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1 Methodology

The physical system under consideration is a rectangular container of the dimensions𝐻×𝐵×𝐿

(Height × Width × Length), containing a Newtonian fluid initially at rest and with a constant

temperature gradient 𝑑𝑇𝑎,𝑧/𝑑𝑍 , as sketched in Fig. 1. At the center of the bottom of the container,

a narrow slot with a half-width of 𝑋0 in the𝑌 direction functions as the source for a plane fountain,

with the remainder of the bottom being a rigid, non-slip and adiabatic surface. The two vertical

surfaces in the 𝑋 − 𝑍 plane, at 𝑌 = ±𝐵/2, are assumed to be periodic whereas the two vertical

surfaces in the 𝑌 − 𝑍 plane, at 𝑋 = ±𝐿/2, are assumed to be outflows. The top surface in the

𝑋 − 𝑌 plane, at 𝑌 = 𝐻, is assumed to be a wall. The origin of the Cartesian coordinate systems

is at the center of the bottom. The gravity is acting in the negative 𝑍-direction. At time 𝑡 = 0, a

stream of fluid at 𝑇0 (𝑇0 < 𝑇𝑎,0) is injected upward from the slot with a uniform velocity 𝑊0 into

the container to initiate the plane fountain flow and this discharge is maintained over the whole

course of a specific numerical simulation run.

Figure S1: Sketch of the physical system under consideration, the computational domain and 

the boundary conditions.

The flow is governed by the three-dimensional incompressible Navier-Stokes and temperature 

equations with the Oberbeck-Boussinesq approximation, which are written in conservative form
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in Cartesian coordinates as follows,
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where 𝑈, 𝑉 , and 𝑊 are the velocity components in the 𝑋 , 𝑌 , and 𝑍 directions, 𝑡 is time, 𝑃 is

pressure, 𝑇 is temperature, and 𝜌, 𝜈, and 𝜅 are the density, viscosity, and thermal diffusivity of

fluid, respectively.

The appropriate initial and boundary conditions are:
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when 𝑡 > 0. In the above initial conditions, 𝑠 is the dimensionless stratification number of the

ambient fluid which is defined in the paper.
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The above governing equations were discretized on a non-uniform rectangular mesh using a

finite volume method, with a standard 2nd-order central difference scheme used for the viscous

and divergence terms and the 3rd-order QUICK scheme for the advection terms. The 2nd-

order Adams-Bashforth and Crank-Nicolson schemes were used for the time integration of

the advective and diffusive terms, respectively. The PRESTO (PREssure STaggering Option)

scheme was used for the pressure gradient.

The numerical simulation runs were carried out in the present study using ANSYS Fluent

13. For all numerical simulation runs, the fluid used was water, with the density 𝜌𝑎 = 996.6

kg/m3, the kinematic viscosity 𝜈 = 8.58 × 10−7 m2/s, and the volume expansion coefficient

𝛽 = 2.76×10−4 1/K, respectively. 𝑋0 was fixed at 0.002 m, 𝑇𝑎,0 was fixed at 300 K, the time step

was fixed at 0.025 s, but 𝑊0 and 𝑇0 and 𝑆𝑝 (which is the dimensional stratification number of

the ambient fluid as defined in the paper) were determined from the definitions of 𝐹𝑟 , 𝑅𝑒 and 𝑠,

with these parameters varying over the ranges of 1 ≤ 𝐹𝑟 ≤ 5 and 0.1 ≤ 𝑠 ≤ 0.5, all at the fixed

𝑅𝑒 = 200. The dimensions of the computational domain are 𝐻 = 0.2 m, 𝐵 = 0.1 m, and 𝐿 = 1.5

m, which were determined after testing to ensure negligible effects of boundary conditions,

particularly the outflows and periodic boundary conditions, on the flow quantities of interest.

Non-uniform meshes were used; in the regions of −25 ≤ 𝑋/𝑋0 ≤ 25, −25 ≤ 𝑌/𝑋0 ≤ 25 and

0 ≤ 𝑍/𝑋0 ≤ 50, a uniform and finer rectangular mesh was used, and in the remaining regions a

relatively coarse and non-uniform mesh with varying expansion rates was used.

It should be noted that the “outflow” boundary conditions are applied at the lateral boundaries

of the domain (in the 𝑋 direction, i.e., at the locations 𝑋 = ±𝐿/2), which assumes a zero

diffusion flux for all flow variables. Such a zero diffusion flux condition applied by ANSYS

Fluent at “outflow” boundaries is approached physically in fully-developed flows. The “outflow”

boundaries can also be defined at physical boundaries where the flow is not fully developed if

the assumption of a zero diffusion flux at the exit is expected to have a negligible impact on the

flow solution.

Extensive mesh and time-step dependency testing was carried out to ensure accurate simu-

lations to be produced. The results of one example of such testing are presented in Fig. 2 for the

case of 𝐹𝑟 = 2, 𝑅𝑒 = 100 and 𝑠 = 0.1, which shows the horizontal profiles of temperature and

vertical velocity at the height of 𝑍 = 0.005 m in the 𝑋 − 𝑍 plane at the location 𝑌 = 0, and the

vertical profiles of temperature and vertical velocity along the centerline (at 𝑋 = 𝑌 = 0) in the 𝑍
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direction, all at 𝑡 = 20 s. These results were obtained numerically with three different meshes,

with the coarse mesh having 1.17 million cells, the basic mesh having 2.1 million cells and the

fine mesh having 3.6 million cells, and at three different time steps of 0.025 s, 0.035 s, and 0.05

s, respectively. It is clear from Fig. 2(𝑎)-(𝑑), where a comparison of the results obtained with

the three meshes, all at the same time-step of 0.025 s, is presented, that the results obtained with

the basic mesh and the fine mesh are essentially the same and only the results produced with

the coarse mesh have some marginal deviations. Similarly, a comparison of the results obtained

with four time steps, all with the same basic mesh (2.1 million cells), as shown in Fig. 2(𝑒)-(ℎ),

shows that the differences are very small. Hence it is believed that the combination of the basic

mesh with 2.1 million cells and the time step at 0.025 s produces sufficiently accurate solutions

and is the best compromise between the accuracy and the time and computing resources among

the meshes and time steps considered, and is then chosen as the main mesh and time step for the

numerical simulations in the present study as the values of 𝑅𝑒 and 𝐹𝑟 are small and the flows

are laminar.
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Figure S2: The horizontal profiles of temperature 𝑇 (K) ((𝑎) and (𝑒)) and vertical velocity 𝑊 (m/
s) ((𝑏) and ( 𝑓 )) at 𝑍 = 0.005 m in the 𝑋 − 𝑍 plane at the location 𝑌 = 0, and the vertical profiles 

of temperature 𝑇 (K) ((𝑐) and (𝑔)) and vertical velocity 𝑊 (m/s) ((𝑑) and (ℎ)) along the 

centerline (at 𝑋 = 𝑌 = 0) in the 𝑍 direction, all at 𝑡 = 20 s, which were obtained numerically 

for the case of 𝐹𝑟 = 2, 𝑅𝑒 = 100 and 𝑠 = 0.1 with three different meshes (left column, all at 

the same time step of 0.025 s) and at three different time steps (right column, all with the same 

basic mesh of 2.1 million cells).
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