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Abstract: We investigate the effect of horizontal quasi-periodic oscillation on the stability of two
superimposed immiscible fluid layers confined in a horizontal Hele-Shaw cell. To approximate
real oscillations, a quasi-periodic oscillation with two incommensurate frequencies is considered.
Thus, the linear stability analysis leads to a quasi-periodic oscillator, with damping, which describes
the evolution of the amplitude of the interface. Two types of quasi-periodic instabilities occur: the low-
wavenumber Kelvin-Helmholtz instability and the large-wavenumber resonances. We mainly show
that, for equal amplitudes of the superimposed accelerations, and for a low irrational frequency
ratio, there is competition between several resonance modes allowing a very large selection of the
wavenumber from lower to higher values. This is a way to control the sizes of the waves. Furthermore,
increasing the frequency ratio has a stabilizing effect for both types of instability whose thresholds
are found to correspond to quasi-periodic solutions using the frequency spectrum. For a ratio of
the two superimposed displacement amplitudes equal to unity and less than unity, the number of
resonances and competition between their modes also become significant for the intermediate values
of the ratio of frequencies. The effects of other physical and geometrical parameters, such as the
damping coefficient, density ratio, and heights of the two fluid layers, are also examined.

Keywords: Hele-Shaw cell; quasiperiodic oscillation; Kelvin-Helmholtz and parametric instabilities

1. Introduction

The instability of the interface of two superimposed immiscible liquid layers subjected
to periodic horizontal oscillation is of practical importance and was studied by many
researchers in various configurations [1–14]. Kelly [1] investigated the Kelvin-Helmholtz
instability with two oscillating flows where the velocity fields are periodic. Using the linear
stability analysis, he discovered situations where the oscillation stabilizes the unstable shear
flow. Afterwards, Wolf [2,3] carried out the first experiments in which he observed the
formation of a quasi-steady relief, called a frozen wave. Note that this relief develops when
the oscillation intensity exceeds a specific threshold. Subsequently, the interface behavior
of the fluid layers of different densities was theoretically studied by Lyubimov et al. [4].
They reduced the linear stability problem under the inviscid approximation to the Mathieu
equation. It was found that the basic instability mode, associated with the development of
the Kelvin-Helmholtz instability at the interface between counter-streaming flows, occurs,
and that the possibility of parametric resonance can take place. For inviscid fluids, there
is no threshold for the parametric instability. Furthermore, for sufficiently high vibration
frequencies, the parametric instability is sensitive to viscous damping and thus occurs
over a narrow range of wavenumbers. The work by Lyubimov et al. [4] was extended
by Khenner et al. [5] to the parametric resonant regions of instability associated with
capillary wave intensification at the interface. Note that, in these works [4,5], numerical
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results were also discussed in the viscous case. It was found that the parametric instability
is strongly damped by viscosity and the Kelvin-Helmholtz mode is the most unstable.
Later, Ivanova et al. [6] experimentally found that, in the circular translational oscillation of
a system of immiscible fluids of different densities, a steady-state relief excitation, associated
with the Kelvin-Helmholtz instability, is determined by the square of vibrational velocity,
while the azimuthal fluid flow associated with the generation of an average vorticity in the
skin-layers is determined by the oscillatory Reynolds number. Subsequently, Talib et al. [7,8]
experimentally and numerically investigated the effect the viscosity contrast on the linear
stability threshold using the spectral collocation method. They showed that, depending
on the value of the density contrast, either the Kelvin–Helmholtz or the first resonant
mode may be the most unstable. These two modes exhibit opposite dependencies on the
viscosity contrast with a sharp stabilization of the first resonant mode, while the threshold
of the Kelvin–Helmholtz mode exhibits a sharp reduction. Thereafter, Yoshikawa et al. [9]
conducted a theoretical study to investigate the effect of viscosity and its contrast at the
interface. This study was considered for the liquid layers of infinite depth and for an
amplitude of the oscillation smaller than the wavelength of the perturbation. The results
in this case are in good agreement with those of the previous experiments and theoretical
studies [7,8]. Experiments were also conducted by Yoshikawa et al. [10] to show that the
threshold and wavenumber significantly depend on the oscillation frequency. It turns out that
the waves found are longer than those predicted by the inviscid theory of the Kelvin-Helmholtz
oscillatory instability. In the same spirit, Jalikop et al. [11] showed that the gravity-capillary
waves in a horizontally oscillating two-layer system, which are often referred to as frozen
waves, lose stability in the presence of oscillatory transverse amplitude modulation.

A few research groups examined theoretically [12,13] and experimentally [14] the
effect of periodic horizontal and vertical oscillations on the interfacial instability between
two viscous superimposed immiscible fluid layers contained in a vertical Hele-Shaw cell.
For instance, Bouchgl et al. [12] performed an inviscid linear stability analysis of the
viscous basic flow leading to the periodic Mathieu oscillator describing the evolution of the
interface amplitude. They showed that a decrease in the viscosity contrast has a stabilizing
effect on the Kelvin-Helmholtz instability, which is displaced towards the long-wave
region. Hereafter, Lyubimova et al. [13] extended the investigation by Bouchgl et al. [12] by
taking into account the viscosity in the perturbed equations. They discussed the influence
of different physical parameters on the stability of the interface. Recently, and on the
experimental side, Li et al. [14] investigated an extreme case of two coupled Faraday waves
of three layers in a covered Hele-Shaw cell with periodic vertical vibration. More recently,
the works by Bouchgl et al. [12] and that by Lyubimova et al. [13] were extended to a fully
saturated porous media [15]. Bouchgl and Aniss [15] showed that the Darcy number has a
destabilizing effect on the parametric instability and on the Kelvin-Helmholtz instability.
Furthermore, the decrease in permeability significantly increases the stability threshold of
the parametric instability, which is displaced to the short-wave regions.

When there is a large difference in velocity between the two fluid layers, Kelvin-
Helmholtz type instabilities develop at the interface. Their amplitudes increase and when
they reach a critical value, the crest of the wave is torn off, giving rise to a fragment whose
size would be proportional to the wavelength of these waves. This type of mechanism is
used in the study of the fragmentation of liquid jets. Our motivation concerns the control
of the wavelength by considering the Kelvin-Helmholtz instability in the presence of real
oscillations which generally have several frequencies in contrast to the previous works
using the standard periodic oscillation. Let us note, on the one hand, that the different fre-
quencies are, in general, incommensurable with each other, so that their ratios are irrational
numbers. On the other hand, the instability occurs in the form of the standard Kelvin-
Helmholtz instability as well as in the form of parametric resonances. Inspired by the work
of Rand et al. [16] who studied the quasi-periodic Mathieu equation, Boulal et al. [17,18]
used this type of modulation in Rayleigh–Bénard convection where it is shown that the ratio
of frequencies allows one to control the convection threshold. This type of modulation was
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also used by Yagoubi et al. [19] to study the effect of vertical quasi-periodic oscillation on
the stability of the free surface of a horizontal liquid layer. In the present study, oscillation
with two incommensurate frequencies is considered and its effect on the interface instability
between two superimposed layers of viscous immiscible fluids confined in a Hele-Shaw
cell is examined.

The paper is structured as follows. In Section 2, we determine the basic flow consid-
ered as quasi-periodic and viscous. After that, we perform in the same section a linear
stability analysis in which the governing equations are reduced to a quasi-periodic oscillator.
In Section 3, the numerical procedure is explained. In Section 4, the numerical results are
presented and discussed. Section 5 is devoted to the conclusions.

2. Formulation
2.1. Governing Equations

Consider two superimposed viscous fluid layers filling a vertical Hele-Shaw cell of
infinite extent in the x direction (see Figure 1). We denote by h = h1 + h2 the height of the
cell, by e the distance between the vertical walls where e

h << 1; the vertical and horizontal
walls are located, respectively, at z∗ = ±e/2 and y∗ = −h1, h2.

h2 

h1 

X* 

Z* 

1 1,   

2 2,   
h 

e 

y* 

Figure 1. Superimposed viscous fluid layers filling a vertical Hele-Shaw cell subjected to quasi-
periodic horizontal oscillation.

We assume that the denser fluid occupies the bottom region, of height h1, and the light
one occupies the upper region, of height h2, so that the configuration is gravitationally
stable. The Hele-Shaw cell is assumed to oscillate according to the law of displacement,[
a1 cos(ω1t∗) + a2 cos(ω2t∗)

]
x∗, where ω1 and ω2 are two-dimensional incommensurate

frequencies and t∗ is the time. The parameters a1 and a2 are the amplitudes of motion and
x∗ is the horizontal unit vector. Therefore, the fluid layers are submitted to the gravitational
force field, ρjg, and the quasi-periodic force field, −ρj

[
a1ω2

1 cos(ω1t∗) + a2ω2
1 cos(ω1t∗)

]
x∗.

Note that each fluid layer is characterized by its density ρj, and its dynamic viscosity µj
(j = 1, 2). The surface tension at the interface is denoted by γ. The flows in each fluid layer
are governed by the momentum and continuity equations written in the relative frame:

∇ ·V∗j = 0 (j=1,2) (1)

∂V∗j
∂t∗

+ (V∗j .∇)V∗j = − 1
ρj
∇P∗j + νj∆V∗j − gy∗

+
[

a1ω2
1 cos(ω1t∗) + a2ω2

2 cos(ω2t∗)
]
x∗ (2)

where V∗j = (u∗j , v∗j ) is the dimensional velocity and P∗j is the hydrodynamic pressure in
each fluid layer. The last term of the Navier–Stokes equation (2) represents the inertial
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driving forces [20] due to the oscillation. Note that, for a motionless Hele-Shaw cell, Gondret
and Rabaud [21] averaged the Navier–Stokes equations with respect to the variable z∗ by
considering the parabolic velocity field, assuming that there is no transverse velocity and
that the two second derivatives in x∗ and y∗ are negligible with respect to the z∗ derivative.
Following this approach, the parabolic velocity field is given by:

V∗j (x∗, y∗, z∗) =
3
2

V∗j (x∗, y∗)
[

1− (
2z∗

e
)2
]

(3)

According to the above assumptions, the averaged momentum equation, with respect
to the spatial variable z∗, between − e

2 and e
2 , is given by:

∂V∗j
∂t∗

+
6
5
(V∗j .∇)V∗j = − 1

ρj
∇P∗j −

12µj

e2 V∗j − gy∗

+
[

a1ω2
1 cos(ω1t∗) + a2ω2

2 cos(ω2t∗)
]
x∗ (4)

Thereafter, we perform a dimensional analysis by means of an appropriate choice of
scales used in interfacial instability problems in Hele-Shaw cell [12,13]. Thus, the length
is scaled by the capillary length lc =

√
γ

g(ρ1−ρ2)
, the time by ω−1

1 , the velocity by a1ω1,

and the pressure by ρ1a1ω2
1 lc. Hence, Equation (4) for each fluid layer is written in the

dimensionless form as follows:

∂V1

∂t
+

6
5

q(V1 · ∇)V1 = −∇P1 − 6
F√
We

V1 (5)

+
[
cos(t) + AΩ2 cos(Ωt)

]
x− 1

qWe
y

∂V2

∂t
+

6
5

q(V2.∇)V2 = −1
ρ
∇P2 − 6

µ

ρ

F√
We

V2 (6)

+ [cos(t) + AΩ2 cos(Ωt)]x− 1
qWe

y

where q = a1
lc

is the dimensionless amplitude of oscillation, A = a2
a1

is the amplitude ratio

of displacements, Ω = ω1
ω2

is the irrational ratio of frequencies, F =

√
lc
g

σ2
is the damping

coefficient responsible of the friction, in which σ2 = ωe2

2ν2
is the frequency number (ν2 is

the kinematic viscosity of the upper fluid), We = ω2
1 lc
g is the Weber number, ρ = ρ2

ρ1
is the

density contrast, and µ = µ2
µ1

is the viscosity contrast.

2.2. Base Flows

Due to the horizontal oscillation, it is evident that the base flow in each fluid layer
has a one-component velocity field, Vb

j (t) = (Ub
j (t), 0, 0), which is quasi-periodic and

parallel to the x axis. In this equilibrium state, the interface between the two fluid layers is
considered planar, horizontal, and coincident to the y = 0 plane. These flows satisfy the
equation of continuity, Equation (1), and the momentum Equations (6) and (7) as well as
the condition of flow closeness, as expressed by the counter-flowing layers and given by
the additional integral condition expressing the balance of the displacement volume of
both fluids [5,13] imposed as below:∫ 0

−H1

Vb
1.x dy = −

∫ H2

0
Vb

2.x dy (7)
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This counter-flowing is the result of the vertical end walls of the Hele-Shaw cell located
at x = 0, L, and appears when the vertical volume flow is conserved. Subsequently, the
quasi-periodic base velocity field is sought in the form:

Ub
j (t) = αj cos(t) + β j sin(t) + λj cos(Ωt) + Λj sin(Ωt) (8)

The coefficients αj, β j, λj and Λj are expressed as a function of the different physical
parameters of the problem, as defined in Section 2.1, and are given by:

α2 = − 1
H

α1,

=
−6F(H + µ)(1− ρ)

√
We
[
(H + ρ)2 + 36

(
F√
We

)2
(H + µ)2

] , H =
H2

H1
(9)

β2 = − 1
H

β1

=
−(H + ρ)(1− ρ)

(H + ρ)2 + 36
(

F√
We

)2
(H + µ)2

(10)

λ2 = − 1
H

λ1 (11)

=
−6AΩ3F(H + µ)(1− ρ)

Ω
√

We
[
Ω2(H + ρ)2 + 36

(
F√
We

)2
(H + µ)2

]
Λ2 = − 1

H
Λ1

=
−AΩ3(H + ρ)(1− ρ)

Ω2(H + ρ)2 + 36
(

F√
We

)2
(H + µ)2

(12)

Furthermore, the pressure at the equilibrium is given by:

Pb
1 = − 1

qWe
y + f (x, t) (13)

Pb
2 = − ρ

qWe
y + f (x, t) (14)

where f (x, t) is an arbitrary function. Note that, in the limit of a high frequency number,
σ2 → ∞ corresponding to ν2 → 0, the base-flow solution determined in this work, and
given by Equation (8), tends towards the solution corresponding to the oscillating flows in
an approximation of the two inviscid-layer system given by Khenner et al. [5].

2.3. Linear Stability

The perturbed state, in terms of velocity and pressure, is written as:

Vj = Vb
j + vj

(
uj(x, y, t), vj(x, y, t)

)
, P∗j = Pb

j + pj(x, y, t) (15)

The dimensionless linear system of the conservation equations, for each fluid layer, is
given by:

∂uj

∂x
+

∂vj

∂y
= 0 (16)

ρj−1[
∂uj

∂t
+

6
5

qUb
j .

∂uj

∂x
] = −

∂pj

∂x
− 6

µj−1F√
We

uj (17)

ρj−1[
∂vj

∂t
+

6
5

qUb
j .

∂vj

∂x
] = −

∂pj

∂y
− 6

µj−1F√
We

vj (18)
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where j = 1 for the lower layer and j = 2 for the upper one. Thereafter, the interface is
described by the equation y = ξ(x, t), where ξ(x, t) is an infinitesimal perturbation of the
base interface. Hereafter, the solution of the system of Equations (16)–(18) is sought in
terms of normal modes:[

pj, uj, vj
]

=
[
p̃j(t, y), ũj(t, y), ṽj(t, y)

]
eikx (19)

ξ(t, x) = ξ̃(t)eikx (20)

where i2 = −1 and k is the wavenumber in the x direction. Thereafter, the velocity
potentials, φj(t, x, y) = φ̃j(t, y)eikx, are inserted into the continuity Equation (16), to obtain:

φj(t, x, y) =
[
C1

j (t)e
ky + C2

j (t)e
−ky
]
eikx (21)

Using the linearized kinematic condition,

dξ̃

dt
(t) + ikqUb

j ξ̃(t) = q
∂φ̃j

∂y
(t, y) (22)

and the slip boundary conditions at the horizontal walls, ṽj(t, y) = 0 at y = −h1 and y = h2,
the constants C1

j and C2
j are determined. Thus, the velocity potential for each fluid layer is

given by:

φ̃1(t, y) =
e2kh1 eky + e−ky

qk(e2kh1 − 1)

[
dξ̃(t)

dt
+ ikqUb

1 ξ̃(t)
]

(23)

φ̃2(t, y) =
e−2kh2 eky + e−ky

qk(e−2kh2 − 1)

[
dξ̃(t)

dt
+ ikqUb

2 ξ̃(t)
]

(24)

To complete the mathematical formulation, the normal stress balance at the interface
is written as:

(Pb
1 + p1)− (Pb

2 + p2) = γ∇ · n (25)

where γ is the surface tension and n is the unit vector normal to the interface. Thus, the
linearized form of the curvature is ∇ · n = − ∂2ξ

∂x2 (x, t) = k2ξ̃(t)eikx. Hereafter, to linearize
the dynamic condition (25), the total pressure is expressed near y = 0 with a first-order
Taylor expansion:

Pb
j + pj = Pb

j (0) +
∂Pb

j

∂y
|y=0 ξ(t) + pj(t, x, 0) (26)

The systems of Equations (16)–(18) and (23)–(26) allow us to obtain the expression of
the damped quasi-periodic oscillator:

d2ξ̃

dt2 +

[
i
11
5

R1Ub
1(t) + ρR2Ub

2(t)
R1 + ρR2

+
6F√
We

R1 + µR2

R1 + ρR2

]
dξ̃

dt

+

[
iqk

R1
dUb

1
dt (t) + ρR2

dUb
2

dt (t)
R1 + ρR2

+
6F√
We

R1Ub
1(t) + µR2Ub

1(t)
R1 + ρR2


− 6q2k2 R1(Ub

1(t))
2 + ρR2(Ub

2(t))
2

R1 + ρR2
+

k(1− ρ)(1 + k2)

We(R1 + ρR2)

]
ξ̃ = 0 (27)
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with R1 = coth(kH1) and R2 = coth(kH2). The parametric differential Equation (27)
governs the evolution of the interface displacement from its equilibrium state.

3. Numerical Procedure

To numerically solve Equation (27), we introduce the following changes in variables:

Ω =
p
m

, τ =
t
m

,
∂

∂t
=

1
m

∂

∂τ
,

∂2

∂t2 =
1

m2
∂2

∂τ2 (28)

Here, Ω, intervening in the base velocity (8), is approximated by a rational fre-
quency ratio, where p and m are prime numbers between them. For instance,

√
2 = 1393

985 ,√
3 = 1351

780 ,
√

5 = 2889
1292 ...

√
37 = 882

145 . Inserting these changes of variables into Equation (27),
we obtain a periodic Mathieu-equation with a damping term. The Equation (27) can be
converted into the state space form by considering the system states [x1, x2]

T where x1 = ξ̃

and dx1
dτ = x2. Thus, Equation (27) is written in a matrix form:{

dx1
dτ
dx2
dτ

}
=

[
0 1

−m2α(τ) −mβ(τ)

]{
x1
x2

}
(29)

where:
α(τ) = i 11

5
R1Ub

1 (τ)+ρR2Ub
2 (τ)

R1+ρR2
+ 6F√

We
R1+µR2
R1+ρR2

β(τ) = iqk

(
R1

dUb
1

dt (τ)+ρR2
dUb

2
dt (τ)

R1+ρR2
+ 6F√

We
R1Ub

1 (τ)+µR2Ub
1 (τ)

R1+ρR2

)
− 6q2k2 R1(Ub

1 (τ))
2
+ρR2(Ub

2 (τ))
2

R1+ρR2

+ k(1−ρ)(1+k2)
We(R1+ρR2)

The Floquet theory [22] is applied to matrix system (29). This theory then states that
there exists a constant matrix R such that:

S(τ + T) = RS(τ) (30)

where T is the period and S is the fundamental solution matrix of the system (29) satisfying:

∂S
∂t

=

[
0 1

−m2α(τ) −mβ(τ)

]
S (31)

In addition, if the eigenvalues of the matrix R are γj ( j = 1, 2), then the solution of
system (29) can be written as:

xj = Zj(τ) exp(λj) (32)

where Z is a periodic function of period T and the coefficients λj are the Floquet exponents
that are related to the eigenvalues γj by:

λj =
1
T

ln(γj) (33)

To calculate λj, we first determine the matrix R using the relation (30) to obtain:

S(T) = R S(0) (34)

Thus, to calculate R, we use a fourth-order Runge–Kutta numerical scheme for the
integration of system (31) over one period with the initial condition S(0) = I, where I is the
identity matrix. Once the eigenvalues of the matrix R, γj, are determined, we calculate the
Floquet exponents λj using Equation (33). Thereafter, we only consider the most unstable
mode corresponding to the Floquet exponent with the largest real part denoted by λr
(temporal growth rate). If λr > 0, the system is unstable, and if λr < 0, the system is stable.
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4. Results and Discussion

In this investigation, the marginal stability curves corresponding to the variation in
the dimensionless amplitude of oscillation, q, versus the wave number, k, are numerically
determined for assigned values of the irrational ratio of frequencies, Ω = ω1

ω2
; the ratio of

amplitudes of oscillation, A = a2
a1

; the coefficient of friction, F; the Weber number, We; the
density contrast, ρ; the viscosity contrast, µ; and the layer depths H1 and H2.

4.1. Validation of the Numerical Procedure

The numerical procedure is validated in the case of periodic oscillation and the ob-
tained results are compared to those of Lyubimova et al. [13]. Figure 2 illustrates the
marginal stability curves in the case of periodic oscillation [5] corresponding to A = a2

a1
= 0

for the representative values We = 5, F = 0.1, µ = 0.5, ρ = 0.8, and H1 = H2 = 2.
It is worth noting that the results converge, in excellent agreement, towards those by
Lyubimova et al. [13]. As indicated in previous works [5,7,8,12,13], two types of instabili-
ties occur at the interface, the Kelvin-Helmholtz instability at low wavenumbers and the
parametric one (resonance) at high wavenumbers.

0 1 2 3 4 5 6 7 8 9 10

k

0

1

2

3

4

5

6

7

q

Kelvin-Helmholtz

instability

region

First

region

of

parametric

instability

Second

region of

parametric

instability

Figure 2. Marginal stability curves, q(k), in the periodic case (A = 0) for ρ = 0.8, µ = 0.5, F = 0.1,
We = 5, H1 = H2 = 2.

4.2. Effect of the Irrational Frequency Ratio in the Case of Equal Amplitudes of Superimposed
Accelerations: a1ω2

1 = a2ω2
2

In this section, we assume that the two fluids are subjected to superimposed accelera-
tions with equal amplitudes, a1ω2

1 = a2ω2
2. Hereafter, we focus attention on the marginal

stability curves, q(k) in Figure 3a–f, for different values of the irrational ratio of frequencies,
Ω = ω1

ω2
=
√

A=
√

a2
a1

, and for the following assigned values ρ = 0.8, µ = 0.5, F = 0.1,
We = 5, and H1 = H2 = 2. Note that the frequency ω1 is fixed via the Weber number, We,
and the frequency number, σ2.

4.2.1. Kelvin-Helmholtz Instability

As can be seen in Figure 3a,b, the Kelvin-Helmholtz instability occurs in the long-
wavelength regime. Indeed, it occurs at the wavenumber at which the calculation is
initiated, k = 0.01 for q = 0.62 and q = 1.47, respectively, for Ω = 1√

37
and Ω = 1√

2
.

However, by inspecting the curves in Figure 3c–f, we can see that, this time, the increase
in the irrational ratio of frequencies Ω from

√
2 to
√

37 corresponds to a decrease in the
frequency ω2, which tends to transform the curves of the Kelvin-Helmholtz instability
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without a threshold into curves with a threshold with an expansion of their corresponding
region. Indeed, the instability curves change their behavior and become curves with a
threshold (minimum in amplitude) contrary to Figure 3a,b. For instance, the curve in
Figure 3c, corresponding to Ω =

√
2, has a minimum at k = 0.63 corresponding to q = 2.03.

In Figure 3e, the threshold of this instability corresponds to q = 2.35 at k = 0.82 for
Ω =

√
11. These results also indicate a tendency to stabilize as Ω increases. It follows

from these findings that the irrational ratio of frequencies has a significant influence on the
Kelvin-Helmholtz instability, in the sense that it can change from a non-threshold instability
(long wavelength) to a threshold instability (finite wavelength).

4.2.2. Parametric Resonances

Besides the influence of Ω on the Kelvin-Helmholtz instability, and as illustrated in
Figure 3a–c for the limiting case of low values of Ω ( 1√

37
, 1√

2
and
√

2), the quasi-periodic
oscillation gives rise to more resonance zones than the periodic case [13].

For Ω = 1√
37

, the first parametric instability, that occurs at k = 1.63 for q = 0.6,

corresponds to the most unstable mode. For Ω ∈ [ 1√
2
,
√

3], the increase in Ω shifted the
most unstable resonance to the short wavelength perturbations. It takes place at k = 4
for Ω = 1√

2
, at k = 4.43 for Ω =

√
2, and at k = 4.76 for

√
3. Moreover, for Ω =

√
11,

the sixth resonance is the most unstable one and its threshold corresponds to k = 4 and
q = 2. As can be seen, the increase in Ω is accompanied by a decrease in the dimensionless
critical amplitude which corresponds to a destabilizing effect. In addition, it can be seen
in Figure 3d–f that some parametric instability zones start to disappear by increasing this
parameter beyond

√
3. From Ω =

√
37, the marginal stability curves become similar to the

periodic case and the most unstable resonance is the first one at k = 4.01 and q = 2.01, as
illustrated in Figure 3f.

As a summary, the selection of the wavenumber strongly depends on the irrational
ratio of frequencies, Ω. For low values of this ratio, the most unstable resonance zones
occur for low wavenumbers (long wavelengths). The wavenumber increases with Ω
with a stabilizing effect and beyond Ω =

√
37, the results tend towards those of periodic

oscillation [13] where the most dangerous parametric mode is the first one occurring at
k = 4. Note that, this behavior was also observed in the literature [17–19]. In other words, it
should be noted that, the flow dynamics observed in the case of high values of Ω (ω2 −→ 0)
is similar to that in the periodic oscillation case, where only the acceleration relative to the
frequency ω1 is dominant.

To better highlight the quasi-periodicity at the threshold of the parametric instability
(resonance), we refer to the method of harmonic balances [17,18], which consists of in-
serting the expression ξ(τ) = ∑∞

n=0 ∑∞
m=−∞

[
Cnm cos

(
n+mΩ

2 τ
)
+ Dnm sin

(
n+mΩ

2 τ
)]

into
Equation (27). Results are obtained by a truncation of the infinite sums in this expression
and then replaced by sums from 0 to N for n and from −N to N for m, respectively, which
allows us to obtain two coupled homogenous algebraic systems in Cnm and Dnm which
verify C−n,−m = Cn,m and D−n,−m = −Dn,m. The system has a non-trivial solution if its
determinant vanishes. For each N, the dimension of this system is 2N2 + 2N + 1. In this
context, in Figure 4, we illustrate the frequency spectrum of solutions generated at the min-
imum of two resonances of Figure 3c. Figure 4 shows the largest amplitude corresponding
to the dominant mode. Each dominant mode can be identified in the double series we
have just presented. Indeed, the numerical procedure shows that the thresholds of the two
resonances correspond, respectively, to the modes (n = 1, m = −1) and (n = 1, m = 1).
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Figure 3. Marginal stability curves, q(k), in the case of equal superimposed accelerations a1ω2
1 = a2ω2

2 ,
for different values of the irrational ratio of frequencies, Ω, and for ρ = 0.8, µ = 0.5, F = 0.1, We = 5,
H1 = H2 = 2.
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Figure 4. Frequency spectrum at the threshold resonances located at k = 1.82 and k = 4.43 for Ω =
√

2.

4.3. Effect of the Irrational Frequency Ratio in the Case of Equal Amplitudes of Superimposed
Displacements, a1 = a2

In this context, we assume equal amplitudes of the superimposed quasi-periodic oscil-
lations (A = a2

a1
= 1). In Figure 5a–f, we report the marginal stability curves corresponding

to the influence of the irrational ratio of frequencies, Ω, on the instability regions for ρ = 0.8,
µ = 0.5, F = 0.1, We = 5, and H1 = H2 = 2.

For Ω −→ 0 (ω2 −→ ∞), in Figure 5a, corresponding to Ω = 1√
37

, four resonances are
detected in the interval of the wavenumber 0 ≤ k ≤ 7. In this situation, the most unstable
region corresponds to the second parametric instability that occurs at k = 3.99 for q = 2.02.
However, the Kelvin-Helmholtz instability curve has a minimum at k = 0.68 and q = 2.44.

The passage of curves in Figure 5a, for Ω = 1√
37

, to the ones in Figure 5b, correspond-

ing to Ω = 1√
2

, is accompanied by the appearance of other resonance zones. Note that, the
eighth one is the most unstable, showing a destabilizing effect. It occurs at k = 3.98 and
q = 1.63. Furthermore, the region of the Kelvin-Helmholtz instability is narrowed and its
threshold is decreased.

By increasing Ω from 1√
2

to
√

2, in Figure 5c, we notice that the parametric instability
zones shift to the right and the ninth resonance is the most unstable, occurring at k = 4.91
for q = 1.11, and always with a destabilizing effect. In addition, a new weak expansion
of the Kelvin-Helmholtz instability region is also observed with a destabilizing effect.
The results in Figure 5d, corresponding to Ω =

√
3, show that the thresholds of the two types

of instability continue to decrease and the Kelvin-Helmholtz instability region is expanding.
Furthermore, the resonances are displaced toward higher wavenumbers and the most unstable
resonance becomes the sixth resonance taking place at k = 5.53 and q = 0.95. The increase
in Ω from

√
3 to
√

37, as shown in Figure 5e,f, tends to suppress the parametric resonances
from the wavenumber interval under consideration and only the Kelvin-Helmholtz instability
persists and occurs for a smaller dimensionless amplitude of oscillation.
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Figure 5. Marginal stability curves, q(k), in the case of equal amplitudes of the superimposed
displacements, a1 = a2 (A = 1), for different values of the irrational ratio of frequencies, Ω, and for
ρ = 0.8, µ = 0.5, F = 0.1, We = 5, H1 = H2 = 2.
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4.4. Effect of the Dimensionless Amplitude of Oscillation A for Different Irrational Ratio of
Frequencies Ω

The effect of the dimensionless amplitude of oscillation, A = a2
a1

, on the Kelvin-
Helmholtz and the parametric instabilities is considered in Figures 6 and 7 for different
irrational ratio of frequencies, Ω.

For Ω = 1√
37

, inspecting the curves in Figure 6a–c, it can be seen that, for A = 0.1,
the curves of Figure 6a correspond to the periodic oscillation [13] as in Figure 2, and the
increase in the oscillation amplitude, from A = 0.1 to A = 1, gives rise to further regions of
parametric instability in the wavenumber interval 0 ≤ k ≤ 7 without a significant effect
on the thresholds. Indeed, the thresholds of the most dangerous modes and those of the
Kelvin-Helmholtz instability region are not affected.

On the other hand, in contrast to the value Ω = 1√
37

, Ω =
√

3 promotes the occurrence
of more resonances into the marginal stability curves in Figure 6d–f. Furthermore, it turns
out that the increase in the amplitude, A, has a destabilizing effect and tends to decrease
the thresholds of the Kelvin-Helmholtz instability and those of the parametric resonances.
Let us also note that the latter are slightly shifted towards the short wavelength region.

Figure 7 shows that, for a large value of the irrational ratio of frequencies, Ω =
√

37,
the increase in A acts to destabilize the Kelvin-Helmholtz instability and suppresses the
parametric instability (resonances) in the range of the wavenumber 0 ≤ k ≤ 7.
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Figure 7. Marginal stability curves, q(k), for Ω =
√

37 and for different values of the amplitude,
A (ratio of the amplitudes of the superimposed displacements), ρ = 0.8, µ = 0.5, F = 0.1, We = 5,
H1 = H2 = 2.

4.5. Effect of the Damping Coefficient F

To examine the influence of the damping coefficient responsible for the friction,

F =

√
lc
g

σ2
, the neutral curves, q(k), are presented for different values of F, and for the

following assigned values: A = 1, ρ = 0.8, µ = 0.5, We = 5, and H1 = H2 = 2.
The curves in Figure 8 are plotted in the pertinent case of a low irrational ratio of

frequencies, Ω = 1√
37

. As expected, the increase in the parameter F, corresponding to a
decrease in the frequency number σ2, and thus an increase in the viscosity of the upper
fluid ν2, tends to systematically increase the threshold of the Kelvin-Helmholtz instability
region and that of the resonances. In addition, the parametric instability regions are shifted
into those of the short wavelength in which the resonances can be suppressed by viscosity.
Note that, when F = 0 (σ2 → ∞), the results tend towards those of Khenner et al. [5],
corresponding to the inviscid case.
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4.6. Effect of the Weber Number, We, on the Stability Threshold

The influence of the Weber number, We, on the neutral curves q(k) is presented, in
Figure 9, for the relevant case of the small irrational ratio of frequencies Ω = 1√

37
, A = 1

and for We = 1, 5, and 13. As can be seen, an increase in the Weber number, corresponding
to an increase in the oscillation frequency, ω1, leads to a considerable downward shift in the
marginal stability curves, indicating the occurrence of a destabilizing effect with a remarkable
expansion of the Kelvin-Helmholtz instability region. It should also be noted that, on the one
hand, the increase in We shifts the most unstable resonance zone towards short wavelength
perturbations (large wavenumber), whilst on the other hand, it tends to reduce the number of
resonance zones in the wavenumber interval considered in this study.
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Figure 8. Marginal stability curves, q(k), for different values of the damping coefficient, F, responsible
for the friction, ρ = 0.8, µ = 0.5, We = 5, H1 = H2 = 2, Ω = 1√

37
, A = 1.
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Figure 9. Marginal stability curves, q(k), for different values of the Weber number, We, and for
Ω = 1√

37
, A = 1, ρ = 0.8, µ = 0.5, F = 0.1, H1 = H2 = 2.

These results are also presented under another aspect in Figure 10, which represents
the evolution of the thresholds of the Kelvin-Helmholtz instability, (qkh, kkh) and of the most
unstable resonance, (qR, kR), as a function of the Weber number, We. We notice that the
critical wavenumber, kkh, slightly increases from almost zero, with the increase in We, which
means that the instability without the threshold becomes with threshold. However, the
corresponding critical amplitude qkh decreases with We, thus showing a destabilizing effect.
Likewise, the increase in We decreases the critical amplitude, qR, of the first parametric
instability and increases the corresponding wavenumber.
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Figure 10. Dependence of the thresholds of the Kelvin-Helmholtz instability, (qkh, kkh), and of the first
resonance, (qR, kR), on the Weber number, We, for a small irrational ratio of frequencies, Ω = 1√

37
and for A = 1, ρ = 0.8, µ = 0.5, F = 0.1, H1 = H2 = 2.

4.7. Effect of the Density Ratio ρ

The effect of the density ratio, ρ, on the Kelvin-Helmholtz and parametric instabilities,
is considered in Figure 11a–c. The configuration is initially stable (ρ1 > ρ2), hence the
density ratios are chosen to be less than unity. In Figure 11a, it is found that, in the interval
(0.1 ≤ ρ ≤ 0.4), an increase in the density ratio decreases the threshold values of the most
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unstable resonance, which corresponds to the first one as well as the threshold values of
the Kelvin-Helmholtz instability whose zone widens.

Afterwards, for (ρ > 0.4), Figure 11b,c show that the neutral curves of the Kelvin-
Helmholtz instability and the resonances are located above the ones corresponding to
ρ = 0.4. Here, as can be observed in Figure 12, for ρ ≤ 0.4, increasing the ratio ρ decreases
the thresholds while, for ρ > 0.4, an opposite effect is observed. This change from a
destabilizing effect to a stabilizing one occurs for ρ = 0.4, where the threshold of the
Kelvin-Helmholtz instability, as can be seen in Figure 11b, corresponds to the critical
amplitude and wavenumber q = 1.4 and k = 0.65, respectively. Thus, on the one hand,
for ρ = 0.9, the results in Figure 11c show that the threshold significantly increases to
reach the critical parameters q = 3.514 and k = 0.7; on the other hand, only one resonance
exists in the considered interval of the wavenumber. Let us also note that, in Figure 11b,c,
the first resonance dominates and the competition between the other parametric modes
is suppressed, especially for ρ = 0.9. These results are also illustrated in Figure 12 where
we observe, for ρ > 0.4, that the thresholds of the Kelvin-Helmholtz instability and the
first resonance, qkh and qR, grow monotonically with the increase in ρ. Nevertheless,
the wavenumber of the first resonance significantly increases while that of the Kelvin
Helmholtz instability remains almost constant.
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Figure 11. Marginal stability curves, q(k), for different values of the density ratio, ρ, and for Ω = 1√
37

,
A = 1, µ = 0.5, F = 0.1, We = 5, H1 = H2 = 2.
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, A = 1, µ = 0.5, F = 0.1, We = 5,

H1 = H2 = 2.

4.8. Effect of the Heights of the Two Fluid Layers H1 and H2

In this section, the effect of the dimensionless thicknesses of the fluid layers H1 and
H2 on the stability of the interface is illustrated in Figure 13, assuming that the layers
have the same thicknesses, i.e., H = 1. It is worth noting that the increase in H1 and
H2 has no effect on the resonance zones. In addition, by increasing H1 and H2, with
H1 = H2 > 1, the threshold of the Kelvin Helmholtz instability, initially with a very large
wavelength, has a finite wavelength. This behavior was also observed by Khenner et al. [5]
and Lyubimova et al. [13] for a periodic horizontal oscillation.

Figure 14 illustrates the evolution of the dimensionless amplitude of oscillation, q,
versus the wavenumber, k, for different values of H (H 6= 1) and for the same other
parameters as in Figure 13. It turns out that increasing H has a stabilizing effect on the
Kelvin-Helmholtz and parametric instabilities.
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Figure 13. Marginal stability curves, q(k), for Ω = 1√
37

, ρ = 0.8, µ = 0.5, F = 0.1, We = 5, A = 1 and
for different values of H1 and H2 with H = 1.
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Figure 14. Marginal stability curves, q(k), for Ω = 1√
37

, ρ = 0.8, µ = 0.5, F = 0.1, We = 5, and A = 1,
and for different values of H1 and H2 with H 6= 1.

5. Conclusions

In this study, we conducted a linear stability analysis of a system of two superimposed
fluid layers, of different densities and viscosities, confined in a vertical Hele-Shaw cell
subjected to horizontal quasi-periodic oscillation. The linear problem was reduced to a
quasi-periodic oscillator governing the evolution of the amplitude of the interface separat-
ing the two fluid layers. In this investigation, we focused our analysis on the dependency
of the marginal stability curves on the irrational ratio of frequencies, Ω, for equal ampli-
tudes of the superimposed accelerations of the quasi-periodic oscillation, a1ω2

1 = a2ω2
2,

and for different ratios of the superimposed displacement amplitudes, A = 1 (a1 = a2),
A = 0, 1, and A = 0, 5. The effects of the damping coefficient, F, the Weber number, We,
the density ratio, ρ, and the dimensionless heights of the two fluid layers H1 and H2 were
also discussed.

For equal superimposed acceleration amplitudes, a1ω2
1 = a2ω2

2, the increase in the
irrational ratio of the frequencies Ω = ω1

ω2
renders the Kelvin-Helmholtz instability initially

without threshold into an instability with a threshold. The numerical results have also
shown that for low-frequency ratios, there is a rich dynamics in terms of the resonance
number, allowing a very large selection of the wavenumber which results in the control of
the wave size. For both types of instability, increasing the irrational frequency ratio has a
stabilizing effect with the disappearance of several resonances, and the marginal stability
curves evolve towards the periodic case.

In the case of equal amplitudes’ displacements, A = 1, the very low values of the
irrational ratio of frequencies, Ω, this time give results that are similar to the periodic
case, whereas the intermediate values of this ratio give rise to several resonances with a
destabilizing effect for the two types of instability when increasing Ω. For large ratios, the
parametric resonances are suppressed from the considered wavenumber interval. However,
for A = 0.5, A = 0.1, and for low values of Ω, the dimensionless amplitude, A, has no
effect on the Kelvin-Helmholtz instability and on the parametric resonances thresholds.
However, for an intermediate value of Ω, it has a destabilizing effect on the two types of
instability with the presence of several resonances.

For the effect of the damping coefficient responsible for the friction F and the Weber
number, the numerical results showed that increasing these two dimensionless numbers has
a stabilizing effect on the Kelvin-Helmholtz instability, and that the parametric instabilities
are shifted to the short wavelength as the irrational frequency ratio increases.

Concerning the effect of the density ratio, for ρ ≤ 0.4, it has a destabilizing effect on
the Kelvin-Helmholtz and the parametric instabilities. However, for ρ ≥ 0.4, the density
ratio has a re-stabilizing effect on the two types of instability.
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Finally, keeping H = 1, and increasing the heights of the two fluid layers has no effect
on the resonances but has a stabilizing effect on the Kelvin-Helmholtz instability, which
was initially thresholdless but becomes so.
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