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Abstract: Traditionally, Fourier spectra have been employed to gain a deeper understanding of
turbulence flow structures. The investigation of isotropic forced turbulence with passive scalars
offers a straightforward means to examine the disparities between velocity and passive scalar spectra.
This flow configuration has been extensively studied in the past, encompassing a range of Reynolds
and Schmidt numbers. In this present study, direct numerical simulations (DNS) of this flow are
conducted at sufficiently high Reynolds numbers, enabling the formation of a wide inertial range.
The primary focus of this investigation is to quantitatively assess the variations in scalar spectra
with the Schmidt number (Sc). The spectra exhibit a transition from a k−5/3 scaling for low Sc to a
k−4/3 scaling for high Sc. The emergence of the latter power law becomes evident at Sc = 2, with
its width expanding as Sc increases. To gain further insights into the underlying flow structures,
a statistical analysis is performed by evaluating quantities aligned with the principal axes of the
strain field. The study reveals that enstrophy is primarily influenced by the vorticity aligned with
the intermediate principal strain axis, while the scalar gradient variance is predominantly controlled
by the compressive strain. To provide a clearer understanding of the differences between enstrophy
and scalar gradient variance, joint probability density functions (PDFs) and visualizations of the
budget terms for both quantities are presented. These visualizations serve to elucidate the distinctions
between the two and offer insights into their respective behaviors.

Keywords: passive scalar; turbulence; direct numerical simulation

1. Introduction

The Schmidt number is a dimensionless quantity that characterizes the relative impor-
tance of momentum diffusion to the diffusivity of passive scalars, namely Sc = ν/νθ . It is
particularly relevant when dealing with the transport of passive scalars, such as tempera-
ture, concentration, or other non-momentum-transporting properties, in a turbulent flow.
In forced isotropic turbulence, external energy is continuously injected into the system to
maintain turbulence. Passive scalars in this context refer to quantities that do not actively
contribute to the turbulent energy generation but are instead transported by the turbulent
flow. The effect of the Schmidt number on forced isotropic turbulence with passive scalars
strongly impacts several physical processes. At low Schmidt number (Sc << 1) molecular
diffusivity is high compared to the turbulent mixing. In this case, passive scalars are
mixed efficiently, and their gradients are rapidly flattened due to the dominant influence of
molecular diffusion. As a result, sharp gradients in the scalar field are quickly smoothed
out. At higher Schmidt numbers (Sc > 1), molecular diffusion becomes less significant
compared to turbulent mixing. This allows for concentration fluctuations to persist over
longer-length scales before being smoothed out by diffusion. Consequently, the scalar field
might exhibit more complex and smaller-scale structures. The scalar dissipation rate, which
quantifies how quickly the scalar variance is dissipated, is affected by the Schmidt number,
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as lower Schmidt numbers generally result in higher scalar dissipation rates due to the
dominance of diffusion, whereas higher Schmidt numbers lead to lower scalar dissipation
rates due to enhanced mixing.

Direct numerical simulations (DNS) have long been employed as a powerful tool for
investigating the intricate dynamics of passive scalars advected by turbulent flows. In the
context of studying these phenomena, isotropic turbulence has often been simulated using
DNS with a low wavenumber forcing. This setup enables the attainment of statistically
stationary states within a few eddy turnover times, facilitating the collection of extensive
datasets for an in-depth analysis of high-order statistical properties. It is worth noting that
the extensive body of literature on forced isotropic turbulence with and without passive
scalars makes it impractical to provide a comprehensive list of relevant papers in this
brief discussion. However, the review by Ishihara et al. [1] provides a comprehensive
compilation of papers on forced isotropic turbulence without passive scalars, while Donzis
et al. [2] catalog the studies specifically focused on passive scalars, shedding light on the
differences and similarities between velocity and passive scalar statistics, including their
spectral properties. An alternative approach to studying passive scalars in turbulent flows
involves DNS of decaying turbulence, initiated with prescribed spectra and random phases.
Although this method deviates from realistic initial conditions, it provides insights into
the effects of varying parameters, such as the Schmidt number. Orlandi and Antonia [3]
conducted a study specifically focused on understanding the influence of Schmidt number
variations on the decay of passive scalars. They compared DNS results with those obtained
using eddy-damped quasi-normal Markovian (EDQNM) closures, which offer informa-
tion about high Reynolds number regimes that would otherwise require computationally
prohibitive efforts to achieve with DNS. By leveraging DNS and incorporating spectral
closures, researchers have been able to delve into the complex dynamics of passive scalars
in turbulent flows, exploring a wide range of scenarios and parameters. The combination of
these techniques allows for a comprehensive investigation of the complex physics underly-
ing the behavior of passive scalars, providing insights that contribute to our understanding
of turbulent transport processes.

In a distinct approach, Orlandi et al. [4] employed a minimal flow unit (MFU) frame-
work to investigate various aspects of isotropic turbulence and the turbulent transport
of passive scalars. They initiated their simulations by introducing two orthogonal Lamb
dipoles, allowing them to interact and evolve. Initially, the flow exhibited a vortical-
dominated stage where vortex structures of smaller scales were generated through vortex
stretching. During the initial phase, the number and shape of the vortex structures gener-
ated from the initial conditions were similar to those generated under inviscid conditions.
However, as the simulation progressed and approached the time of the finite-time sin-
gularity, the vortical structures in the viscous case became dependent on the viscosity.
The statistical properties, including the velocity and passive scalar spectra, coincided with
those observed in forced isotropic turbulence.

The utilization of the MFU framework provided a detailed analysis of the dynamics
of the components of the vorticity and scalar gradient vectors along with the principal
axes of the strain rate tensor. These analyses corroborated the findings reported by Tsi-
nober [5] regarding the importance of the intermediate strain in the evolution of enstrophy
and the compressive strain in the scalar gradient variance. Additionally, flow visualiza-
tions were presented to enhance the understanding of the underlying physics. Notably,
Orlandi et al. [4] limited their simulations to a passive scalar with unit Schmidt number.

Through the implementation of the MFU framework, Orlandi et al. [4] provided a
comprehensive examination of the complex dynamics and statistical properties of isotropic
turbulence and passive scalar transport. Their work shed light on the behavior of vortical
structures and their relationship with viscosity, as well as the crucial roles played by
different strain components in the evolution of enstrophy and scalar gradient variance.

In the present paper, simulations of forced turbulence were conducted at both high and
low Reynolds numbers to investigate the transport of passive scalars, at various Schmidt
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numbers. Two different forcing methods were employed for the passive scalar, one similar
to that used for the velocity field to maintain a constant passive scalar variance during
the evolution towards the statistical steady state, and the other method employed by
Donzis et al. [2]. The choice of forcing method had an impact on the dynamics, leading
to oscillations in the scalar dissipation. The simulations using the second forcing method
exhibited growing oscillations, rendering them unsuitable for analyzing the spectra and
the terms in the balance equations of enstrophy and scalar gradient variance.

One unresolved question is whether the scalar spectrum, at any Schmidt number,
exhibits an inertial range with a power-law decay of k−5/3 similar to the kinetic energy
spectrum, or maybe other decay laws. In this respect, Lohse [6] argued that in sheared
turbulence, passive scalars should have a k−4/3 spectral range. In fact, based on the assump-
tion that in shear-dominated turbulence, the velocity spectrum should display a Eu ∼ k−7/3

spectral range [7], the respective Fourier coefficients should scale as û(k) ∼ k−2/3. Assum-
ing the constancy of the passive scalar flux in wavenumber space, Tθ(k) ∼ kû(k)θ̂2(k) ∼ χ
(with χ the scalar dissipation rate), it readily follows that Eθ(k) ∼ k−4/3. Support for
this scaling law came from measurements of temperature fluctuations in the wake of a
heated cylinder [8]. A theory for the behavior of scalar spectra in stratified turbulence
was proposed by Bolgiano [9] and Obukhov [10]. In analogy with Kolmogorov’s theory,
and assuming that next to a given flow scale k, the only relevant parameters are the thermal
dissipation rate and the product of the thermal expansion coefficient and gravity, a dimen-
sional analysis readily yield the prediction Eθ(k) ∼ k−4/7, which is commonly referred to
as the Bolgiano–Obukhov scaling. Numerical experiments by Camussi and Verzicco [11] in
cylindrical cells supported the reduced decay predicted by the Bolgiano–Obukhov scaling,
as shown in Figure 5 of Lohse and Xia [12]. Orlandi and Pirozzoli [13] carried out DNS of
natural convection at high Rayleigh numbers and a Prandtl number Pr = 1 and observed a
wide power-law spectral range with an exponent close to either k−4/3 or k−7/5.

To explore the dependence of the decay exponent on the Schmidt number and shed
light on the differences in the dynamics of enstrophy and scalar gradient variance, DNS of
forced isotropic turbulence transporting passive scalars at various Sc was conducted in this
study. These simulations provide information about the Schmidt number dependence of
the decay exponent and contribute to understanding the distinct behaviors of enstrophy
and scalar gradient variance.

2. Relevant Equations

The momentum and continuity equations for incompressible flows are as follows

∂ui
∂t

+
∂uiuj

∂xj
= − ∂p

∂xi
+

1
Re

∂2ui
∂xj∂xj

+ Fi;
∂uj

∂xj
= 0, (1)

where ui are the components of the velocity vector in the i directions, p is the pressure, x1,
x2, and x3 are the three orthogonal space directions, and Fi is the external forcing to prevent
decay of the turbulence kinetic energy q =< u2

i > /2. The passive scalar T is transported
by the velocity field according to

∂T
∂t

+
∂Tuj

∂xj
=

1
ReSc

∂2T
∂xj∂xj

+ Fθ , (2)

where Fθ is introduced to prevent a decay of the passive scalar variance, Θ =< T2 > /2.
The numerical simulations are initiated with velocity and scalar fields with random phases,
representing flows without structures but with high energy at low wavenumbers and small
energy at large wavenumbers. The initial kinetic energy spectrum is given by the equation
E(k) = 64(k/8)4e−(k/8)/8, with q =

∫
E(k) = 1.5, and

∫
k2E(k) = 180. The reference
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velocity is urms = 2q/3, and the Taylor Reynolds number (later defined) is related to the
initial spectrum E(k) through

Re = Re0

(
3

20

)1/2 (2
∫

k2E(k)
)1/2

∫
E(k)

.

The value of Re is determined by assigning a value to Re0, as well as specifying the values
of Sc. The same spectrum is used to generate the initial distribution of the passive scalar
field Θ. The velocity components and the passive scalar in physical space are obtained
using the method described by Rogallo [14].

The velocity components and the passive scalar in wavenumber space are given by

û1 = (α|k|k2 + βk1k3)/(|k|kh) (3)

û2 = (−α|k|k2 + βk3k2)/(|k|kh)

û3 = (−βk2
h)/(|k|kh)

T̂ = (−γk2
h)/(|k|kh),

where the hat symbol is used to denote complex quantities. This expression satisfies the
condition for a divergence-free velocity field in wavenumber space. Additionally, it can be
demonstrated that if the following expressions are satisfied

α =

√
E(k)
2πk2 eιθ1 cos(φ), β =

√
E(k)
2πk2 eιθ2 sin(φ), γ =

√
E(k)
2πk2 eιθ3 , (4)

the three-dimensional energy spectrum of the velocity field matches the given E(k) spec-
trum. To distribute the angles θ1, θ2, θ3, and φ uniformly over the interval (0, 2π), four
sets of random numbers are used. By applying the fast Fourier transform (FFT), the initial
velocity and thermal fields in physical space are obtained.

To achieve a statistically steady state in the transport equations, forcing terms are
introduced. Various forcing methods were discussed by Eswaran and Pope [15], based on
the concept that at high Reynolds numbers, the dynamics of the small scales should be
decoupled from the large scales. However, manipulating the large scales can impact the
rate of energy dissipation. A statistical steady state is reached when the dissipation rate
oscillates around a constant value over time. Without forcing, the root mean square velocity
< u2

i >=
∫

Ei(k, t)dk, at each instant, has a total energy component qi(t) =
∫

Ei(k, t)dk,
that is less than the initial energy q0 =

∫
Ei(k, 0)dk. By selecting a threshold wavenumber

|k|F, the energy ∆qi(t) within the range |k| ≤ |k|F is evaluated to determine the quantity
Fi = (q0 − qi(t))/(∆qi(t)), which represents the proportion of energy lost. By modifying
the ûi(n) components for |k| ≤ |k|F through ûi =

√
Fiûi(n), the total energy qi can be

kept constant over time. In the simulations described in this paper, a numerical scheme
was employed in physical space, and thus three-dimensional FFT operations were used to
transition between physical and wavenumber spaces. Within the wavenumber space, the ûi
components were modified for |k| ≤ |k|F. Subsequently, an inverse three-dimensional
FFT was applied to obtain the modified velocity in physical space. To save computational
time, the forcing was only applied during the last of the three Runge–Kutta steps used for
time advancement. The same forcing approach was also employed in the solution of the
passive scalar transport equation, resulting in a constant Θ(t) =

∫
Eθ(k, t)dk, throughout

the time evolution.
In contrast to the forcing scheme just described, Donzis et al. [2] used a forcing term

for Equation (2), of the type Fθ = −uidT/dxi, mimicking the effect of a mean passive scalar
gradient as found in natural convection flow. They assumed a constant gradient dT/dxi = 1.
In this scenario, not only does the rate of scalar dissipation vary over time, but the quantity
Θ(t) also experiences temporal fluctuations. Both forcing methods, as described by Eswaran
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and Pope [15] and Donzis et al. [2], were utilized in the present paper, and their respective
results are discussed later on.

The system of equations given by (1) and (2), subject to periodic boundary conditions
in the Cartesian directions xi, was numerically solved using a finite difference scheme as
described in Orlandi [16]. To handle the temporal integration, an implicit Crank–Nicholson
scheme was employed for the viscous terms, while a third-order Runge–Kutta scheme was
utilized for the convective terms. By adopting a staggered arrangement of the velocity
components, any odd–even decoupling phenomena were effectively eliminated, ensuring
the discrete conservation of the total kinetic energy in the inviscid limit. The nondimen-
sional temperature T was placed at the same location as u2, which proves particularly
advantageous in the presence of mean stratification, as it preserves the sum of potential
and kinetic energy. To facilitate the implementation of MPI (message passing interface)
coding, the computational domain was divided into layers parallel to the x2 direction.

3. Results
3.1. Global Flow Parameters and Validation

Numerical simulations were performed at several Reynolds and Schmidt numbers,
with an appropriate resolution chosen to ensure the maximum resolved wavenumber
k∗M ≈ 1, where the superscript ∗ indicates a normalization in Kolmogorov units. The fol-
lowing definitions are required to obtain this normalization from nondimensional compu-
tational units

u′ =
√∫

Edk/3, Dv =
∫

Ek2dk, ε = 2Dv/Re, η = (εRe3)−1/4

λ =

√
10
∫

Edk
εRe

, Rλ = Reλu′, SE = (εRe5)−1/4 SU = SE/η (5)

T′ =
√∫

Eθdk, Dθ =
∫

Eθk2dk, χ =
2Dθ

ReSc3/2 , ηb = η/
√

Sc, ST =
χη5/3

ε1/3 , SR =
ST
ηb

.

The energy spectra in Kolmogorov units were obtained by scaling the velocity energy
spectrum by SE, which represents the normalization factor for energy. Similarly, the root-
mean-square (rms) velocity was obtained by dividing the square root of the velocity
variances in computational units by SU , the normalization factor for velocity. The scalar
energy spectrum was scaled by ST , while the passive scalar rms was normalized by SR.

The global data for the relevant simulations regarding the velocity are presented in
Table 1, and the data for the passive scalar are reported in Table 2. The results presented
in Table 1 demonstrate that a series of simulations with an Ni = 1152 grid resolution
achieve a sufficiently high Taylor Reynolds number (Rλ) to capture a power-law inertial
range characterized by a k−5/3 scaling. Moreover, the maximum resolved wavenumber
k∗M > 1 indicates that the simulations effectively resolve the exponential decay range of the
spectrum. Simulations with an Ni = 768 resolution were also conducted, employing the
same random forcing as the Ni = 1152 cases. The influence of the passive scalar forcing was
investigated using two different forcing methods as previously mentioned. The simulations
at Rλ = 164 aimed to study the effect of high Schmidt numbers (Sc > 4) on the passive
scalar spectra. In Table 2, the global quantities related to the passive scalar are denoted by
the same letter as in Table 1, with an additional index corresponding to the specific value of
the Schmidt number.
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Table 1. Global quantities related to the solution of Equation (1).

Flow Case Ni Re Rλ K∗M SE103 SU10 λ/η Dv ε

A 1152 2694 438 1.89 4.19 1.27 34 581 0.44
B 1152 2021 374 2.36 5.97 1.47 32 433 0.43
C 768 367 164 5.72 49.7 3.33 21 74 0.41
D 768 367 164 5.72 49.7 3.33 21 74 0.41
E 768 2449 442 1.41 4.53 1.23 35 457 0.37

Table 2. Global quantities related to the solution of Equation (2), including the Schmidt number (Sc),
Batchelor length scale (ηB), and normalization factors for the scalar energy spectrum (ST), and for the
passive scalar rms (SR), passive scalar variance (Θ), the integrated scalar spectrum dissipation (Dθ),
and the scalar gradient dissipation rate (χ).

Flow Case Sc ηb (×102) K∗b ST (×104) SR (×10) Θ Dθ χ

A1 0.5 4.645 2.676 1.624 5.878 3.0 1145 1.70
A2 0.75 3.840 2.212 1.686 5.448 3.0 1719 1.70
A3 1.0 3.285 1.892 1.615 4.917 3.0 2278 1.69
A4 1.5 2.716 1.564 1.450 4.359 3.0 2955 1.46
A5 2.0 2.352 1.355 1.741 5.234 3.0 4732 1.75
B1 2.5 2.593 1.494 2.283 5.567 3.0 4139 1.64
B2 3.0 2.367 1.364 2.273 5.544 3.0 4947 1.63
B3 4.0 2.050 1.181 2.254 5.498 3.0 6541 1.62
C1 2.0 10.55 4.053 15.75 10.56 3.0 474 1.29
C2 4.0 7.463 2.866 15.65 10.49 3.0 941 1.28
C3 6.0 6.093 2.340 15.24 10.21 3.0 1375 1.24
C4 8.0 5.272 2.026 14.61 9.790 3.0 1758 1.20
C5 10.0 4.720 1.812 14.86 9.958 3.0 2235 1.21
C6 16.0 3.731 1.433 13.88 9.302 3.0 3341 1.14
D1 2.0 10.54 4.046 24.76 16.62 3.47 749 2.04
D2 4.0 7.450 2.861 25.71 17.26 3.82 1555 2.11
D3 6.0 6.083 2.336 26.31 17.66 4.04 2386 2.16
D4 8.0 5.268 2.023 26.76 17.96 4.19 3236 2.20
D5 10.0 4.712 1.809 27.12 18.20 4.32 4100 2.23
D6 16.0 3.725 1.430 27.87 18.70 4.58 6740 2.29
E1 1.0 3.675 1.411 1.992 5.420 3.00 2006 1.64

The simulations conducted in this study exhibit a linear growth of the dissipation
rate Dv with respect to the Reynolds number (Re), approximately given by Dv ≈ 0.225Re.
Consequently, the energy dissipation rate ε remains nearly independent of the Reynolds
number. A similar linear growth of Dv with Re was observed in the interaction of two
orthogonal Lamb dipoles by Orlandi et al. [4]. In that case, without any external forcing,
ε increased over time at a rate dependent on Re and eventually reached the same value
at a certain nondimensional time. Subsequently, ε decreased over time independently of
the Reynolds number. In the present simulations, the forcing was employed to achieve
a statistical steady state within a certain number of eddy turnover times. This transient
phase involved the formation of turbulent structures that were absent at the initial time.
Depending on the specific forcing method employed, the energy may remain constant
during this transient phase, while significant variations in Dv and ε can occur. At a certain
point in the simulations, the statistical quantities started to exhibit oscillations. From this
point onward, time averages were computed to obtain the mean values of Dv and ε, which
are presented in Table 1. Additionally, the effect of the forcing method on the spectra was
investigated, and comparisons were made with pseudospectral simulations available in
the literature.

To validate the accuracy of the present second-order finite difference scheme and
examine the spectra, comparisons were made with the results from the pseudospectral
simulations conducted by Jiménez et al. [17]. The pseudospectral simulations considered
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various values of the Taylor Reynolds number, with the highest reported at Rλ = 140. In the
simulations by Jiménez et al. [17], the forcing at wavenumbers k < |k|F was implemented by
assuming a negative viscosity coefficient of appropriate magnitude, adjusted periodically
to maintain k∗M ≈ 2.5. In the simulations conducted by Donzis et al. [2] at Rλ = 650,
the forcing in the momentum equation was implemented by fixing the E(k) spectrum
for wavenumbers k < |k|F, based on prior simulations that utilized a stochastic forcing
scheme. With this type of forcing, the total energy varies over time, and the spectrum at low
wavenumbers appears relatively smooth. In contrast, in the present simulations, the total
energy was kept constant, resulting in oscillations in the spectra at low wavenumbers.
Figure 1 compares the spectra of cases A, B, and C with those from the simulations of
Jiménez et al. [17] and Donzis et al. [2]. The longitudinal and transverse one-dimensional
spectra (Figure 1a and Figure 1b, respectively) highlight the effects of the forcing method.
In wavenumber space, the simulations exhibit a smoother trend at low wavenumbers.
In contrast, the simulations in physical space result in spectra that show an increase in
energy content at low k∗, potentially leading to a narrowing of the inertial range.
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Figure 1. One- and three-dimensional compensated energy spectra E = k5/3E, for flow cases
A, B, C (circles), compared with spectra reported by Jiménez et al. [17, black line], and by Donzis
et al. [2, yellow line]. a) one-dimensional longitudinal spectra; b) one-dimensional transverse
spectra; c) compensated three-dimensional spectra in logarithmic scale; d) compensated three-
dimensional spectra in semi-logarithmic scale.
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Figure 1. One- and three-dimensional compensated energy spectra E = k5/3E, for flow cases A, B, C
(circles), compared with spectra reported by Jiménez et al. [17] (black line), and by Donzis et al. [2]
(yellow line). (a) One-dimensional longitudinal spectra; (b) one-dimensional transverse spectra;
(c) compensated three-dimensional spectra in logarithmic scale; (d) compensated three-dimensional
spectra in semilogarithmic scale.

The differences in the spectra at low and intermediate wavenumbers can indeed be
observed in cases C and D, which have a large k∗M and sufficient resolution to simulate
the evolution of the thermal field at high Schmidt numbers. The compensated spectra in
Figure 1 highlight these differences and emphasize the amplitude of the spectral “bottleneck”
phenomenon, namely the energy pile-up at the start of the dissipative range. It is worth
noting that the one-dimensional spectra of Donzis et al. [2] in Figure 1 were derived
from the three-dimensional spectra using the relationships reported by Pope [18] (p.216).
Comparing the three-dimensional spectra in Figure 1c, it can be observed that they exhibit
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a better agreement. Both types of simulations, using the stochastic forcing scheme and
the present simulations in physical space, produce a spectral bottleneck with a significant
amplitude. These findings support the conclusions of Bogucki et al. [19], Dobler et al. [20],
who argued that a strong bottleneck is only observed in numerical simulations, in which
three-dimensional spectra can be directly evaluated. In contrast, experimental spectra are
generally derived from frequency spectra using the Taylor hypothesis, which explains why
a clear spectral bottleneck is not observed.

In their work, Su et al. [21] conducted a comprehensive analysis of three-dimensional
spectra obtained from direct numerical simulations. In Figure 2 of their study, they pre-
sented compensated spectra, highlighting their collapse around a peak that varied between
a value of 2.2 at Rλ = 140 and 2.0 at Rλ = 1000, located at k∗ = 0.128. The present data
for cases A and B, shown in Figure 1d, exhibit a good agreement with the spectra reported
by Donzis et al. [2] at Rλ = 650, using the same scaling as in Su et al. [21]. On the other
hand, the spectra of cases C and D align well with those presented by Jiménez et al. [17] at
Rλ = 140. This agreement further supports the consistency between the present simulations
and the findings reported in the literature.

The global data presented in Table 2 provide insights into the variations of quantities
related to the passive scalar with the Schmidt number. It is noteworthy that for all cases,
the maximum value of K∗b indicates that even at the highest Sc, Equation (2) is fully resolved.
Furthermore, Dθ increases with the Peclet number (Pe). The data in Table 2 suggest an
approximate relationship Dθ ≈ 0.8Pe, implying that the scalar dissipation rate χ remains
nearly constant. It is important to note that this relationship only holds for the simulations
with a constant Θ, leading to the exclusion of flow case D, where Θ varied. This observation
highlights the influence of the forcing method on the computed results.

To validate the passive scalar results at Sc = 1, a comparison was made with the
pseudospectral simulation by Donzis et al. [2], denoted as case E in the present study.
Although the forcing method in Donzis et al. [2] did not maintain a constant Θ, their
higher resolution diminished the impact of the forcing method. The compensated three-
dimensional spectra of the passive scalar and energy in Figure 2a demonstrate a good
agreement between the present simulations and the results of Donzis et al. [2]. In our
simulations, the relatively short inertial range was primarily due to reaching a lower
Reynolds number (Rλ = 442) with a resolution of Ni = 768, which was smaller than the
resolution used by Donzis et al. [2] to achieve Rλ = 650. Both simulations, however, indicate
a larger amplitude of the passive scalar spectral bottleneck compared to that of the velocity
field. This difference can be attributed to the different geometry of vortical structures and
scalar gradient structures, as commented later. Figure 2b illustrates that similar to the
velocity field, the amplitude of the spectral bottleneck in the three-dimensional spectrum
of the passive scalar is larger than that in the one-dimensional spectrum. This observation
suggests that our low-wavenumber forcing method leads to a less pronounced increase in
the amplitude of Eθ(ki), particularly in the three-dimensional spectrum.

3.2. Effects of Schmidt Number on Spectra

Efforts have been made in the past to provide a theoretical justification for the presence
of a k−1 range in three-dimensional spectra at high Schmidt numbers, following the inertial
range and preceding the exponential decay range. The work of Batchelor [22] played
a significant role in this regard, arguing that scalar fluctuations existed only in regions
where the spatial variations of the velocity field were linear. These fluctuations can be
expressed as the product of the principal strain rates and the position in that eigenframe.
Furthermore, Batchelor [22] assumed that the strain rates were locally uniform in space for
wavenumbers much larger than the Kolmogorov wavenumber (k >> 1/η) and persistent
in time, neglecting temporal fluctuations. In that scenario, the fluctuating scalar gradients
align preferentially with the eigenvector corresponding to the most compressive principal
strain rate, denoted as S̃3. This alignment leads to the emergence of a k−1 range in the
scalar spectra. The work of Donzis et al. [2] revisited and expanded upon the arguments
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put forth by Batchelor [22] to understand the behavior of passive scalar fluctuations in
turbulent flows. They considered the effects of strain rates, spatial uniformity, and temporal
persistence on scalar gradients, particularly in the context of high Schmidt numbers.
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The theoretical considerations of Batchelor [22] led to an expression for the three-
dimensional scalar spectrum, which takes into account the effects of strain rates and spatial
variations in the velocity field,

Eθ

χτηηB
= CB(kηB)

−1exp(−CB(kηB)
2) , τη = (ν/ε)1/2, (6)

where χ is the scalar dissipation rate, τη is the Kolmogorov timescale, and ηB is the Batchelor
scale. The constant CB is approximately equal to two and is determined by the average
value of the compressive principal strain rate, denoted as < S̃3 >. Surprisingly, in the
present simulations, CB was found to be in the range of 1.56 < CB < 2.2. This suggests
that the compressive strain S̃3 plays a crucial role in determining the presence of the k−1

range in the scalar spectra preceding the bottleneck. Furthermore, it can be speculated that
the different actions of the three principal strain rates (S̃i) on the velocity and scalar fields
may be responsible for the formation of scalar gradient structures with a different shape
compared to vortical structures. This observation is supported by the absence of a k−1

range in the energy spectrum shown in Figure 1, indicating that the dynamics of velocity
fluctuations are not controlled by the same mechanisms as scalar fluctuations.

The results of the present simulations are divided into two groups based on the reso-
lution used: one group with a resolution of N = 1154 for low and intermediate Schmidt
numbers, and another group with a resolution of N = 768 for high Schmidt numbers.
The compensated spectra for these groups are shown in Figure 3, with Figure 3a,b repre-
senting the N = 1154 simulations, and Figure 3c,d representing the N = 768 simulations.
The figures demonstrate a significant collapse of the spectra in the dissipation range, start-
ing at k∗b = 0.2. At low wavenumbers, the compensated spectra exhibit a plateau value
(Cθ) over a certain range of wavenumbers, which is not easily discernible due to the scalar
forcing for k < 3. The spectra from the N = 1154 simulations (top panels) show a larger
number of data points at low k∗b and match well with the constant value Cθ . The dependence
of Cθ on the Schmidt number can be observed in Figure 3b,d, which have scales similar to
those in Figure 2 of Su et al. [21]. The transition from the inertial range to the exponential
decay range is characterized by a reduction in the slope of E∗θ , which is required to have a
maximum value which is independent of Sc.
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Figure 3. Three-dimensional compensated passive scalar spectra (Eθ = k5/3
b Eθ) for simulations

with N = 1154 (a, b) and with N = 768 (c, d), reported as a function of k∗b = kη∗
b . Values of the

Schmidt number are indicated in the legend; in the inset of a) Cθ versus Sc is reported, in the inset
of c) n versus Sc is reported. In b) and d) the blue line refers to k1/3, and the black line to k2/3.

Figure 3. Three-dimensional compensated passive scalar spectra (Eθ = k5/3
b Eθ) for simulations with

N = 1154 (a,b) and with N = 768 (c,d), reported as a function of k∗b = kη∗b . Values of the Schmidt
number are indicated in the legend; in the inset of (a), Cθ versus Sc is reported; in the inset of (c), n
versus Sc is reported. In (b,d), the blue line refers to k1/3, and the black line to k2/3. The solid purple
dots in (a,b) refer to case E1 reported in Table 2.

The range of k∗b where the transition from the inertial range to the exponential decay
range occurs increases with the Schmidt number. Within this range, the slope of E∗θ
exhibits a variation from n = 1/3 to n = 2/3. These two limits correspond to power laws
(E ≈ k−m) with m = 4/3 and m = 1, respectively. By analyzing the data plotted in Figure 3,
the variations of Cθ and n with Sc have been evaluated and are shown in the insets of
Figure 3a,c. It is worth noting that the value of m = 1 predicted by Batchelor [22] can be
observed for Sc > 2. Additionally, as discussed earlier, the range of kb where Eθ ≈ k−1

increases with an increasing Sc.

3.3. Dissipation Spectra and PDFs in the Principal Strain Axes

Figure 4a provides a clear visualization of the amplitude of the spectral bottleneck by
plotting the energy and passive scalar dissipation spectra. The collapse of the spectra in Kol-
mogorov units is shown for both the A and C cases, indicating the range of wavenumbers
in which collapse occurs. In physical space, the shape of the spectra at high wavenumbers
is determined by the vorticity field and by the scalar gradients. Figure 4a reveals that the
largest content of energy and scalar dissipation resides at wavenumbers corresponding
to the maximum of the spectral bottleneck. This observation suggests that the size of the
vorticity structures is greater than that of the passive scalar gradients. Furthermore, it is
expected that the probability distribution functions (PDFs) of the vorticity components
(ωi) and the passive scalar gradients (gθi = ∂θ/∂xi) in forced isotropic turbulence are
approximately independent of their direction. However, these PDFs are not specifically
shown in the figure.
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Figure 4. a) Three-dimensional energy dissipation spectra (open circles), and passive scalar dissi-
pation spectra (solid circles) for flow cases A (red) and C (black); b) pdf of principal strain rates
(S̃λ), c) pdf of the vorticity components in principal strain axes (ω̃λ), and c) pdf of scalar gradi-
ent components in principal strain axes (g̃θ λ), for extensional stress (λ = 1, black), intermediate
stress (λ = 2, green), and compressive stress (λ = 3, red), Lines are used for case A, and symbols
for case C.

Flow case σS1 σS2 σS3 RS̃(×103) κS1 κS2 κS3
A1 1.657 0.800 -2.119 -1.588 9.201 6.549 10.233
C6 1.330 0.472 -1.758 -0.0538 7.259 4.648 7.7777

Table 3: Skewness (σ) and flatness (κ) coefficients for the principal strain rates (S̃λ).

Flow case σO1 σO2 σO3 κO1 κO2 κO3
A1 -0.223 -0.219 -0.207 9.053 8.293 14.128
C6 -0.210 -0.261 -0.153 7.157 6.600 10.885

Table 4: Skewness (σ) and flatness (κ) coefficients for the vorticity components in prin-
cipal strain axes (ω̃λ).

Figure 4. (a) Three-dimensional energy dissipation spectra (open circles), and passive scalar dis-
sipation spectra (solid circles) for flow cases A (red) and C (black); (b) PDF of the principal strain
rates (S̃λ), (c) PDF of the vorticity components in the principal strain axes (ω̃λ), and (c) PDF of the
scalar gradient components in the principal strain axes (g̃θ λ), for an extensional stress (λ = 1, black),
intermediate stress (λ = 2, green), and compressive stress (λ = 3, red), Lines are used for case A,
and symbols for case C.

To understand the flow physics in greater detail, the evolution of vorticity components
can be analyzed by projecting them along the principal axes of the strain rate tensor.
The strain rate tensor eigenvalues, denoted as S̃λ, provide valuable information about the
flow characteristics. The incompressibility condition requires the sum of these eigenvalues
to be zero. Among the three eigenvalues, S̃1 is the largest and positive, while S̃3 is the
smallest and negative. The sign of the intermediate eigenvalue, S̃2, determines the sign
of the determinant RS̃ = S̃1S̃2S̃3. This determinant, in turn, determines the nature of the
vortex structures near a specific point in space. If RS̃ > 0, the structures are rodlike, whereas
if RS̃ ≤ 0, they are sheetlike. From various databases of turbulent flows, including forced
and decaying flows, as well as wall-bounded and free-shear flows, it has been observed
that sheetlike regions dominate. These sheetlike structures are more unstable and play a
significant role in the energy cascade process [23].

Previous studies have also explored the flow topology associated with concentrations
of scalar gradients. One notable finding by Kerr [24] was that while vorticity is concen-
trated in tube-like structures, the scalar gradient and the largest principal rate of strain
align perpendicular to these tubes. Kerr [24] also observed that the highest values of
the scalar gradient occurred in sheets that wrapped around the vortical tubes. However,
the simulations in Kerr’s study were conducted at lower Reynolds numbers than in the
present study. In addition to studying the flow topology, the present study also focused
on examining the enstrophy and scalar gradient variance budget equations, specifically
their alignment with the principal axes of the strain rate tensor. These investigations aimed
to provide further insights into the flow dynamics and the role of different terms in the
budget equations.
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At each point in the computational domain, the strain rate tensor Sij was evaluated,
and its eigenvalues S̃λ and eigenvectors were determined. These eigenvalues and eigenvec-
tors were used to calculate the respective components of the vorticity vector (ω̃λ) and of
the scalar gradient vector (g̃θλ). To analyze the statistics of these quantities, the normalized
PDFs of the generic quantity q were considered, with q′ = (q− < q >)/ < q′2 >1/2,
where < > denotes the average value over the entire computational domain. In Figure 4b,
the PDFs of the three components S̃′λ are shown. The compressive strain component (S̃′3)
is depicted in red and exhibits a negative skewness, indicating a concentration of intense
negative values. On the other hand, the extensional strain component (S̃′1) is shown in
black and exhibits a positive skewness, indicating a concentration of intense positive values.
The magnitude of events in S̃′3 is generally stronger than that in S̃′1, and this magnitude
tends to increase with the Reynolds number. It is worth noting that the intermediate
component S̃′2 can take both positive and negative values, and consistent with previous
findings, the determinant RS̃ is negative for all flow cases, indicating a prevalence of
sheetlike structures over rodlike structures.

Table 3 provides the values of the skewness (σ) and flatness (κ) coefficients for the
strain fluctuations, as obtained from the PDFs shown in Figure 4b. These coefficients quan-
tify the differences in the distributions of the strain components. The larger value of κS3
compared to κS1 indicates a higher amplitude of events for the compressive strain compo-
nent (S̃′3) compared to the extensional strain component (S̃′1). This observation supports the
formation of high-amplitude events for S̃′3. Additionally, the positive skewness coefficient
σS2 indicates a prevalence of positive events for the intermediate strain component (S̃′2),
contributing to the overall negative value of RS̃. The flatness coefficient κS2 suggests that
the amplitude of events for S̃′2 is smaller compared to the compressed and extensional strain
components. In Figure 4c, the PDFs of the vorticity components aligned with the S̃λ are
shown. The symmetric distribution of these components is evident, as indicated by the low
values of the skewness coefficients (σOi) presented in Table 4. The negative values of the
skewness coefficients, however, highlight a negative skewness of the vorticity components,
which is not easily discernible in Figure 4c. It is noteworthy that the symmetry of the ω̃′λ
events decreases with an increasing Reynolds number, as observed in the table and the
figure, as well as in the other flow cases (B and E), which are not shown here.

Table 3. Skewness (σ) and flatness (κ) coefficients for the principal strain rates (S̃λ).

Flow Case σS1 σS2 σS3 RS̃ (×103) κS1 κS2 κS3

A1 1.657 0.800 −2.119 −1.588 9.201 6.549 10.233
C6 1.330 0.472 −1.758 −0.0538 7.259 4.648 7.7777

Table 4. Skewness (σ) and flatness (κ) coefficients for the vorticity components in the principal strain
axes (ω̃λ).

Flow Case σO1 σO2 σO3 κO1 κO2 κO3

A1 −0.223 −0.219 −0.207 9.053 8.293 14.128
C6 −0.210 −0.261 −0.153 7.157 6.600 10.885

Table 5 provides the skewness and flatness coefficients for the normalized scalar gradi-
ent components (g̃θλ), and these coefficients show relatively small differences compared
to those of the vorticity components (ω̃λ) presented in Table 4. However, the flatness
coefficients for the scalar gradients are generally larger than those for the vorticity com-
ponents. These findings, along with the spectra shown in Figure 4, suggest that the scalar
gradient structures are thinner and more intense compared to the vorticity structures. To
gain further insight into this behavior, the enstrophy and scalar gradient variance budgets
of the components along the principal axes are analyzed in the subsequent sections.
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Table 5. Skewness (σ) and flatness (κ) coefficients for the scalar gradient components in the principal
strain axes (g̃θ λ).

Flow Case σg1 σg2 σg3 κg1 κg2 κg3

A1 −0.208 −0.227 −0.341 14.11 17.54 15.875
C6 −0.174 −0.223 −0.289 9.172 12.14 9.274

3.4. Enstrophy Budgets

The budget equation for the time-averaged enstrophy, Ω =< ωiωi > /2, expressed in
terms of the quantities in the principal strain rate axes is given by

0 = < ω̃λω̃λS̃λ >︸ ︷︷ ︸
POλ

+
1

Re
< ω̃λ∇̃2ωλ >

︸ ︷︷ ︸
DOλ

. (7)

In this equation, the rate of entropy dissipation DOλ was evaluated by projecting on the
principal axes of the strain tensor the three components of the Laplacian of the vorticity
vector, and the quantities obtained were then multiplied by ω̃λ and summed over λ. It is
noteworthy that an accurate evaluation of the enstrophy dissipation rate requires a proper
resolution of the K4E(k) compensated spectra, which we preliminarily checked.

The S̃λ and the ω̃λ events are the contributors to POλ, which motivates an in-depth
analysis of their correlation. The values of each component of POλ are reported in Table 6,
which shows that the intermediate stress contribution is comparable to that of the exten-
sional one. On the other hand, the component aligned with the compressive strain is
the smallest, and its intrinsic negative sign reduces the overall enstrophy production. To
understand whether and how events containing S̃λ and ω̃λ are correlated, the joint PDF
between S̃′λ and ω̃′λ are shown in Figure 4. Small differences between the distributions
at high and low Reynolds number have been found, although only the A1 flow case is
shown. In the analysis of Figure 5, it is important to recall that the skewness of the vor-
ticity components is small, hence the joint PDF are nearly symmetric with respect to the
horizontal axis, and the correlation coefficients between S̃′λ and ω̃′λ are thus small. The
extensional strain (Figure 5a) and compressive strain (Figure 5c) have rather different
distributions. The asymmetric distribution of S̃′1 and S̃′3 discussed in Figure 4 contributes
to the different behavior observed in quadrants I and I I compared to quadrants IV and
I I I (see Figure 5a,c). To gain more insight into the difference between the compressed
and extensional stress, the contributions of each quadrant to the correlation coefficients
are isolated in Table 7. The first quadrant for the extensional stress contributes almost
twice as much as the compressed stress, and the same occurs for the fourth quadrant. The
values in the table quantify the higher contributions of quadrant I for the compressed
stress compared to that of quadrant I I I for the extensional stress. Similarly, there is a
higher contribution from quadrant I for the extensional stress compared to quadrant I I I
for the compressive stress. This indicates that events with high magnitudes of the stress are
associated with the generation of strong vorticity components aligned with them.

The joint PDF between the intermediate strain and the associated vorticity component
in Figure 5b exhibits a different distribution compared to the previous cases. However,
the contributions from each quadrant are similar to those of the extensional stress, as shown
in Table 7. Despite the global lack of correlation between the strain and vorticity compo-
nents, their interaction contributes to the positive enstrophy production, as seen in Table 6.
To further analyze the enstrophy production, the joint PDF between S̃′λ and ω̃2′

λ is evaluated.
The PDF of ω̃2′

λ is positively skewed, so the range of ω̃2′
λ was taken from −1 to 7, while the

range of S̃′λ was −15 to 15. The normalized joint PDF reveals that the four quadrants are no
longer balanced, as shown in Table 8.
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The high positive values of < S̃1ω̃2
1 > and < S̃2ω̃2

2 > indicate a large contribution from
quadrant I (see Table 8). The contribution of quadrant I I to < S̃1ω̃2

1 > is smaller compared
to < S̃2ω̃2

2 >, resulting in < S̃1ω̃2
1 > > < S̃2ω̃2

2 >. On the other hand, the negative value
of < S̃3ω̃2

3 > is due to the negative contributions from quadrants I I and IV, which are
larger than the positive contributions from the other quadrants. However, none of these
contributions is comparable in magnitude to the positive ones for λ = 1 and λ = 3. This
explains why − < S̃3ω̃2

3 > is smaller than < S̃2ω̃2
2 >.

Table 6. Enstrophy production (103 × S̃λω̃2
λ), and scalar gradient variance production (103 × S̃λ g̃θ

2
λ).

Flow Case < S̃1ω̃2
1 > < S̃2ω̃2

2 > < S̃3ω̃2
3 > − < S̃1 g̃θ

2
1 > − < S̃2 g̃θ

2
2 > − < S̃3 g̃θ

2
3 >

A2 4.8633 3.4859 −2.4440 −5.705 −0.719 27.159
C6 0.1541 0.1342 −0.0744 −2.230 −0.272 10.441

Table 7. Contributions to CS̃′l ω̃
′
l

from each quadrant, evaluated from the joint PDF in Figure 5.

FLOW QI QI I QI I I QIV CS̃′λω̃′λ
10−3

A2 (λ = 1) 0.20515 −0.09259 0.09252 −0.20454 0.54140
A2 (λ = 2) 0.20714 −0.11684 0.11662 −0.20687 0.05558
A2 (λ = 3) 0.10140 −0.15281 0.15176 −0.10131 −0.97016

Table 8. Contributions to CS̃′l ω̃
2′
l

from each quadrant, evaluated from the joint PDF between S̃′l and ω̃2′
l .

FLOW QI QI I QI I I QIV CS̃′λω̃2′
λ

A2 (λ = 1) 0.16470 −0.02388 0.08905 −0.05288 0.17699
A2 (λ = 2) 0.17575 −0.05729 0.08711 −0.05548 0.15009
A2 (λ = 3) 0.03248 −0.08558 0.05512 −0.06581 −0.06378

3.5. Budget of Scalar Gradient Variance

The budget equation for the scalar gradient variance χ =< g̃θλ g̃θλ >, is expressed as

0 = −< g̃θλ g̃θλS̃λ >︸ ︷︷ ︸
PGλ

+
1

ReSc
< g̃θλ∇̃2gθλ >

︸ ︷︷ ︸
DGλ

, (8)
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where the rate of scalar gradient dissipation is evaluated by projecting the three components
of the Laplacian of the scalar gradient onto the principal axes of the strain rate tensor,
multiplying by g̃θλ, and then summing over λ. As for the enstrophy dissipation, we
verified that the compensated K4Eθ(k) spectra decayed at the highest k, hence supporting
that the scalar gradient dissipation was properly resolved.

Differences between the terms in Equations (7) and (8) were discussed by Tsinober
and Galanti [25], who emphasized the different signs of the production terms. The values
presented in Table 6 indeed demonstrate that for the scalar gradient variance, the positive
contribution from the compressive strain dominates over the other two components, and the
contribution from the intermediate strain is the smallest. Notably, this dominance of the
compressive strain contribution is independent of the Peclet number, as evident from the
values reported in Table 6 for the high Reynolds number case (A1) and for the low Reynolds
number case (C6).

3.5.1. Rate of Production of Scalar Gradient Variance

The joint PDF between S̃′λ and g̃θ
′
λ was evaluated, demonstrating a good independence

from the Peclet number. As a result, Figure 6 displays the distributions for flow case A2
only. Choosing a flow with Sc = 1 makes the analysis of the differences between the
interactions of strain with vorticity and scalar gradients more instructive, as Sc does not
affect the rate of scalar gradient dissipation, see Equation (8). In Figure 5, the three joint PDF
differ significantly from each other. However, in Figure 6, the three joint PDF distributions
are more similar, when considering the asymmetry of the PDFs of S̃′1 and S̃′3. The similarity
between the joint PDFs shown in panels (c) of Figures 5 and 6 is a preliminary indication
of the importance of the compressive strain in the scalar gradient dynamics.
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Figure 6. Joint PDF between normalized principal strain fluctuations (S̃′λ, horizontal axis) and
corresponding scalar gradient fluctuations (g̃θ

′
λ, vertical axis), for flow case A2 (Sc = 1, contours

with interval ∆ = 0.0001): (a) λ = 1 extensional strain, (b) λ = 2 intermediate strain, and (c) λ = 3
compressive strain. Roman numbers denote the four quadrants.

The symmetry of the joint PDFs with respect to the horizontal axis is also observed for
the passive scalar gradient components. To quantify their magnitude, the contributions
of each quadrant to the correlation coefficient CS̃′λ g̃θ

′
λ

are reported in Table 9. A quick
examination reveals that in this case as well, the quantities are uncorrelated. The negative
contributions from quadrant I I for the λ = 3 component are the largest, resulting in the
sum of the three CS̃′λ g̃θ

′
λ

values being larger than that of CS̃′λω̃′λ
. Table 9 indicates that the four

contributions do not differ significantly for λ = 2. Additionally, Figure 6b demonstrates
that in this case, the distribution contours in the four quadrants are dissimilar, unlike in
Figure 5b. The equilibration is attributed to the positively skewed distribution of S̃′2 and to
the occurrence of strong g̃θ

′
2 events.
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Table 9. Flow case A2: contributions to CS̃′l g̃θ
′
l

from each quadrant, as from the joint PDF reported in
Figure 6.

λ QI QI I QI I I QIV CS̃′λ g̃θ
′
λ
10−3

1 0.14934 −0.09590 0.09574 −0.15013 −0.95457
2 0.11173 −0.12432 0.12429 −0.11172 −0.02500
3 0.08454 −0.16371 0.15490 −0.08724 −11.5133

The interaction between the S̃λ and g̃θλ events contributes significantly to the positive
value of − < S̃3 g̃θ

2
3 > in the scalar gradient production (see Table 6). To further understand

the large differences among the three contributions to the scalar gradient production,
the joint probability density function (PDF) between S̃′λ and g̃θ

2′
λ was evaluated. The PDF

of g̃θ
2′
λ exhibited a high positive skewness. Similar to ω̃2′

λ , the joint PDF of S̃′λ and g̃θ
2′
λ

was evaluated by varying the interval for g̃θ
2′
λ between −1 and 7, and the interval for S̃′λ

between −15 and 15. From the normalized joint PDF, the quadrant contributions to each
component of CS̃′λ g̃θ

2′
λ

were evaluated. Table 10 reveals that the distributions in the four
quadrants are no longer equilibrated.

Table 10. Flow case A2: contributions to CS̃′l g̃θ
2′
l

from each quadrant, evaluated from the joint PDF

between S̃′l and g̃θ
2′
l , evaluated for Sc = 1.

λ QI QI I QI I I QIV CS̃′λ g̃θ
2′
λ

1 0.09681 −0.04055 0.07985 −0.06420 0.07199
2 0.05210 −0.06244 0.06388 −0.06714 −0.01360
3 0.03026 −0.10503 0.05949 −0.07886 −0.09414

The high positive values of < −S̃3 g̃θ
2
3 > can be attributed to the negative contributions

from quadrants I I and IV (see Table 10), which outweigh the positive contributions from
the other two quadrants. As for the λ = 2 contribution, there is an increased equilibration
among the quadrants, resulting in a small value of the correlation coefficient. This explains
why < S̃2 g̃θ

2
2 > reported in Table 7 is much smaller in magnitude compared to the other

two components.

3.5.2. Rate of Dissipation of Enstrophy and Scalar Gradient Variance

In the study by Orlandi et al. [4], a “minimal flow unit” was employed to investigate
the potential finite-time singularity of the Euler equation by tracking the evolution of
relevant statistics. In the viscous case, the evolution of these statistics depended on the
Reynolds number. The initial conditions for the “minimal flow unit” consisted of two or-
thogonal Lamb dipoles positioned at a certain distance from each other. The self-induction
effect caused the dipoles to approach and eventually collide. During that time evolution,
a range of small vortical structures formed, which were distinct from those observed in the
inviscid evolution. The spectra of velocity and passive scalar at a specific time during the
viscous collision were found to agree with those of the forced isotropic turbulence. This
transition from a vorticity-dominated to a turbulent stage allowed for a connection between
the evolution of spectra and the visualization of flow structures in physical space.

In the present paper, before presenting the visualizations of the quantities involved in
Equations (7) and (8), it is important to present the averaged values for different combina-
tions of Schmidt and Reynolds numbers. The production of enstrophy and scalar gradient
variance, as shown in Table 7, should be balanced by the rate of dissipation of enstrophy
and scalar gradient variance, reported in Table 11. It is important to note that these terms
are evaluated from individual fields, so the global balance observed when aggregating a
large number of fields may not hold. The values reported in Table 11 highlight that the
component aligned with the intermediate strain contributes the most to the rate of enstro-
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phy dissipation, while the component aligned with the compressive strain contributes the
least. On the other hand, the rate of scalar gradient variance dissipation is largely attributed
to the component aligned with the compressive strain. For the simulations denoted as
A and C in Table 1, the ratio − < S̃1 g̃θ

2
1 > / < S̃3 g̃θ

2
3 > varied between 0.2 and 0.25 for

0.5 < Sc < 16, whereas the ratio − < S̃2 g̃θ
2
2 > / < S̃3 g̃θ

2
3 > was approximately 0.025. In

contrast, the dissipation of scalar gradient variance shows a dependence on the Schmidt
number. For case A, the ratio DG1/DG3 ranged from 0.17 to 0.27, and DG2/DG3 ranged
from 0.12 to 0.20. In the case of C, the variation was minimal, with DG1/DG3 ≈ 0.12 and
DG2/DG3 ≈ 0.17.

Table 11. Rate of enstrophy dissipation (−103 × DOλ), and scalar gradient dissipation (−103 × DGλ).

Flow Case −DO1 −DO2 −DO3 −DG1 −DG2 −DG3

A2 −1.3465 −3.1623 −0.2212 −2.4754 −1.9529 −11.589
C6 −0.0537 −0.1482 −0.0056 −0.8477 −0.6935 − 3.9475

4. Flow Visualizations
4.1. Vorticity, Strain, and Scalar Gradient

The shape and size of the intense vorticity structures in the flow differ from those
where scalar gradients are intensified. This distinction is qualitatively represented by the
velocity and scalar spectra. By conducting flow visualizations, it is possible to investigate
the association of zones with an intense enstrophy density (O = ωiωi/2) and high scalar
dissipation density (C = gθigθi), and regions of intense strain magnitude (S = sijsij). In
forced isotropic turbulence, several regions with intense turbulent activity are observed.
However, due to the three-dimensional nature of the flow, the visualizations are not as clear
as those presented in Orlandi et al. [4], where a hierarchy of turbulent structures formed in
the small region where the Lamb vortices collided. In the present flows, two-dimensional
visualizations were performed in a plane defined by the x1 and x3 coordinates, covering
the entire computational domain (−π ≤ xi ≤ π). These visualizations revealed several
spots with a high enstrophy and scalar gradient variance. To obtain a clear view of these
turbulent structures, visualizations were performed for the C6 case at a low Reynolds
number and Sc = 16, focusing on a limited area (−1 ≤ xi ≤ 1). For the A1 flow case at a
high Reynolds number and Sc = 0.5, the structures were smaller compared to those in the
C6 case. Therefore, the visualization area was further reduced to −0.5 ≤ xi ≤ 0.5.

The normalized fluctuations of the above properties (O′, C ′, S ′) can take both positive
and negative values, indicating contributions greater or smaller than their mean values,
respectively. These quantities are used to generate normalized PDFs and planar visual-
izations, as shown in Figure 7. The top row of Figure 7 shows that the three PDFs do not
exhibit significant differences, and the probability of obtaining values that are five times
greater than their root-mean-square value is relatively small. Furthermore, the positive tail
of the PDFs is the same for both the A1 and C6 flows. The insets in Figure 7b,c indicate that
there is only a Reynolds number effect on the negative values, which are associated with
the shape and size of the large scales. From the PDFs alone, it can be concluded that they
do not provide indications of the influence of the Reynolds number and Schmidt number
on the shape and intensity of the structures.

However, such influences can be appreciated through the visualizations of the en-
strophy, strain, and scalar gradient variance contours presented in Figure 7. In that figure,
negative values (blue contours) occupy a large part of the flow, whereas positive fluc-
tuations (red and green contours) are concentrated in small regions. At low Reynolds
number, the contours ofO′ (Figure 7d) and S ′ (Figure 7e) are organized into larger patterns
compared to those at high Re (see Figures 7g,h). This difference is even more apparent
when considering that the areas which are depicted is four times smaller. The visualizations
at low Re of contours of S ′ superimposed to those of O′ highlight the strong probability
that regions with a large O′ are located near regions with a strong S ′.



Fluids 2023, 8, 248 18 of 25
Version September 14, 2023 submitted to Fluids 18 of 26

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  5  10  15  20  25  30  35  40

10-3

10-2

10-1

100

-1  0  1p(
O

′ )

O′
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  5  10  15  20  25  30  35  40

10-3

10-2

10-1

100

-1  0  1p(
S′
)

S ′
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  5  10  15  20  25  30  35  40

10-3

10-2

10-1

100

-1  0  1p(
C′
)

C ′
a) b) c)

x3

x1

x3

x1

x3

x1
d) e) f)

x3

x1

x3

x1

x3

x1
g) h) i)

Figure 7. PDF of enstrophy density (O′, panel a), strain magnitude (S ′, panel b), and scalar
gradient magnitude (C ′, panel c) (flow case A1 in red, flow case C6 in black), and visualisation
of the same quantities for flow case C6 (panels d, e, f, in the range −1 ≤ xi ≤ 1), and flow
case for A1 (panels g, h, i, in the range −0.5 ≤ xi ≤ 0.5). Negative contours are shown in blue,
with increment δ = −0.25, and positive contours are shown in green (values < 10), and in red
contours (values > 10), with increment δ = 0.5.
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Figure 7. PDF of enstrophy density (O′, panel (a)), strain magnitude (S ′, panel (b)), and scalar
gradient magnitude (C ′, panel (c)) (flow case A1 in red, flow case C6 in black), and visualization of
the same quantities for flow case C6 (panels (d–f), in the range −1 ≤ xi ≤ 1), and flow case for A1
(panels (g–i), in the range −0.5 ≤ xi ≤ 0.5). Negative contours are shown in blue, with increment
δ = −0.25, and positive contours are shown in green (values < 10), and in red contours (values > 10),
with increment δ = 0.5.

To quantify the correlation between the various quantities, the corresponding joint
PDFs were evaluated, and the quadrant contributions to the correlation coefficients Ca′ ,b′

are shown in Table 12, where a and b denote any two generic quantities. The correlation
coefficient between S and O is quite large and relatively independent of the Reynolds
number. The first quadrant contributes the most, indicating that high and positive values
of S ′ are associated with points of intense O′. Points with small negative values of S ′ and
O′ contribute to CO′ ,S ′ to a lesser extent, while the negative contribution to CO′ ,S ′ from S ′
andO′ of opposite sign is negligible. The influence of the compressive strain on the passive
scalar leads to elongated patterns of C ′ at low Re and Sc = 16 (see Figure 7f). This figure,
together with Figure 7e, indicates that the correlation coefficient between the S ′ and C ′
events is small, as corroborated by the quadrant contributions in Table 12. Although CC ′ ,S ′
is reduced, Table 12 emphasizes that the first quadrant contributes the most. Even at high
Re and Sc = 0.5 (see Figure 7i), the patterns of C ′ are still rather elongated, with intense
positive (red-colored) events poorly correlated with strong positive S ′ events. Despite this
occurrence, the QI contribution is greater in the A1 flow case than in the C6 flow case.
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From the table, it can be concluded that the correlation coefficient CC ′ ,S ′ reduces with an
increase in Sc.

Table 12. Contributions to correlation coefficients Ca,b from each quadrant of the joint PDF, related to
the visualizations reported in Figure 7.

Flow Case QI QI I QI I I QIV Ca,b

A1 (Σ, Ω) 0.44643 −0.01391 0.08527 −0.02023 0.49755
C6 (Σ, Ω) 0.44226 −0.02354 0.10089 −0.02922 0.49038
A1 (Σ, χ) 0.13713 −0.02998 0.05963 −0.04336 0.12342
B3 (Σ, χ) 0.12070 −0.03855 0.06354 −0.05073 0.09501
C6 (Σ, χ) 0.11348 −0.05480 0.07497 −0.06394 0.06970
C2 (Σ, χ) 0.12510 −0.04297 0.07006 −0.05744 0.09475

4.2. Enstrophy and Scalar Gradient Variance Budgets Terms

To better understand the differences between the patterns ofO′ and C ′, it is useful to an-
alyze the distributions of the respective terms in their budget equations, Equations (7) and (8),
using the PDFs and planar visualizations of the production and dissipation terms. Figure 8
shows the visualizations corresponding to the A1 and C6 cases. The PDFs of the enstrophy
dissipation density (D′O, Figure 8b) and of the scalar gradient dissipation density (D′G,
Figure 8d) are similar and independent of the flow case. The insets emphasize that this
similarity holds even for the low-amplitude events. The PDF of the enstrophy production
density (P′O, Figure 8a) exhibits a good independence with respect to the Reynolds number.
Since the positive events are stronger than the negative ones, their skewness coefficients
are approximately equal to seven. On the other hand, regarding the scalar gradient pro-
duction density (−P′G, Figure 8c) the positive events are much stronger than the negative
ones, indicating a prevalence of the compressive stress over the extensional stress in the
formation of strong scalar gradients. The inset in Figure 8c shows a dependence on the
Schmidt number for the weak events, but this does not affect the high skewness coefficient,
which is equal to 10.5.

At low Re, the positive events in Figure 8 are observed to occur within large-size
regions, and there is a strong correspondence between negative values of enstrophy pro-
duction in Figure 8e and zones depleted with enstrophy dissipation in Figure 8f. However,
there is a good correlation between the positive events, as evidenced by the dominance of
the first quadrant contribution (QI = 0.30344) over the others. Thin and elongated regions
with large positive scalar gradient production (Figure 8g) and scalar gradient dissipation
(Figure 8h) are also observed, which reduce the correlation coefficient (QI = 0.22186),
consistent with the visualizations in Figure 7. At high Re, a similar behavior is observed in
the bottom figures. The Reynolds number independence is demonstrated by QI = 0.30478
for the correlation coefficient between the terms of Equation (7). There is a slight increase
in the correlation between scalar gradient production and scalar gradient dissipation with
the Schmidt number, as shown by QI = 0.28435 for the A1 case.

4.3. Identification of Enstrophy- and Vorticity-Containing Structures

Figure 9a,b present isosurfaces of the enstrophy dissipation density (DO), of the enstro-
phy production density (PO), and of the Q criterion [26], all normalized by the mean enstro-
phy. These visualizations aim to explore the potential correspondence between the terms in
Equation (7) and rod- or ribbonlike structures. Visualizations for flow case of C2 (low Re,
Sc = 2) are shown in Figure 9. The Q criterion, introduced by Jeong and Hussain [26], is a
popular method for distinguishing between rodlike and ribbonlike structures in turbulent
flows. It is defined as Q = 0.25(ωλωλ − 2SλSλ), evaluated with the components projected
on the principal axes. Structures with Q > 0 are considered rodlike, while those with Q < 0
are classified as ribbonlike. Three-dimensional visualizations of enstrophy dissipation
density (DO), enstrophy production density (PO), and Q, all normalized by the mean en-
strophy, can help investigate the correspondence between these terms in Equation (7) and



Fluids 2023, 8, 248 20 of 25

rod- or ribbonlike structures. Figure 9a,b show such visualizations for the case C2 at low
Reynolds number and Sc = 2. In these figures, the red surfaces, depicted as circular shapes,
represent rodlike structures with Q > 0, while the blue surfaces correspond to ribbonlike
structures with Q < 0. It is important to note that these visualizations were performed
in a small region, and thus the observed volume may not be representative of the entire
flow. However, it appears that regions dominated by vorticity occupy a larger volume
compared to those dominated by strain. By measuring the volume occupied by the Q < 0
(blue) and Q > 0 (red) regions in the entire computational box, it was found that the former
accounted for 60.2% of the volume, while the latter occupied 39.8%. This observation can
be explained by considering that under the constraint < Q >= 0, the amplitude of the
Q < 0 patches is smaller than that of the Q > 0 patches. In Figure 9a, the formation of
yellow layers, indicating a positive PO, can be observed primarily close to or within the
rodlike structures. Figure 9b shows that the negative green regions representing DO are
small, rare, and predominantly occurring in regions with a weak Q.
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Figure 8. PDF of enstrophy production density (P′
O, panel a), enstrophy dissipation density (D′

O,
panel b), scalar gradient production density (P′

G, panel c), (flow case A1 in red, flow case C6
in black) and scalar gradient dissipation density (D′

G, panel d), and visualisation of the same
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i-n, in the range −0.5xi < 0.5). Negative contours are shown in blue, with increment δ = −0.25,
and positive contours are shown in green (values < 10), and in red contours (values > 10), with
increment δ = 0.5.

of the Reynolds number. The first quadrant contributes the most, indicating that high594

and positive values of S ′ are associated with points of intense O′. Points with small595

negative values of S ′ and O′ contribute to CO′ ,S ′ to a lesser extent, while the negative596

contribution to CO′ ,S ′ from S ′ and O′ of opposite sign is negligible. The influence of597

the compressive strain on the passive scalar leads to elongated patterns of C ′ at low Re598

and Sc = 16 (see Figure 7f). This figure, together with Figure 7e, indicates that the cor-599

relation coefficient between S ′ and C ′ events is small, as corroborated by the quadrant600

contributions in Table 12. Although CC ′ ,S ′ is reduced, Table 12 emphasizes that the first601

quadrant contributes the most. Even at high Re and Sc = 0.5 (see Figure 7i), the patterns602

of C ′ are still rather elongated, with intense positive (red-colored) events poorly corre-603

lated with strong positive S ′ events. Despite this occurrence, the QI contribution is604

greater in the A1 flow case than in the C6 flow case. From the table, it can be concluded605

that the correlation coefficient CC ′ ,S ′ reduces with an increase in Sc.606

4.2. Enstrophy and scalar gradient variance budgets terms607

To better understand the differences between the patterns of O′ and C ′, it is useful608

to analyze the distributions of the respective terms in their budget equations, Eq. (7)609

and Eq. (8), using the PDFs and planar visualizations of the production and dissipation610

terms. Figure 8 shows the visualizations corresponding to the A1 and C6 cases. The611
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Figure 8. PDF of enstrophy production density (P′O, panel (a)), enstrophy dissipation density (D′O,
panel (b)), scalar gradient production density (P′G, panel (c)), (flow case A1 in red, flow case C6 in
black) and scalar gradient dissipation density (D′G, panel (d)), and visualization of the same quantities
for flow case C6 (panels (e–h), in the range −1 < xi < 1) and flow case for A1 (panels (i–l), in the
range −0.5xi < 0.5). Negative contours are shown in blue, with increment δ = −0.25, and positive
contours are shown in green (values < 10) and in red contours (values > 10), with increment δ = 0.5.
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Figure 9. Iso-surfaces of Q/ < ωλωλ >= ±1.5 (red positive, blue negative) superposed to a)
iso-surfaces of ω̃λω̃λS̃λ/ < ωλωλ >= ±15 (yellow positive, green negative); b) iso-surfaces of
1

Re ω̃λ∇̃2ωλ/ < ωλωλ >= ±50 (yellow positive, green negative); (c-e) contours of contributions

to enstrophy dissipation in principal strain axes ( 1
Re ω̃λ∇̃2ωλ/ < ωλωλ >); (f-h) contours of

contributions to enstrophy production in principal strain axes. (ω̃λω̃λS̃λ/ < ωλωλ >); c) and f)
extensional, d) and g) intermediate, e) and h) compressed. Green and blue are used for negative
values, yellow, red and magenta are used for positive values, with contours increment ∆ = 2.

Figure 9. Isosurfaces of Q/ < ωλωλ >= ±1.5 (red positive, blue negative) superposed on
(a) isosurfaces of ω̃λω̃λS̃λ/ < ωλωλ >= ±15 (yellow positive, green negative); (b) isosurfaces

of 1
Re ω̃λ∇̃2ωλ/ < ωλωλ >= ±50 (yellow positive, green negative); (c–e) contours of contributions

to enstrophy dissipation in the principal strain axes ( 1
Re ω̃λ∇̃2ωλ/ < ωλωλ >); (f–h) contours of

contributions to enstrophy production in the principal strain axes. (ω̃λω̃λS̃λ/ < ωλωλ >); (c,f) ex-
tensional, (d,g) intermediate, (e,h) compressed. Green and blue are used for negative values and
yellow, red and magenta are used for positive values, with contour increment ∆ = 2.

The distribution of the enstrophy production and dissipation densities can be better
understood through contour plots in planar sections. From these plots and Figure 9b, it is
evident that the dissipation density is mainly concentrated within the rodlike structures,
while only a few spots are located in regions of weak Q. Additionally, locally, the enstrophy
dissipation density may take small positive values, which are mostly located outside the
rodlike structures. By examining the contour plots in the x1 − x3 plane at the center of the
computational box, one can investigate the contributions of each component to the enstro-
phy balance. In Figure 9c–e, the green regions representing the negative rate of enstrophy
dissipation accumulate in elongated patches. The largest contribution comes from the λ = 2
component in Figure 9d, while the contribution from the λ = 3 component in Figure 9e is
marginal. In Figure 9h, the component of enstrophy production along λ = 3 is negative
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and smaller than the other two components. Also for enstrophy production, the λ = 2
contribution (Figure 9g) reaches high values. It is worth noting that the λ = 2 component,
as observed in inviscid simulations by Orlandi et al. [4] of interacting Lamb dipoles, leads
to an extreme growth of enstrophy, which is a key factor in the eventual formation of
a singularity.

4.4. Structures Associated with Scalar Gradients

The visualizations of the terms in the scalar gradient balance equation (Equation (8))
provide insights into the differences with terms in the enstrophy balance equations. While
previous studies [5] discussed these differences at low Re and Sc = 1, they did not em-
phasize the relative contributions of each component along the principal axes of the strain
field. To obtain clearer visualizations, the results of the scalar gradient balance terms are
shown for Sc = 2 instead of Sc = 16. Figures 9a,b and 10a,b highlight the accumula-
tion of the scalar gradient production term in sheets that are separate from regions with
Q > 0. At Sc = 16, these sheets of high production become thinner and wider compared
to those shown in Figure 10a. Figure 10b illustrates that the scalar gradient dissipation is
concentrated in thin layers located where Q is weak. Furthermore, the contributions of
the three contributions to the scalar gradient production and dissipation in the principal
strain axes are found to be significantly different from the corresponding contributions
to the enstrophy production and dissipation. Specifically, Figure 10d,g demonstrate that
the contribution of the λ = 2 components is relatively small compared to the other com-
ponents. The strongest contributions in the scalar gradient balance equation come from
the compressive strain, as quantified in Tables 6 and 11. Figure 10e further illustrates
that this component has greater positive contributions to the scalar gradient dissipation
compared to the other components. The compressive strain is responsible for the strongest
contribution to production, as depicted in Figure 10h and Table 6. It is important to note
that in Equation (8), the production term has a negative sign, so the negative green lines
in Figure 10h indicate a positive contribution. On the other hand, the extensional strain
component gives a negative contribution to the formation of the strong thin layers of the
scalar gradient. Figure 10f demonstrates that this component is located in the same regions
as those for the enstrophy dissipation in Figure 10c. Indeed, the visualizations provide
valuable insights and corroborate the different effects of the strain field on the vorticity and
passive scalar gradient components. They allow for a deeper understanding of the spatial
distribution and interactions of these quantities, highlighting the regions where they are
concentrated and the relationships between them. By examining the visualizations, one
can gain a more comprehensive knowledge of how the strain field influences the dynamics
of vorticity and passive scalar gradients in the flow.
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Figure 10. Isosurfaces of Q/ < ωλωλ >= ±1.5 (red positive, blue negative) superposed on (a) iso-
surfaces of g̃θ λ g̃θ λS̃λ/ < gθλgθλ >= ±15 (yellow positive, green negative); (b) isosurfaces of
1

Pe ω̃λ∇̃2gθ λ/ < gθλgθλ >= ±100 (yellow positive, green negative); (c–e) contours of contributions

to scalar gradient dissipation in principal strain axes ( 1
Pe g̃θ λ∇̃2gθ λ/ < gθλgθλ >); (f–h) contours

of contributions to scalar gradient production in principal strain axes (g̃θ λ g̃θ λS̃λ/ < gθλgθλ >);
(c,f) extensional, (d,g) intermediate, (e,h) compressed. Green blue and cyan are used for negative
values and yellow red and magenta are used for positive values, with contour increment ∆ = 2.

5. Conclusions

The study of passive scalar advection by turbulent velocity fields has been a subject of
extensive research. Previous work, such as the review by Warhaft [27], examined this topic
from experimental and theoretical perspectives. Donzis et al. [2] conducted well-resolved
direct numerical simulations (DNS) to investigate the influence of Schmidt number varia-
tions on scalar statistics, which was also previously reviewed by Antonia and Orlandi [28].
The focus of the present study was to quantify the dependence of the slope of the transi-
tional range in the nondimensional passive scalar spectra on the Schmidt number. This
transitional range connects the inertial range (spectral slope n = 0) of the compensated
scalar spectra, at low wavenumbers, to the n = 0 slope associated with the spectral bottle-
neck, which occurs at a fixed nondimensional wavenumber as described by Batchelor [22].
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In the compensated scalar spectrum at low wavenumbers, there was a constant value Cθ

which decreased with an increasing Schmidt number. However, the evaluation of the
spectrum at extremely low and high Sc values required a large number of grid points in
the simulations to minimize the effect of forcing on the low wavenumber spectra. On
the other hand, the dependence of the spectral slope n of the transitional range on the
Schmidt number was measured, and it was found that for Sc > 2, the slope remained
fixed at n = 2/3 [2]. This indicates that the scaling behavior in the transitional range is
independent of the Schmidt number for Sc values above a certain threshold.

A further investigation using refined DNS techniques based on codes optimized for
GPU clusters, such as CUDA Fortran and OpenACC directives, along with the use of
CUFFT libraries for efficient FFT execution, were used to provide valuable insights into the
points mentioned. The comparison between the three-dimensional energy dissipation and
passive scalar dissipation spectra highlighted the presence of spectral bottlenecks in both
quantities. The compensated nondimensional passive scalar spectra exhibited a bottleneck
with a maximum value and a wavenumber location that was independent of the Schmidt
number. Notably, this nondimensional wavenumber was higher than that associated
with the vortical structures. To further investigate the underlying physics, the strain rate
tensor Sλ was evaluated at each computational point. The vorticity and scalar gradient
vectors were projected along the principal axes of Sλ, and the joint probability density
function (PDF) among them and Sλ provided insights into the distinct roles played by the
components of Sλ in the generation of vorticity and passive scalar gradient structures. This
analysis allowed for a more comprehensive understanding of the dynamics and interactions
between velocity and scalar fields in turbulent flows.

Investigating the influence of different vortical structures on passive scalar dynamics
is an important research direction that can provide valuable insights. Adding solid body
rotation to the flow presents an interesting case to explore using the same code and numeri-
cal framework as in the current study. In the presence of high rotation rates, the velocity
spectra tend to exhibit a k−3 inertial range, indicating the presence of more elongated vorti-
cal structures aligned with the rotation axis. Preliminary simulations suggest that for the
passive scalar, the spectra maintain a k−5/3 range over a wide range of wavenumbers.
However, a more detailed analysis similar to the one performed in this paper is necessary
to understand this behavior and its implications. Understanding why solid body rotation
does not significantly affect the passive scalar spectra can have important implications,
particularly in the field of combustion. The complex physics of passive scalar dynamics in
rotating chambers can potentially lead to the design of more efficient engines. Therefore,
further investigations into the interaction between rotation and passive scalar transport
can contribute to advancements in combustion science and technology.
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