be taken into account. In less extreme cases, the coalescence can be considered
a fast process, although, of course, it depends on the required precision of the model.
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