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Abstract: The formation of flow-induced, oriented structures in two-phase systems, as in this study,
is a phenomenon of considerable interest to the scientific and industrial sectors. The main difficulty in
understanding the formation of bands of droplets is the simultaneous interplay of physicochemical,
hydrodynamic, and mechanical effects. Additionally, banded structure materials frequently show
multiple length scales covering several decades as a result of complex time-dependent stress fields.
Here, to facilitate understanding a subset of these structures, we studied water in oil emulsions
and focused on the effects of three variables specifically: the confinement factor (Co = 2R/H), the
viscosity ratio (p), and the applied shear rate

( .
γ
)
. The confinement (Co) is the ratio between the

drop’s diameter (2R) and the separation of (the gap between) the circular rotating disks (H) containing
the emulsion. We carried out (a) observations of the induced structure under different simple shear
rates, as well as (b) statistical and morphological analysis of these bands. At low shear rates, the
system self-assembles into bands along the direction of the flow and stacked normal to the velocity
gradient direction. At higher shear rates is possible to observe bands normal to the vorticity direction.
Here, we show that a detailed analysis of the dynamics of the band structures is amenable, as well as
measurements of flow field anomalies simultaneously observed. The local emulsion viscosity varies
in time, increasing in regions of higher droplet concentration and subsequently inducing velocity
components perpendicular to the main flow direction. Thus, the emulsion morphology evolves and
changes macroscopically. A relatively plausible explanation is attributed to the competitive effects of
coalescence and the rupture of drops, where p values less than one predominate coalescence.

Keywords: shear banding; emulsion; simple shear; complex dynamics; vorticity

1. Introduction

The formation of oriented structures in two-phase systems, as in this study, and particu-
larly the formation of bands of droplets, is a phenomenon that attracts considerable interest
in the scientific and industrial fields. Its vast applications are directed to microfluidics, the
food industry, and granular materials, among other possibilities. Some band formation
studies have been reported in the literature for different types of samples, such as granular
materials [1,2], stiff particle suspensions [3,4], liquid crystals [5], polymer solutions [6], in
surfactant wormlike micelles [7,8], and attractive emulsions [9,10]. The arrangement of
bands in emulsions is reported mainly for the concentric cylinder geometry [11], where
band formation can occur in all three directions (the directions of the flow, the velocity
gradient, or the direction of vorticity). These bands may depend on different variables of
the flow or under specific and different conditions.

The essential difficulty of understanding band formation in biphasic systems is the
simultaneous physicochemical, hydrodynamic, and mechanical effects. Additionally, it is
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quite common that banded structure materials show length scales covering several decades.
For example, the characteristic length scales observed are as small as 0.3 µm, while their
macroscopic features extend over several millimeters [12]. In technologies of the order of
micro and nano, where biphasic mixtures play an essential role, these physical processes
are still poorly understood [13].

The trend of studies in this field recorded for a couple of decades suggests that band
structures occur in complex fluids whose relaxation times are slow [14–17]. Some banded
structures are observed after a long shearing flow—at a specific shear rate—and persist for
a long time, while in other cases, bands are transitory since the isotropy of the emulsion
is recovered after a short resting period a few times the duration of the applied shear
flow [18].

However, recent reports show that the phenomenon can also be observed in relatively
“simple” systems, such as two Newtonian liquids, immiscible and without surfactants [19].
Thus, the slow relaxation mechanisms can not be inferred from the dynamics of individual
constituents. The slow mechanisms appear to depend on collective dynamics that are
not easily determined or understood [20]. Next, we present a systematic study of the
formation of bands in a water-in-oil emulsion with a 50/50 volume fraction and under a
simple shearing flow. In particular, we address two aspects of the flow dynamics due to the
combined effects of close boundaries and dissimilar viscosities of drops and suspending
media, which simultaneously induce a 3D rearrangement of and migration of particles to
deviations of the expected flow profiles.

Shear banding in the emulsion. Among the earliest reports of band formation by
flows [17], the correlation with the shearing rate was emphasized, firstly in solid samples,
then in mixtures of molten polymers, and finally in emulsions. However, in emulsions,
the work of Caserta et al. [21] addresses the relationship between bandwidth and plate
separation. Additionally, band formation is only observed in emulsions with a viscosity
ratio of less than one. Consequently, inducing bands in emulsions is a relatively new and
poorly studied phenomenon, even though it is highly relevant in the advanced manufacture
of medical and optical devices, whose motivation lies in minimizing its components.
Thus, the essential objective is to understand the relationship between large-scale physical
phenomena and the microscale of its structure as well as, more importantly, the microscale
at the macroscale [22].

When an emulsion is subjected to a simple flow, to improve the phenomenological under-
standing of the formation of banding structures, this work focuses on mainly three variables: the
confinement effects (Co = 2R/H), the viscosity ratio, (p = droplet viscosity/matrix viscosity),
and the shear rate

( .
γ
)
. The confinement (Co) is the ratio between the drop’s diameter (2R)

and the separation between the circular disks (H). This dimensionless scale is frequently
used when studying diluted systems, for example, an isolated drop. In the literature we
find banded systems with p ~ 1 and values of confinement of 0.2 < Co < 0.56 [13], from
which it is possible to create ad hoc scenarios for the formation of bands.

The scenarios of the morphological evolution induced by the flow are, initially, the
alignment and elongation of drops (rotation and deformation); the second may be the
coalescence of drops; and the third, when highly elongated, is their rupture into multiple
smaller drops. These phenomena may happen simultaneously [23,24]. Moreover, after
a long processing time, the evolution may show the fourth scenario: the formation of a
banded structure.

The breakup of droplets under a shearing flow. Breakup usually happens whenever
a higher than critical value of the shearing flow occurs, with this condition being defined
by the critical capillary number, Cacr. That is, a breakup occurs when the drop’s surface
stresses are overcome by the stresses of the flow. However, in the work of Grace [25]
and that of De Bruijn [26], the rupture dynamics are shown to depend on Cacr and p.
Furthermore, Bentley and Leal [27] report results for droplet deformation and rupture
in a large class of two-dimensional linear flows, ranging from single-shear flow to pure
elongational flow, where again, the critical capillary number and the viscosity ratio play a
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significant role. Furthermore, for emulsions subjected to simple shear flows, Jansen [28]
has recently shown that the critical capillary number also decreases with increments of the
fraction of the disperse phase; that is: Cacr (p, φ).

The single droplet shapes and breaking up mechanisms of Newtonian liquids have
been extensively studied [29]. If Ca << 1, the shape of the drop is slightly ellipsoidal,
depending on the value of p, and remains aligned at an angle of 45◦ with respect to the
flow direction. For higher (although small) Ca values, the elongation of the drop increases
in time until the steady state is reached. The drop simultaneously rotates and aligns closer
to the flow direction.

Drop breakage is observed for values equal to and greater than the value of the critical
capillary number. The different modes of rupture of a droplet depend on the viscosity ratio.
For a viscosity ratio of less than one p < 1, the droplet acquires an elongated shape with
a pointed end, as the tip streaming phenomenon occurs. For p approximately equal to 1,
the central portion of the droplet forms a neck (or necks) until followed by the breaking
up into two daughter-droplets, with tiny satellite droplets between them. Additionally,
Ca >> Cacr, the droplets are deformed into long, thin fiber filaments that eventually break
up through the capillary wave instability mechanism. These mechanisms become more
complicated as the density of dispersed phase drops increases, and the length scales of a
different object overlap considerably, including non-negligible effects due to the presence
of the flow cell walls.

In this paper, experimental measurement of the banding in the direction perpendicular
to the vorticity axis (parallel to the flow axis) of an emulsion in a parallel disk device is
proposed. The band in the horizontal direction is quantitatively described with optical
techniques and image analysis. Additionally, the band in the vertical direction (vorticity–
gradient plane) is quantified assuming a linear profile, as shown in Figure 1 and droplet
statistics analysis [30]. For each description, the basic equations and experimental results
are stated. They are further discussed in terms of the results reported in the literature. The
contribution in the description of the physical phenomenon of band formation is simple
and aims to highlight the non-triviality of band formation.
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gradient, and the vorticity axis in the direction perpendicular to the flow-gradient plane. 

  

Figure 1. Schematic representation of the shearing device: parallel-disk geometry with a diameter of
36 mm and a gap of 0.1 mm. The emulsion (green color), is sandwiched by two quartz discs (cyan
color) and two silver plates (gray) for efficient temperature control. The movement of the lower disk
imposes a simple shear field on the emulsion, generating a velocity profile (red arrows between the
plates), the initial hypothesis is of a linear and unidirectional velocity profile. The coordinates are
designated as the flow axis in the direction of flow, the gradient axis in the direction of the velocity
gradient, and the vorticity axis in the direction perpendicular to the flow-gradient plane.

2. Materials and Methods

MATERIALS: We have studied emulsions W/O—a mixture of alkanes for the continu-
ous phase and an aqueous solution as the dispersed phase—, with very similar densities;
ρw/ρo = 1.03. The aqueous solution is (w/W) 10 µM polyethylene oxide, CAS#372781,
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Sigma-Aldrich, St. Louis, MI, USA) and 3% 2-propanol (CAS#190764, Sigma-Aldrich) in
97% ultra-pure water (resistivity ≥ 18.2 MΩ·cm; ρ = 0.997 g/mL). The continuum phase is a
mixture of polybutadiene (CAS#181382, Sigma-Aldrich), heptadecane (CAS#128503, Sigma-
Aldrich), 1,2,4-trichlorobenzene (Sigma-Aldrich CAS#132047), and eicosane (CAS#219274,
Sigma-Aldrich). It was prepared in a glass bottle by first mixing 39.69% heptadecane
with 7.56% eicosane, while maintaining it at 30 ◦C, and then adding a mixture of 6.25%
polybutadiene and 46.5% 1,2,4-trichlorobenzene. The use of these materials was for three
purposes; the first to mimic the rheological behavior of a mixture characteristic of the
Mexican oil industry, the second to achieve an optically observable mixture under the
selected study conditions, and the third to modulate the densities of the two emulsion
phases and minimize the effects of phase separation by gravitational forces.

METHODS: The dispersed phase has a dynamic viscosity of 0.57 Pa·s, and the contin-
uous phase a dynamic viscosity of 2.08 Pa·s, at 30 ◦C, respectively, within a shear rate range
of 0.01 to 10 (s−1). The viscosities of the fluids were measured with an ARES G2 Rheometer
(TA Instruments, New Castle, DE, USA). The viscosity ratio was p = 0.27.

The density of the two fluids was adjusted to minimize sedimentation in the emulsion
with 2-propanol (aqueous solution) and trichlorobenzene (alkane mixture). The interfacial
tension was determined by the deformed drop retraction (DDR) method proposed by
Luciani et al. [31]. A set of eleven drops of 40% dispersed aqueous phase in the oil phase
were evaluated to determine the average surface tension of 0.11 mN/m.

For the elaboration of the 50/50 emulsion (calculated as weight by weight), a ho-
mogenizer (Omni Inc., NW Kennesaw, GA, USA) with a fine sawtooth generator probe of
10 mm × 95 mm (SKU#15051) was used, rotating at 3000 rpm for 300 s, and at a constant
temperature of 30 ◦C. It was stored at 30 ◦C for 48 h to verify its stability and ensure that
any possible air bubbles had been eliminated. Subsequently, the emulsion sample was
placed on the bottom disk of the shear flow cell, and the top disk was carefully placed on
top without touching the sample, and then the disks were slowly compressed (squeezed)
to a gap of 100 µm. It was kept like this for ten minutes to reach a temperature of 30 ◦C
and erase any possible residual stresses and thermal histories. Additionally, a prior shear
flow of 0.075 s−1 was applied for eight minutes in all measurements. Subsequently, a ramp
sequence of constant shear rate,

.
γ, was applied, from 0.75 s−1 to 4.5 s−1, with increments of

0.75 s−1. Each ramp step was ~400 s, followed by an ~18 s no-flow rest time, long enough
for the droplets to reach a spherical shape.

All experiments were carried out using the parallel disk geometry (Linkam CSS450,
Linkam Scientific Instruments, Honeycrock Lane, Salfords, UK)), schematically shown
in Figure 1. The upper disk remains motionless; meanwhile, the lower disk rotates to
impose a shearing stress on the emulsion. The observation window (∅ = 2.8 mm),
located 7.5 mm from the center of rotation of the lower disc, allowed us to take im-
ages of the flow structure on the vorticity–velocity observation plane. All images of
the emulsion’s banded structures correspond to an observed area of 1000 × 1340 µm2;
that is, only 22%

(
∼= 1340000/π·

( 2800
2

)2
)

of the open field of view, and less than 0.6%(
∼= π·

( 2.8
2
)2·0.1/π·

( 36
2
)2·0.1

)
of the total volume of the sample. Thus, on the observation

plane of the flow, the real extension of these bands cannot be fully asserted, precluding
a better understanding of the role that broad time and length scales may play in this
phenomenon. All measurements reported in this paper were made with a 0.1 mm gap
between the discs and a temperature of 30 ◦C. For this geometry, the shear rate is defined
as

.
γ = ω·r/H, where the angular velocity ω is in rad/s, and the radius of observation r

and the separation between the plates H are in mm.
The Visualization of microstructure evolution was carried out with a Nikon SMZ-U

(Nikon Corp., Tokyo, Japan) light microscope. A Nikon Digital Sight DS-2mV camera was
arranged in a bright field lighting arrangement for image capture. Images were processed
with ImageJ® (version 1.53f51)software (National Institutes of Health, Bethesda, MD, USA),
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automatically and manually. The high turbidity disappeared as the shear rate increased
and was adjusted with proper light exposure.

3. Results
3.1. The Horizontal Distribution of Drops (Vorticity–Flow Plane)

In this paper, bands appear from an initial, spatially homogeneous emulsion. However,
prior to the observation of bands, other measurable phenomena that dominate the structural
evolution of the emulsion may appear after the application of a constant shear rate. Among
them are the increase in the average size of the dispersed phase, the evolution from a
monomodal to a bimodal distribution, the eventual coalescence, the self-organization in
necklaces, like a string of pearls, once again the eventual coalescence, the formation of
strings, and their breakup [30], among other possible phenomena.

The observed accumulation of drops into a banded structure seems to imply that there
is an underlying flow with a complex velocity field, not like simple shear flow and most
likely a fully three-dimensional flow field, even when the shear rate’s effects on the drops’
deformation are weak. That is, on the one hand, and assuming mostly quasi-spherical
drops, the simplest structural model (for emulsion with a viscosity of the mixture, p ≤ 1)
implies a lower viscosity for regions of a low fraction of the aqueous phase. Thus, regions
of high droplet counts will indicate a relatively higher viscosity with respect to neighboring
regions of low drops’ concentration. On the other hand, if drop interactions are significant
due to closeness among themselves, an extra stress field may be present, and a higher
viscosity could be associated with a higher concentration of drops [32]. In both cases, the
gradient in the viscosity within different regions may exist. For any homogeneous stress
field within the flow—as is the case of steady simple shear flow devices—it is implied that
lower viscosities (lower drop densities) move faster than higher concentration domains.

Thus, whenever horizontal bands are observed, the relative viscosity along the vorticity
axis should be an oscillating function of position with a steady whole viscosity value that is
made up of alternating regions of low and high viscosities. Hence, the horizontal profile of
the velocity field along the flow direction may also show a sinusoidal variation along the
z-axis and the vorticity axis, with a periodicity similar to that shown in the supplementary
section, in particular Figure S7e.

Consequently, to visualize this phenomenon during the constant flow regime (towards
the end of the transient state and for each shear rate), the velocity of individual drops along
the flow direction, but with different radial positions, were measured and mean values were
calculated vm = vm(r). The radial variability of the mean velocity, vm(r), across valleys or
peaks was evaluated. The droplet velocity was assumed to be constant for the steady-state
flow for each shear rate applied to the sample. For each frame, the open-shutter time is
one second; therefore, the displaced distance, d, of each droplet was measured in ImageJ®

software, and the drop velocity, v = d/t, was calculated.
Table 1 summarizes the observed velocities for a selection of drops for which the tracks

are unambiguous. Figure 2 shows the mean velocity obtained for all shear rates, indicating
a linear behavior of the velocity with respect to

.
γ for the weakest flows:

.
γ ≤ 2.25 s−1.

The rate of increase slows down once the banded structure appears:
.
γ ≥ 3.0 s−1, and has

twice the uncertainty of the evaluated speeds (see Table 1; rightmost column). Additionally,
the middle quartiles and the error bars are shown. The normalized dimensionless mean
velocity, with respect to the velocity of the shearing disk (vmax =

.
γ ·H), corresponds to the

right ordinate. Slopes m1 = v· .
γ
−1

= 49.77 µm, and m2 = 31.80 µm show a notable slow
down of the flow once the banded structure of the emulsion occurs. Accordingly, the slow
down of the normalized velocities is homogeneous and is about 10% for the three highest
shear rates (3.0, 3.75, and 4.5 s−1).
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Table 1. The velocity of drops (randomly selected) was observed for different shear rates.

Shear Rate (s−1) Total Number Drops Velocity Mean (µm/s) Standard Derivation of
Velocity (µm/s)

Realtive Deviation
of Velocity

0.75 127 34.24 1.40 0.04
1.50 143 72.55 2.60 0.04
2.25 140 114.40 6.35 0.06
3.00 175 134.09 8.74 0.07
3.75 105 165.23 16.25 0.10
4.50 198 183.52 15.98 0.09

Fluids 2023, 8, x FOR PEER REVIEW 6 of 15 
 

 31.80 μm show a notable slow down of the flow once the banded structure of the emul-
sion occurs. Accordingly, the slow down of the normalized velocities is homogeneous and 
is about 10% for the three highest shear rates (3.0, 3.75, and 4.5 s−1). 

Table 1. The velocity of drops (randomly selected) was observed for different shear rates. 

Shear Rate (s−1) Total Number Drops Velocity Mean (µm/s) Standard Derivation of 
Velocity (µm/s) 

Realtive Deviation of 
Velocity 

0.75 127 34.24 1.40 0.04 
1.50 143 72.55 2.60 0.04 
2.25 140 114.40 6.35 0.06 
3.00 175 134.09 8.74 0.07 
3.75 105 165.23 16.25 0.10 
4.50 198 183.52 15.98 0.09 

 
Figure 2. The average speed of droplets over the complete flow domain (𝛾 = 0.75, 1.50, 2.25, 3.00, 
3.75, and 4.50 s−1), chosen for each shear rate; left ordinate. Additionally, the middle quartiles and 
the standard deviation bars are shown (blue). The slopes are 𝑚  =  49.77 μm (linear fit, R2 = 0.99) 
and 𝑚  =  31.80 μm  (linear fit, R2 = 0.99) for the average droplet velocity values before (𝛾  < 2.25 𝑠 ) and after (𝛾  >  2.25 𝑠 ) which show a slowing with the formation of a band structure. 
The normalized dimensionless mean velocity with regard to the velocity of the shearing disk 
(𝑣  =  𝛾  · 𝐻) and standard deviation bars; right ordinate. A significant decrease is observed for 
values of 𝛾 = 3.0, 3.75, and 4.5 s−1. The values of the comparative t-test with 𝛾  =  2.25 𝑠   are 8.44, 
6.84, and 10.36, respectively, with p-value less than 0.0001 in all cases. 

As the shear rate increases, the observed increase in the standard deviation values is 
due to intrinsic difficulties in evaluating the average speed of drops in a flow that may no 
longer be laminar, as indicated in Table 1 and shown in Figure S8. The uncertainties for 
measured velocities increase, especially for those flow structures with a banded distribu-
tion of drops. This may imply that two phenomena are at play. The first one is simply an 
increase in collision rate between drops—particularly in the high concentration regime 
regions, inducing a slowdown of the measured velocity of individual drops. Moreover, 
the second may be due to a concentration-of-drops-dependent viscosity, with low drop 
concentration regions associated with lower viscosity, and thus, a higher velocity for a 
drop. 

This scenario implies that the velocity profile for a lamella on the flow–vorticity plane 
shall also show an oscillatory pattern. This pattern should be similar to the concentration 

Figure 2. The average speed of droplets over the complete flow domain (
.
γ = 0.75, 1.50, 2.25, 3.00,

3.75, and 4.50 s−1), chosen for each shear rate; left ordinate. Additionally, the middle quartiles and
the standard deviation bars are shown (blue). The slopes are m1 = 49.77 µm (linear fit, R2 = 0.99) and
m2 = 31.80 µm (linear fit, R2 = 0.99) for the average droplet velocity values before (

.
γ < 2.25 s−1) and

after (
.
γ > 2.25 s−1) which show a slowing with the formation of a band structure. The normalized

dimensionless mean velocity with regard to the velocity of the shearing disk (vmax =
.
γ ·H) and

standard deviation bars; right ordinate. A significant decrease is observed for values of
.
γ = 3.0,

3.75, and 4.5 s−1. The values of the comparative t-test with
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respectively, with p-value less than 0.0001 in all cases.

As the shear rate increases, the observed increase in the standard deviation values is
due to intrinsic difficulties in evaluating the average speed of drops in a flow that may no
longer be laminar, as indicated in Table 1 and shown in Figure S8. The uncertainties for
measured velocities increase, especially for those flow structures with a banded distribution
of drops. This may imply that two phenomena are at play. The first one is simply an increase
in collision rate between drops—particularly in the high concentration regime regions,
inducing a slowdown of the measured velocity of individual drops. Moreover, the second
may be due to a concentration-of-drops-dependent viscosity, with low drop concentration
regions associated with lower viscosity, and thus, a higher velocity for a drop.

This scenario implies that the velocity profile for a lamella on the flow–vorticity plane
shall also show an oscillatory pattern. This pattern should be similar to the concentration
of drops profile, normal to the vorticity axis. The velocity profile shall match the spacing of
bands and have higher velocities in regions of lower drop volumetric concentration.

Figure 3 shows that low concentration regions do not have many available drops;
thus, the number of data points is low. In contrast, regions with a high concentration of
droplets may present many possible candidates for their velocity calculation, but frequent
interaction with many neighbors limits the number of useful candidates (see Table S1).
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Figure 3. For the shear rate of 4.5 s−1, the highest average velocities correspond to a low con-
centration of droplets, except where the boundaries of a band are not yet defined, e.g., average
velocity 192.02 um/s. The bands develop and define their boundaries in the centripetal direction.
The valleys correspond to a low population of drops and peaks to a high population of drops (see
Figures S4 and S5). Velocities of some droplets along the flow direction vs. their position across the
vorticity axis (measured from the lower-left corner of the captured frame). Plots of the measured
velocity for individual drops for each marker with the average velocity over the valley or peak of the
drop distribution profile and the bar is the standard deviation.

In addition, Figure 3 shows the oscillatory character of the mean velocity of drops
within a given region across the vorticity axis (shown by a red trace). In particular, the
mean velocity profile shall match the spacing of bands and have higher velocities in areas
of lower droplet volumetric concentration, which can be inferred from the image of the
banded structure of the emulsion at the bottom of the graph.

Thus, the information from Figures 2 and 3 and S7 allow us to propose that the profile
of velocities along the flow direction, spanning the full vorticity direction (that is, vorticity–
flow plane), is non-homogenous, with a speed oscillation characterized by the same spatial
frequency as the concentration of drops of the banded structure.

3.2. The Vertical Distribution of Drops (Vorticity–Gradient Plane)

Suppose the horizontal distribution of drops observed in Figure S7 induces a velocity
distribution (an oscillatory velocity profile, as shown in Figure 3) along the flow direction
for all drops. In that case, the character of the flow field may be fully three-dimensional,
even when it is generated by a flow cell with perfectly flat parallel surfaces. This assumption
can be plausible due to several effects, which may occur simultaneously. Consequently,
these phenomena may also indicate that the vertical velocity profile is no longer linear,
mainly due to a slowdown in the central lamella of the flow, as shown in Figure 2 for shear
rates

.
γ ≥ 3.0 s−1.
In particular, the slowdown of the mean flow is clearly non-homogeneous across the

lamella, as seen in Figure 3. Both pieces of information are especially important and suggest
that the velocity along the vorticity axis is no longer zero or homogeneous. In fact, this
assumption could be plausible and may be explained by the oscillatory character of the
flow field that induces a lateral component of the velocity along the vorticity direction
(inducing gradients of the concentration of droplets observed in the banded structure).
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There must be a component of the velocity field along the vorticity direction which is
weak but characterized by an oscillatory manner. This normal component of the velocity
field assures the development of a banded structure. The deceleration along the flow
direction, as well as the appearance of a lateral (vorticity) component, may also indicate
that the vertical velocity profile will be three-dimensional.

In order to study the profile of the concentration of droplets and the vertical velocity
profile of the bands, Figure 4b shows an illustration of the captured image view in three
dimensions and the initial assumption of a linear, unidirectional velocity profile. Furthermore,
the figure hypothesizes from the dimensionless droplet velocity results that the vertical
distribution of the band is not homogeneous; however, this suggests that it is centered
between the plates and circular symmetry. In the lower part of the profile is the maximum
velocity, vmax =

.
γ ·H, and in the upper part, the zero velocity (static top disk). Figure 4a,b

shows dimensionless velocity measurements across the vorticity–gradient plane (with the
value of zero in the lower left corner of each captured image), for

.
γ = 4.5 s−1. It is possible

to identify different bands separated by an approximate width of ∼ 155 µm, and this value
is validated with the distance between the peaks in Figure S7.
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Figure 4. An illustration captured image view in three dimensions and the initial assumption of a linear,
unidirectional velocity profile. Furthermore, hypothesizing from the dimensionless droplet velocity
results that (a) the vertical distribution of the band is not homogeneous, but suggests that it is
centered between the plates and circular symmetrical. (b) Illustrates three gray bands, the band
with well-defined boundaries is dark gray and the band in the process of formation is light gray. In
(a,c) the dimensionless velocity across the vorticity direction is hsown. Each circle represents the
position of a droplet, measuring its speed, v = d/t, with d the displacement measured by each frame
and t being the elapsed time. (a) Comparison of v/vmax (right axis) and the separation between the
disks (left axis) of the observed drops. (c) Complete profile constructed with the measured velocities
of the observed droplets. The reconstruction and quantification of the thickness of the band in the
vorticity gradient plane for a shear rate of 4.5 s−1.

Carrying out a characterization of the vertical velocity of droplets profile, as shown
in Figure 4c, it is now possible to determine the profile of the concentration of droplets
in a band now in the gradient-vorticity plane, at least for the better-defined bands. This
analysis attempts to elucidate whether the band structure occurs from disk to disk of the
shearing cell. However, given that the concentration of droplets is quite large and, in fact,
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sufficiently high to preclude observation of the velocity of droplets near the bottom of the
flow cell, the measurement of velocities of droplets corresponds to those in the upper half
of the flow field, only.

Thus, based on the velocity of individual droplets and using their normalized velocity
to infer their vertical position on the band, it is possible to propose a vertical profile for the
concentration of droplets within a high concentration band. Figure 4a. shows the possible
position of droplets and the corresponding upper layer where droplets are located.

The droplet concentration within the red region, shown in Figure 4a, is postulated by
symmetry considerations that can only be determined by measuring the droplet velocity.
The dark red layer is the approximate thickness of the band without considering droplet
diameters. At the same time, the green inset corresponds to the thickness of 100 µm. Thus,
the area with a high concentration of droplets (the thickness of the band), when taking
into account the diameter of the droplets, can be at a value of ~40 µm. The observed
diameter of the droplets within this band zone is of the order of 15 to 30 µm and is also
taken into account to delimit the thickness of the light red layer. In this way, a possible
(actually, the minimum) complete profile is predicted, which is only a fraction of the wall
separation, thereby indicating quite thick regions above and below with only a few drops
(while the lamella maintains a high concentration of droplets). The confinement parameter
of the band as a whole is Co = (thickness of the band)/100 =(∼40)/100 = ∼ 0.4, which
is considered as moderate confinement in the literature [33].

4. Discussion of Results
Critical Capillary in Banding

For a single drop embedded in a continuum, with a viscosity ratio of p ∼ 0.28 and
drop size of r ∼ 18 µm, the literature estimates that reasonable values of the critical
capillary number in simple shear flow are about Cacr ∼ 0.51 [29]. In the present paper,
the critical capillary is Cacr ∼= 0.21 ± 0.07, which may imply that other perturbations from
nearby drops can induce the rupture of drops at a lower Cacr. These observations suggest
that the perturbations are caused by the confinement of the dispersed phase in the emulsion.

Recalling Taylor’s model prediction for the critical capillary, for a system with a
constant value of p, the value of Cacr implies that the critical radius, Rcr, the largest radius
value up to drops of stable shape and the shear rate are inversely proportional, Rcr ∝

(
1/

.
γ
)
.

The observed discrepancy of these two values can now be used to understand a portion
of the dynamics observed in relation to the band’s structure. In other words, the critical
radius of a drop decreases as the shear rate increases, as shown in Figure 5 (the region
delimited between the black dashed lines). According to Taylor’s predictions, these upper
and lower limits of the critical diameter values are analytical results valid for slow flows.
This figure also shows the complete evolution of the histograms of the drop size distribution
for the complete set of shear rates studied; the colored information portrays the histograms
reported in [30].

Please note that no drops smaller than 5 µm appear, as well as no drops larger than
35 µm. The highest frequency occurs at low shear rates and for diameters of about 12 µm. Drop
elongation and rupture of these drops do not occur until

.
γ = 1.75 s−1, when Cacr ∼ CaTaylor.

Higher shear rates preclude the observation of drops with a diameter of approx. 12 µm,
hence a coalescence mechanism for the growth of drops must be balanced by another
elongation and rupture of drops.

For shear rates
.
γ ≤ 2.75 s−1, no drop shall be stable for diameters larger than 12 µm,

implying that the observed stability of larger drops (i.e., about 16–20 µm) should be due to
other stabilizing phenomena, mainly from nearby drops and a more complex flow regime.
Additionally, for

.
γ ∼ 4.5 s−1, drops larger than 8 µm only exist when strong interaction

with other drops occurs, and the flow regime is more complex than simple shear flow. In
particular, these mechanisms appear to inhibit the existence of a drop larger than 25 µm.
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Figure 5. Distribution of size of drops in the emulsion vs. the complete range of shear rates used in
the experiments; frequency of drops are color-coded. Comparison of diameter 2Rcr, obtained with
the critical capillary (Cacr ∼= 0.21 ± 0.07) for Taylor’s model. Black dashed region; the delimited area
represents the range of stability for a single drop.

Figure 6 shows the location of the more massive drops inside the image, which are
mostly contained within the high concentration band, while smaller ones appear mainly
inside the valleys between bands. The average diameter of the drops inside the bands
is above the critical diameter of the single drop Taylor model (see Figure 5). In this way,
Cacr < CaTaylor even in this dilute regime, and Cacr � CaTaylor for drops confined in
concentrated regions.
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Figure 6. Correlation of position of a drop inside a slice of the flow–vorticity plane and the expected
diameter of the drop. (a) Image taken after a constant

.
γ = 4.5 s−1 and just after the flow disappeared;

(b) processed image selecting spherical drops only, total number of drops counted ndrops = 1460;
(c) selection of drops with diameters < 15 µm, contained in the green area; (d) selection of drops of
diameters > 15 µm, contained in the blue area; and (b’) histogram for drops after 2410 s, at

.
γ = 4.5 s−1

(corresponds to image (b)), (c’) histogram of droplets contained in a valley (green region in (c)) and
(d’) histogram for flow region of high concentration droplets (blue region in (d)).
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Therefore, this paper presents another possible explanation for the observed behavior
in concentrated emulsions with bands present. This explanation is based more on the fact
that the observed concentration gradients are concomitant with correlated gradients of the
velocity field along the direction of the flow and the appearance of a non-zero component
of the velocity field in the direction of the vorticity.

Previous attempts to explain the observed drops distributions were based on the
critical capillary number criteria. That is, the idea reported by Sundararaj and Macosko in
1995 [34] which rests upon the assumption that emulsions are slightly concentrated systems,
where the limiting case of Taylor’s model can be referenced. Despite this, it is important to
emphasize that the opposite is also stated in Jansen’s literature in 2001 [28]. Additionally,
Figure 6 shows that the droplets within the bands exceed the critical size due to a dynamic
equilibrium between the mechanisms that modify the morphology and the stress fields (by
near neighbors, shearless motion) and eventually increase the average viscosity within the
band [35,36].

The probability of contact for drops inside the bands is highest, giving coalescence a
potential role, while close neighbors modified the stress field about a drop, thus decreasing
rupture. It is then plausible that the average diameter of drops grows to a value that would
not be expected, taking into account a reduced model for the emulsion, and even more
so if we compare it with the most straightforward system: Taylor’s model. However, a
band of drops may impose a flow regime outside its core that is similar to that of a drop
in the string of necklace form. Pathak’s observations [34] propose four regimes, shown in
Figure 7. Pathak attempts to predict the possible morphologies in concentrated dispersions.
The regimes’ classification is based on the dimensionless and normalized shear rate and the

volumetric relation of the diameter of drops D4,3/H, where D4,3 =
∞
∑

i=1
ni·d4

i /
∞
∑

i=1
ni·d3

i , [30].

The first regime corresponds to the capillary number of the drops exceeding the critical
capillary, while the diameter of the drops is much less than the separation of the disks.
The second regime corresponds to the case wherein the capillary number of drops is less
than the critical capillary, and they are sufficiently dispersed such that no hydrodynamic
interaction is relevant in relation to neighbors or walls. The third regime is the case of
highly deformed drops (i.e., oblate ellipsoids). The fourth regime is the case where the
capillary number of drops (based on Taylor’s model) is higher than the critical capillary,
and the diameter of the drops is greater than the separation of the disks. In this regime,
drops with a highly deformed shape—strings or necklaces– are present and provide a
similar hydrodynamic environment to the banded structure of the emulsion. Moreover,
the last regime (the fifth) is for the case where the diameter of the strings is below the
separation of the disks, but the associated capillary number when strings are observed is
less than the critical capillary of the strings in conditions of low confinement.

Figure 7 shows the droplet size distribution statistics for shear rates of 0.75, 1.5, 2.25,
3.0, 3.75, and 4.5 s−1 indicated by the data points (black squares) and described in more
detail in [30]. Pathak’s data [37] correspond to the data (blue circles) points and also
correspond to the behavior observed when an emulsion shows long strings. In principle,
the results presented here correspond to Pathak’s first case where drops are agglutinated
and unstable because they stretch and break. However, the detailed structure and possible
flow consideration that may induce such spatial distributions have not been studied
experimentally to the extent it has been consulted in the literature, which is significant.

These data clearly do not match, but under these conditions, both strings, like bands,
present stability, which might occur due to the influence of the confinement of the effect
of the walls (on the band or the strings). This confinement leads to the existence of large
drops that overcome the rupture in both cases: Pathak with strings and the work presented
in this paper with bands. These anisotropic structures are undoubtedly part of a transient
state, which can be a consequence of deformations in bulk or in a concentrated emulsion.
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1 > D4,3/H > 2Rcr/H. Regime II corresponds to the case where the bulk droplets are stable,
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Regime V corresponds to unstable chains, D4,3/H > 2Rcr/H > 1, but unlike the previous regime,
the capillary number of the droplet chains is lower than the critical value. The boundary, D4,3 = H
corresponds to unstable droplets and chains, this boundary at present is not completely clear [37]. In
Taylor’s theory, the shear rate

.
γd, predicts the maximum radius of the drops

( .
γd = σ12/(H·ηm)

)
and

the boundary 2Rcr/H corresponds to his predictions.

The width of the bands is approximately 155 µm measured directly from the im-
ages. The bands move in a centripetal direction (see Figure S5). The centripetal move-
ment is a product of the accommodation of areas of higher viscosity and those of lower
viscosity [38–40]. At present, it is not possible to propose a mechanism that explains
this phenomenon.

5. Conclusions

The formation of bands perpendicular to the direction of the vorticity axis is not
well understood [6,10,11,21,41,42]. The phenomenon of band formation is produced with
relative simplicity, as is the case when mixing two immiscible Newtonian fluids with a
low viscosity ratio p < 1, without surfactants, and for specific shear rate values [13]. A
relatively plausible explanation is to attribute this to the competing effect of coalescence
and rupture, wherein values of p less than one of the coalescence predominate [27], and the
formation of large drops of a size determined by the separation of the discs [14] will end in
the formation of the pearl neck structures, as evidenced in the images [30] However, it is an
open subject of study.

It is hypothesized that the curvature of the flow field has no significant role in the
formation of bands, as posited by Caserta et al. [21,41]. Extrapolating the observations
and taking as reference the work of Jeffrey Byars [39], it can be hypothesized that the
observed bands correspond to a sector of an Archimedean spiral. We still cannot answer
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this question: whether these bands are concentric rings or spirals, and this quest was not
part of the objectives of this paper.

However, here we show that a detailed analysis of the dynamics of the bands structures
is possible, as well as the measurement of the flow field anomalies that are simultaneously
observed. The local viscosity of the emulsion increases in areas with a higher concentration
of drops, and regions of a lower concentration of drops imply a lower viscosity, which
causes the morphology of the emulsion to change macroscopically.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fluids8090240/s1, Figure S1: Scheme of the image analysis pro-
cedure for the description of the evolution of band formation. It is essential to include the flow
direction with an arrow. The stacking of images correspond to the

.
γ = 4.5 s−1; Figure S2: The z-project

techniques for banding analysis. From left to right: average intensity, maximum intensity, minimum
intensity, sum slices, standard deviation, and median; Figure S3: The plot of the intensity vs. radial
distance graph of z-project techniques for banding analysis. From left to right: average intensity,
maximum intensity, minimum intensity, sum slices, standard deviation, and median; Figure S4:
Image obtained with the average intensity technique with color inversion (left side) and its graph
of intensity vs. radial distance (px) for a

.
γ = 4.5 s−1 (right plots). In the image of inverted colors,

valleys correspond to a low population of drops and peaks to a high population of drops; Figure S5:
Intensity vs. radial distance graph from 0.75 to 4.5 s−1, each 0.75 (top to bottom). Formation and
displacement of the bands. The intensity axis was normalized from 0 to 1; Figure S6: Plot the average
intensity of 10 images (1 fps) for a

.
γ = 4.5 s−1. The parameters obtained from the adjustment of a

Gaussian curve are indicated; Figure S7: Intensity vs. vorticity axis (µm) of a pack of 10 images (1 fps)
for

.
γ = 3.0 s−1 and 4.5 s−1. Plot (a) shows the black trace for the mean intensity at each column,

while red bands correspond to their uncertainties. Plots (b) and (d) correspond to raw intensities,
while (c) and (e) to intensities with a baseline correction; Figure S8: On the left upper side is the graph
of intensity vs. vorticity axis (µm) of a pack of 10 images (1 fps) for an applied

.
γ = 4.5 s−1. The mean

time of t = 2410 s corresponds to the elapsed time from the start of the experiment to the capture of
the image packet. The top and right graph corresponds to the peak position displacement observed
for all 34 ministacks, i.e., xc vs. time for the two most significant peaks. On the lower side are the
graph of FWHM and of intensity vs. time, respectively. Blue data points correspond to the rightmost
peak and red point to the middle peak; Table S1: Data on the number of drops observed to determine
the average band (and non-band) velocity for the

.
γ = 4.5 s−1.
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