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Abstract: Bone remodeling is uncoupled in the multiple myeloma (MM) bone marrow niche, resulting
in enhanced osteoclastogenesis responsible of MM-related bone disease (MMBD). Several studies
have disclosed the mechanisms underlying increased osteoclast formation and activity triggered
by the various cellular components of the MM bone marrow microenvironment, leading to the
identification of novel targets for therapeutic intervention. In this regard, recent attention has been
given to non-coding RNA (ncRNA) molecules, that finely tune gene expression programs involved in
bone homeostasis both in physiological and pathological settings. In this review, we will analyze
major signaling pathways involved in MMBD pathophysiology, and report emerging evidence of
their regulation by different classes of ncRNAs.

Keywords: bone disease; long non-coding RNA; miRNA; multiple myeloma; non-coding RNA;
tumor microenvironment

1. Introduction

Multiple myeloma bone disease (MMBD) is a hallmark feature of multiple myeloma (MM),
the second most common hematological malignancy characterized by abnormal proliferation of
monoclonal plasma cells (PCs) in the bone marrow (BM). MMBD strikes approximately 80% of MM
patients and causes debilitating bone pain, pathologic fractures, vertebral collapse and hypercalcemia,
inducing significant patients’ morbidity and mortality [1].

The bone marrow microenvironment (BMM) is composed by a mineralized extracellular matrix
and cellular components, including osteoclasts (OCs), osteoblasts (OBs), osteocytes (OCYs), immune
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cells, endothelial cells and stromal cells. Bone remodeling under pathological conditions is characterized
by a strong inhibition of OBs activity, which leads to bone loss as OBs are unable to repair the lesions
caused by the excessive osteoclastic resorption; the latter process is strongly supported by MM cells,
which can exacerbate OCs activity promoting their maturation directly or by physically interacting
with other cellular components, such as the BM stromal cells (BMSCs). In turn, cell–cell interactions
and soluble factors or matrix-associated growth factors released from the resorbed bone increase MM
cell proliferation and prompt tumor progression [2–4].

To effectively trigger BD, cellular components of the BMM produce and/or secrete a number
of functional molecules, which collectively contribute to the osteoclastogenic events. In this regard,
non-coding RNAs (ncRNAs) have recently emerged as fine regulators of gene expression programs
underlying key molecular events featuring bone remodeling in MM.

Herein, we will briefly discuss the signaling pathways implicated in the development of MMBD,
and, will then, analyze how they are modulated by manipulation or release of ncRNAs from different
BMM cells.

2. Pathophysiology of MMBD

A great deal of literature has revealed that MMBD is regulated by a multiplicity of signaling
pathways associated with anti-osteogenic, pro-osteoclastic and tumor-supporting properties [5].
Several intracellular and intercellular signaling cascades, as well as a large number of cytokines and
chemokines, have been deeply studied and are nowadays considered valuable therapeutic targets in
MMBD [6]. Dysregulation of signaling pathways by defective expression and/or function of ncRNAs
has been implicated in MM pathogenesis, with an emerging role, also, in the onset of MMBD [7].
In this section, we will discuss about the main molecules and signaling pathways underlying MMBD
pathophysiology; subsequently, available information about different ncRNAs known to affect relevant
MMBD-related molecules and/or potentially involved in MMBD pathogenetic mechanisms will
be provided.

2.1. RANK/RANKL/OPG Pathway

A key pathway regulating osteoclastogenesis is the RANK/RANKL/OPG signaling cascade.
RANKL is expressed by BMSCs and OBs, while its receptor, the type I transmembrane protein RANK,
is expressed by OCs precursor cells and mature OCs. RANKL/RANK interaction activates a complex
signaling cascade, characterized by induction of the nuclear factor of activated T-cells, cytoplasmic 1
(NFATc1), which in turn regulates OC-specific genes, namely the tartrate-resistant acid phosphatase
(TRAP), osteoclast-associated receptor (OSCAR) and cathepsin K (CTSK). Conversely, OPG is a soluble
decoy receptor for RANKL. In physiologic conditions, a balanced RANKL/OPG ratio enables a correct
bone remodeling, while in MM this ratio is strongly unbalanced, thus fostering bone destruction.
MM PCs induce RANKL upregulation in OBs and BMSCs within the BMM; moreover, MM cells
can express and secrete themselves RANKL [8]. Several studies evidenced RANKL upregulation in
BM biopsies of MM patients and a positive correlation between the number of osteolytic lesions and
increasing levels of serum RANKL [6,9,10].

2.2. Notch Pathway

Notch pathway includes four transmembrane receptors (Notch1-4) and five ligands (Jagged 1,2
and Delta-like 1,3,4). Following the receptor-ligand interaction, two proteolytic cleavages are mediated
by ADAM/TACE and γ-secretase complex, which release the intracellular portion of Notch (ICN) to
the nucleus where activates its target genes Hes and Hey. Notch pathway components are aberrantly
expressed in MM cells and implicated in osteoclastogenesis and osteoblastogenesis processes occurring
in the BMM; in particular, the roles played by Notch1, -2 and -3, as well as by Jagged1 and -2, have been
described, indicating that not all signaling components are simultaneously involved in the same
process or may even have opposing biological effects [11–13] Within the tumor microenvironment,
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the Notch/Ligand interactions can be homotypical or heterotypical. Notch signaling interferes with the
maturation of the early OB pool by inhibiting the Wnt/β-catenin pathway in pre-OBs [14]. BMSCs also
express Notch receptors that may be triggered by Jagged ligands of MM cells and subsequently increase
RANKL production [1,15,16].

Osteoclastogenesis can be differently regulated by Notch signaling according to the various
ligands and the receptor isoforms involved. For instance, Notch1 and Notch3 have been described as
suppressors of OC differentiation [17], while Notch2 is upregulated during RANKL-induced early OC
differentiation and involved in the late stage of osteoclastogenesis [18–20].

2.3. Wingless and Integration-1 (Wnt) Pathway

Wingless and integration-1 (Wnt) signaling is a master regulator of bone homeostasis, as it closely
regulates the fine balance between bone-forming OBs and bone-resorbing OCs [21]. In the absence
of Wnt, cytoplasmic β-catenin is bound and phosphorylated by a cytosolic complex constituted
by the scaffold proteins APC, Axin1, the kinases GSK3 and CK1. Phosphorylation of β-catenin
marks it for ubiquitination and proteasomal degradation [22]. The binding of Wnt with their cognate
ligands, the Fz and LRP5/6 coreceptors, activates the signaling downstream; the receptor complex
recruits the effector protein disheveled (Dvl), which in turn recruits Axin1-GSK3, thus blocking
the cytosolic destruction complex. Hence, stable β-catenin translocates to the nucleus where,
together with specific transcription cofactors, can activate the expression of Wnt target genes [23,24].
Regarding bone metabolism, Wnt signaling directs MSC differentiation towards differentiation into
OBs [25]; furthermore, Wnt signaling promotes OBs survival, partly through the Src/ERK and PI3K/Akt
pathways [21,26].

MM cells inhibit Wnt signaling and promote an OBs/OCs unbalance. MM cells and osteocytes
express Wnt antagonists such as sclerostin, Dickkopf-1 (Dkk-1) and soluble frizzled-related proteins
(sFRP-2/3), whose activity leads to OB suppression [27,28].

2.4. Dickkopf-1 (Dkk-1)

Wnt pathway can be also antagonized by Dkk-1, which plays an important role in osteoblastogenesis
and skeletal development [27,29,30]. The binding of Dkk-1 to LRP5/6 receptors, in combination with
the Kremen1/2 transmembrane proteins, induces the internalization of LRP and interferes with
the activation of the canonical Wnt/β-catenin pathway [31]. Consequently, osteoblastogenesis and
formation of the mineralized matrix are inhibited and, in turn, the undifferentiated BMSCs secrete IL-6
sustaining the proliferation of MM cells secreting Dkk-1 [32]. Dkk-1 also promotes osteoclastogenesis
and bone resorption by modulating RANKL and OPG expression in OBs [33].

2.5. Sclerostin

Sclerostin (SOST), a cysteine knot-containing protein mainly produced by osteocytes, induces OB
apoptosis by the caspase pathway and antagonizes the Wnt pathway by binding to the extracellular
domain of LRP5/6 transmembrane receptors on osteoblast-lineage cells; moreover, sclerostin may
prevent type I and type II bone morphogenetic proteins (BMPs) from binding to their receptors,
thus reducing the BMP-mediated mineralization in OBs [34,35]. Sclerostin stimulates osteoclastogenesis
also by increasing RANKL/OPG ratio [36], and its serum levels correlate with advanced MMBD and
poor patient survival [37].

2.6. Bruton’s Tyrosine Kinase (BTK)

Another important pathway promoting osteoclastogenesis is downstream the Bruton’s tyrosine
kinase (BTK), a non-receptor tyrosine kinase member of the Tec family also upregulated in MM
PCs [38,39]. BTK inhibition reduced both tumor burden and osteolytic BD by decreasing OC number
and activity, the adhesion of MM cells to BMSCs and the levels of BMSC-secreted growth factors [40].
Runt-related transcription factor 2 (Runx2), is critical in osteoblastogenesis and bone formation [41,42],
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and its upregulation correlated with an aggressive phenotype and poor prognosis of MM [43]. In MMBD,
human MM cells inhibit OB formation and differentiation blocking the expression of Runx2/CBFA1.

2.7. Cytokines

MM is typically characterized by a desynchronized cytokine system with increased levels of
pro-inflammatory cytokines [44]. A gene expression inflammatory signature could predict MM
progression and patient survival and recently it has been identified an 8-genes signature (IL8, IL10,
IL17A, CCL3, CCL5, VEGFA, EBI3 and NOS2) which accurately differentiates monoclonal gammopathy
of undetermined significance (MGUS), smoldering myeloma (sMM) and MM [45]. MM cells can induce
OCs differentiation and osteolytic activity, by modulating release from OBs of the proinflammatory
cytokine IL-6 inside the tumor microenvironment; in turn, IL-6 inhibits OBs activity and induces the
production of RANKL. Importantly, MM cells can induce BM adipocytes to make a more supportive
niche and to increase OC activity through IL-6 and other molecules [46]. High levels of IL-8 are
secreted from BMSCs of MM patients [47], which stimulated OC formation in vitro [48]. Macrophage
inflammatory protein-1alpha (MIP-1α) is a cytokine with bone-resorbing properties secreted by MM
cells and also by other BMM cells [49]; high expression of MIP-1α was found in BM PCs and in the
serum of MM patients, and positively correlated with the presence of extensive lytic lesions and
increased angiogenesis [50]. In addition, the inflammatory and bone-resorbing cytokine tumor necrosis
factor (TNF)-alpha (TNF-α) is elevated in MM patients and correlated with MMBD. TNF-α sustains OC
differentiation by directly targeting macrophages in a stromal environment expressing high levels of
RANKL [51]. Furthermore, OCs produce B-cell activating factor (BAFF) and the proliferation-inducing
ligand (APRIL), two members of tumor necrosis factor (TNF) family, which act as growth factors in
MM cells, while MM cells in turn produce cytokines which stimulate the osteolytic activity in OCs [52].

In MM patients, upregulation of the cytokine activin A correlates with bone lesions and advanced
disease. MM cells induce the production of activin A in BMSCs, partly through the JNK pathway.
In turn, activin A inhibits OB differentiation by stimulating SMAD2 activity and inhibiting distal-less
homeobox (DLX)–5 expression [53]. Blocking activin A signaling rescued MM-induced OB impairment,
while reducing MM burden in a humanized murine model of MM [53]. Interestingly, activin A seems
to be involved in bone remodeling also as an inducer of osteoclastogenesis, via stimulation of RANK
expression and consequent enhancement of RANKL signaling [54].

An additional cytokine important in MMBD is the transforming growth factor β (TGFβ),
that is produced in an inactive form by OBs in bone matrix and activated by OCs during bone
resorption. During osteogenesis, TGFβ stimulates early OB proliferation, while blocking late-stage
OB differentiation and mineralization to decrease bone formation [55]. TGFβ also increases bone lytic
activity through stimulation of RANKL secretion and enhancement of OCs survival [56–60].

3. NcRNAs and MMBD

The non-coding compartment of the human genome represents almost the 98.5% of the whole
human transcriptome. It has been widely demonstrated that ncRNAs critically regulate almost all
physiologic and pathologic processes [61,62]. Based on their length, they have been classified into
short (<200 nucleotides) non-coding RNAs (sncRNAs) or long (>200 nucleotides) non-coding RNAs
(lncRNAs).

3.1. Short Non-Coding RNAs

MicroRNAs (miRNAs) are sncRNA molecules, of 17 to 24 nucleotides (nt) in length,
that post-transcriptionally regulate mRNAs by perfect or partial complementarity to their 3′

untranslated region (3′ UTR), inducing either translational repression or degradation of target mRNAs.
Since one miRNA can target hundreds mRNAs, it is obvious that these molecules have the capability to
concomitantly regulate multiple pathways [63,64]. Dysregulation of miRNA expression and function
has been shown to underlie the onset and progression of all cancer types, including PC dyscrasias [7].
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Modulation of miRNA levels has been observed during MSCs differentiation both in physiological and
pathological settings, with an emerging role also in the pathogenesis of MMBD. miRNAs involved
in the MMBD pathophysiology and targeting the most relevant MMBD-related pathways will be
discussed below. Figure 1 provides a graphic overview of mRNAs targeted by miRNAs and affecting
osteoblastogenesis or osteoclastogenesis in MM.
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Figure 1. The picture reports microRNAs (miRNAs) and their corresponding mRNA targets involved
in osteoblastogenesis and osteoclastogenesis processes in the multiple myeloma (MM) bone marrow
microenvironment (BMM). miRNAs triggering bone resorption are reported in red; miRNAs triggering
bone apposition are reported in blue.

3.1.1. miR-221

The miR-221/222 cluster plays an oncogenic role in MM, where its inhibition induces significant
anti-tumor activity by targeting key molecules involved in cell proliferation, survival and drug
resistance as p27, p57 and PUMA [65–67]. The involvement of miR-221 in bone pathophysiology
was initially suggested by its lower expression in osteoporotic compared with non-osteoporotic
samples. Overexpression of miR-221 decreases the osteogenic potential of human mesenchymal
stem cells (hMSCs), as indicated by the reduced expression levels of key OB markers, including
osteocalcin (OC), alkaline phosphatase (ALP) and collagen, type I, α 1 (COL1A1); conversely, miR-221
inhibition led to the opposite effects. Biochemical experiments demonstrated that miR-221 targets
Runx2, whose ectopic expression rescued miR-221 effect on OB markers, supporting the notion that
miR-221-mediated OB differentiation occurs in a Runx2-dependent manner. miR-221-5p expression
declined during OB induction of normal MSCs, while it remained unchanged upon differentiation
of myeloma-derived MSCs. Notably, miR-221-5p inhibition increased the osteogenic differentiation
capacity of MMBD-MSCs, and this effect was ascribed to SMAD3 down-regulation and to the activation
of the PI3K/AKT/mTOR signaling pathway [68].
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3.1.2. miR-138

miR-138 was first identified as a negative regulator of hMSC OB differentiation. In vitro, miR-138
inhibition enhanced OB differentiation of hMSCs, whereas miR-138 overexpression inhibited their
osteogenic potential. Moreover, miR-138 antagonism increased, whereas miR-138 overexpression
reduced bone formation [69]. Increased expression of miR-138 was observed in MM cells and in MM
MSCs compared to that from healthy subjects; co-culture with MM cells upregulated miR-138 in
healthy MSCs, suggesting that the interplay between MM cells and MSCs drives the dysregulated
miR-138 expression in MSCs.

Interestingly, inhibition of miR-138 with an LNA-modified anti-miR-138 oligonucleotide was able
to enhance the osteogenic differentiation of MSCs in vitro; moreover, bone formation rate and OBs
number were significantly increased in MM bearing mice treated with anti-miR-138 LNA, indicating
that miR-138 negatively regulates bone apposition in MM. Gene set enrichment analysis performed
on anti-miR-138-treated cells revealed that the regulation of chondrocyte differentiation gene set was
enriched in the OBs inhibited for miR-138, suggesting that miR-138 antagonism induces bone formation
in the context of MM by de-repressing target genes involved in osteochondrogenesis. Three putative
miR-138 targets known to be important for the induction of osteogenic and chondrogenic MSC
differentiation, namely ROCK2, TRPS1 and SULF2, were de-repressed after anti-miR-138 treatment [70].

3.1.3. miR-203a-3p.1

During osteoblastogenesis, miR-203a-3p.1 levels were found to decline in normal MSCs, whereas no
change was observed in MM MSCs. In line with these findings, the authors demonstrated that canonic
OB differentiation markers, including ALP, OPN and OC, were upregulated in MM-MSCs following
treatment with anti-miR-203a-3p.1 oligonucleotides. The inhibitory effects on hMSCs osteogenic activity
by miR-203a-3p.1 was likely dependent on the targeting of SMAD9 and of Wnt/β-catenin pathway,
which promote OB differentiation and bone formation; accordingly, rescue experiments confirmed the
key role of SMAD9 down-regulation in miR-203a-3p-mediated osteoblastogenesis [71].

3.1.4. miR-21

miR-21 is an established onco-miRNA in MM [72], where its expression is induced by IL-6 in a
STAT3-dependent manner [73]. miR-21 was found upregulated in OCs [74] and in BM mononuclear cells
of MM patients [75], supporting a role within the BM milieu. We previously showed that miR-21 plays
a pivotal role in sustaining MMBD by regulating RANKL/OPG ratio in the MM BM microenvironment.
Higher levels of miR-21 were found in MM BMSCs as compared with healthy BMSCs. Importantly,
we validated OPG as a direct target of miR-21 and reported that selective inhibition of miR-21 in MM
BMSCs was able to restore OPG expression and secretion and to reduce RANKL levels. As a result,
miR-21 inhibition in BMSCs suppressed the bone lytic activity of OCs in vitro, thus pointing to miR-21
as candidate target to treat MMBD [76]. In MM, Th17 cells sustain tumor growth and OCs-dependent
bone damage. We found that Th17 from MM patients with BD express significantly higher miR-21 levels
as compared to non-osteolytic MM and healthy controls; importantly, early inhibition of miR-21 in
naive T cells impaired Th17 differentiation in vitro and abrogated Th17-mediated MM cell proliferation
and OCs activity. These findings were recapitulated in vivo in NOD/SCID-γ-NULL mice intratibially
injected with T cells transfected with miR-21 synthetic inhibitors and MM cells. At a molecular level,
a pairwise RNAseq and proteome/phosphoproteome analysis demonstrated that miR-21 inhibition
in Th17 cells upregulated STAT-1/-5a-5b, impaired STAT-3 and redirected Th17 towards Th1/Th2 like
activated/polarized cells [77].

3.1.5. miR-29b

Several reports indicate that the expression of miR-29 family members is widely deregulated
in hematologic malignancies [78,79], and their reconstitution deeply impacts on the phenotype of
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cancer cells through the targeting of epigenetic regulators [80–82]. miR-29b was found upregulated
along osteoblastogenesis during late mineralization phases. Specifically, miR-29b overexpression
turned off the expression of key OB-inhibitory proteins such as TGFβ3 and HDAC4, resulting in
Runx2 upregulation, and also down-regulated the Wnt pathway inhibitor catenin beta interacting
protein 1 (CTNNBIP1) [83]. In parallel, our studies defined the role of miR-29b in the inhibition of OCs
generation and function. In fact, we found that miR-29b was progressively down-regulated during
OCs differentiation of monocyte precursors under M-CSF and RANK-L stimulation, and restoration
of miR-29b expression in OCs precursors strongly antagonized OCs resorbing activity by reducing
intracellular levels of TRAP, cathepsin K, metalloproteinase type 2 and 9 (MMP-2 and MMP-9). Reduced
expression levels of such OC-resorbing enzymes were due to the targeting of MMP-2 and c-FOS
mRNAs, which in turn impaired the rearrangement of actin rings, whose normal morphology is critical
for OCs resorbing activity and bone adherence. Enforced expression of miR-29b also reduced RANK
expression on the cell surface, hampering OCs response to RANKL stimulation and reducing in vitro
osteoclastogenesis induced by MM cell lines [78,84]. Importantly, miR-29b levels were significantly
reduced in MM dendritic cells, and its reconstitution counteracted pro-inflammatory pathways in
co-cultured MM cells, including signal transducer and activator of transcription 3 and nuclear factor-κB,
and cytokine/chemokine signaling networks, which correlated with patients’ adverse prognosis and
development of BD. Moreover, miR-29b downregulated IL-23 in vitro and in the SCID-synth-hu in vivo
model, and antagonized a Th17-driven inflammatory response, which notably sustains MM cell growth
and osteoclast-dependent bone damage [85].

3.1.6. miR-214

miR-214 was found implicated in physiological processes, as osteogenesis, osteoclastogenesis and
muscle development, as well as in pathological conditions. Misiewicz–Krzeminska et al. demonstrated
the down-regulation and the tumor suppressor roles of miR-214 in MM cells. Restoration of miR-214
expression level in MM cells enhanced apoptosis and the inhibition of cellular proliferation, through the
inhibition of p53/MDM2 interaction and of the DNA replication pathway [86]. By analyzing the
expression profile of miRNAs on a large cohort of MM patients with different stages of BD, Hao and
colleagues showed that circulating miR-214 in the serum of MM patients significantly correlated
with the degree of bone injury, and MM patients with a higher level of serum miR-214 had a poor
outcome. In addition, miR-214 levels in MM patients with lytic bone lesions were higher than those
without bone lesions. Indeed, patients with high serum miR-214 levels showed a significant reduction
in progression-free survival (PFS) and overall survival (OS). On the other hand, when treated with
bisphosphonates MM patients presenting higher miR-214 serum level benefited from a significant
increase in their quality of survival, with effects on reduction of bone lesions rather than on tumor
burden. According to these data, miR-214 levels in patients serum may be used as biomarkers for the
detection of MMBD, as well as prognostic markers for MM patients with BD to define the start of
treatment with bisphosphonates [87].

3.1.7. miR-135b

Abnormal expression of miR-135b is reported in different types of tumors, with a clear role in
tumorigenesis. As reported by Xu et al., miR-135b is involved in MMBD impairing the osteogenic
differentiation capability of BM-derived MSCs from MM patients (MM-hMSCs) by targeting at 3′ UTR
SMAD5, which is involved in osteogenesis. Upregulation of miR-135b in MM BM-derived hMSCs
causes a reduction of ALP activity. On the other side, miR-135b inhibition in MM-hMSCs maintained
in osteogenic medium restored the activity of ALP and of other osteogenic markers (BSP, COLA1
and OPN). The increase of miR-135b also was observed during co-culture of hMSCs from healthy
donors with MM cells lines, indicating that the MM microenvironment modulates the miRNome of
hMSCs reducing their osteogenic potential [88]. This may explain why Hao and colleagues observed
dysregulated levels of miR-135b in the serum of the MM patients, which could be used to distinguish
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patients with or without bone lytic lesions [87]. Therefore, miR-135b inhibitors may represent potential
RNA therapeutics to direct hMSC osteogenic differentiation towards bone formation [88].

3.1.8. miR-342 and miR-363

High levels of the bone-specific transcription factor Runx2 is observed in several solid tumors,
promoting bone metastasis and osteolysis [43,89]. Recently, some studies have reported that MM
cells release soluble factors to suppress osteoblastogenesis through Runx2 inhibition in immature
and pre- OBs at new bone sites [90]. By comparing the plasma of MM patients with normal donors,
Gowda et al. showed that high levels of Runx2 in MM cells inversely correlated with miR-342 and
miR-363 expression. Overexpression of miR-342 and miR-363 in CAG MM cells, individually or in
combination, suppressed Runx2 protein levels, with concomitant inhibition of Akt/β-catenin/survivin,
known targets of Runx2, leading to a strong reduction of MM cell proliferation. The combined miRNAs
action on MM cells also led to a decrease of DKK1 and RANKL levels both in in vitro and in vivo
preclinical models. In MM-bearing mice, miR-342 and miR-363 acted on the BMM by increasing OB and
decreasing OC numbers, antagonizing bone resorption in vivo. Moreover, overexpression of miRNAs
led to an improvement of anti-tumor immunity in vivo, increasing the number of immunosuppressive
regulatory T and B cells and decreasing dendritic cells within the tumor microenvironment [89].

3.1.9. miR-223

miR-223 was identified as a key regulator for differentiation of myeloid precursors and OCs.
In cancer, deregulation of miR-223 was described in leukemia and lymphomas [91,92]. Evidence of
a miR-223 tumor supportive role was reported in MM, where its expression in MSCs decreased in
a cell-adhesion dependent manner [93]. Co-culture of MM cells and MM-MSCs induced activation
of Notch signaling via jagged-2/notch-2, leading to increased expression of Hes1, Hey2, or Hes5 in
both cell types; in turn, activation of Notch signaling in MM-MSCs led to a decrease in miR-223
expression, although the underlying mechanism was not addressed. To support role of Notch signaling
on the miR-223 decrease, the authors demonstrated that Notch pathway inhibition either through
the γ-secretase inhibitor GSI-XII or a jagged-2 neutralizing antibody, upregulated miR-223 levels.
Of note, this study also highlighted the role of miR-223 in the osteogenic differentiation of MSCs;
in fact, miR-223 levels significantly increased when osteogenic differentiation was induced. Moreover,
inhibition of miR-223 expression impaired the osteogenic differentiation potential of MSCs, decreasing
the expression of Runx2 and osteopontin, and reducing ALP activity and calcification [93].

3.2. Long Non-Coding RNAs

Long non-coding RNAs refer to a highly heterogeneous class of non-coding RNAs longer than
200 nt, that include intergenic transcripts (lincRNAs), enhancer RNAs (eRNAs) and sense or antisense
transcripts that overlap other genes [94]. They have been found implicated in several molecular
functions, including in cis or in trans transcriptional regulation, organization of nuclear domains and
regulation of proteins and/or RNA molecules; functionally, they can act as guides for ribonucleoprotein
complexes, dynamic scaffolds and molecular decoys for proteins including transcription factors and
miRNA sponges [7,94–96].

Overall, lncRNAs play crucial roles in several cellular processes, such as DNA repair, proliferation,
angiogenesis and epithelial-mesenchymal transition; moreover, their expression is linked with
various diseases and some of them have been described as potential disease biomarkers [97–101].
Indeed, numerous lncRNAs have been described as aberrantly expressed in various cancers and/or
associated with clinically relevant cancer subtypes, predicting tumor behavior and prognosis [102,103].
Recent studies have clarified the expression profiles of lncRNAs in PC dyscrasias [7,104,105]. In MM,
three distinct transcriptomic analyses unraveled a dysregulated lncRNA landscape. Ronchetti et al.
used microarray technology to analyze lncRNA expression in patients at different stages of MM
progression—including MGUS, sMM, MM and PCL—and in healthy donors, identifying 31 lncRNAs
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altered in tumor samples [106]. RNA-seq was used by the same authors in a follow-up study, to evaluate
lncRNA expression in 30 MM patients, leading to the identification of 391 dysregulated lncRNAs,
and also extended the study to the main MM molecular subgroups and genetic alterations [107].
Samur et al. instead described the lncRNA landscape in MM cells by RNA-seq on PCs from
308 newly-diagnosed and uniformly treated MM patients enrolled to the DFCI/IFM 2009 clinical study,
and developed a prognostic model based on lncRNAs to stratify patient risk [108].

Since several lncRNAs have been already described for their role in bone metabolism and
osteogenesis, they have also been investigated for their potential role in MMBD [104]. Collectively,
functional investigations on lncRNAs in the context of MMBD are limited respect to miRNAs, and this
gap is likely dependent on their complex 3D structure interacting with various molecular partners,
leading to a pleiotropic activity which makes them difficult to study [7].

A recent study evaluated 17 lncRNAs, whose targets were described as crucial molecules in
MM and bone homeostasis; analysis was carried out in MM patients with bisphosphonate-induced
osteonecrosis of the jaw (BONJ), in MM patients without BONJ and in a group of healthy controls.
Results obtained evidenced a different lncRNA profile in BONJ patients compared to MM patients
and controls. Notably, two lncRNAs (DANCR and metastasis associated in lung adenocarcinoma
transcript 1 (MALAT1)) resulted downregulated when compared to controls and MM, while twelve
were found overexpressed in MM with BONJ. Overall, the authors suggested that targeting these
lncRNAs could represent a valuable tool for prevention and therapy of BONJ [109].

The most relevant lncRNAs found which are potentially implicated in MMBD pathophysiology
are below summarized.

3.2.1. LncHOXC-AS3

As stated above, MMBD is characterized by severely impaired osteogenesis [5]. The lncRNA
HOXCAS3 is transcribed in opposite to HOXC10 and positioned at chromosome 12q13.13; in MM it is
expressed in MM MSCs.

HOXC-AS3 interacts with HOXC10 at the overlapping parts thus strengthening its stability and
promoting its expression; consequently, up-regulation of HOXC10 contributed to repressing osteogenic
potential of MSCs [110]. The effect of HOXC-AS3 on osteogenic differentiation was evaluated in vivo,
by using a “human-in-mouse” xeno-transplantation MM model, which included the MM clinical signs
such as BD. To analyze bone loss in the mouse models, trabecular and cortical bone were evaluated by
micro CT images; results obtained indicated severe bone loss in the vehicle control group, compared to
the HOXC-AS3 siRNA-treated mice group. In addition, HOXC-AS3 siRNA significantly altered bone
turnover markers levels in serum; in particular, the bone resorption marker C-terminal telopeptide of
type 1 collagen (CTX) was reduced in HOXC-AS3 siRNA group, while the bone formation marker,
procollagen type 1 N-terminal propeptide (P1NP), increased [110].

3.2.2. TUG1

The taurine upregulated gene 1 (TUG1) lncRNA contributes to the formation of photoreceptors
and plays crucial roles in retinal development [111]. TUG1 is a 7.1 kb lncRNA transcribed from
human chromosome 22q12.2. Different works have reported that TUG1 has pro-tumor activity in
several tumors, such as osteosarcoma, melanoma, cholangiocarcinoma [112], glioma and hepatocellular
carcinoma, non-small cell lung cancer and bladder cancer [113]. Recently, through qRT-PCR analysis
of serum samples from 98 healthy controls and 110 MM patients, Qingqing et al. observed increased
TUG1 levels in MM. To explore the diagnostic utility of TUG1, they compared TUG1 expression levels
in different stages of disease in MM patients, alone or together with other diagnostic biomarkers such
as albumin and β2-microglobulin. Univariate analyses confirmed the correlation of TUG1 levels with
different disease stages in MM, observing a higher serum TUG1 level in patients with bone lesion.
Furthermore, the multivariate analysis combining all three biomarkers significantly improved the AUC
value of ROC analysis, which was better than any individual marker analysis. These results suggested
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the usefulness of TUG1 as a potential diagnostic biomarker suitable for clinical use [114], although its
functional role within MMBD remains to be investigated.

3.2.3. MALAT1

The lncRNA metastasis associated in lung adenocarcinoma transcript 1, which is located on the
human chromosome 11q13, has a total length of about 8 kb. MALAT1 regulates the transcriptional
and translational levels of proto-oncogene Runx2 in colorectal cancer metastasis [115]. It is expressed
in different tissues where it regulates gene expression, alternative splicing and cell cycle. MALAT1
has been found overexpressed in several human neoplasms and promotes tumor cell invasion and
metastasis [116,117]. Cho et al. first investigated the relationship between MALAT1 and MM disease.
They evaluated MALAT1 expression by comparing the mononuclear bone marrow cells of MM
patients in different disease states compared to healthy individuals, and demonstrated that the
high serum levels of MALAT1 detected in MM patients decreased significantly in post-treatment
patients, showing serum levels similar to those of healthy individuals and a prolonged progression-free
survival [118]. We studied MALAT1 functional role in MM and demonstrated that it may promote cell
survival by regulating the expression and activity of the proteasome machinery [119]. Regarding its
role in normal bone homeostasis, Xiao et al. demonstrated that MALAT1 promotes osteoblastogenesis
via miR-204 sponging, and upregulating the miR-204-target SMAD4, which in turn promoted the
expression of ALP and osteocalcin responsible of the increased bone formation and mineralization [120];
however, MALAT1 functional role in MMBD has not been, so far, investigated.

3.2.4. MEG3

Zhuang et al. found that the lncRNA maternally expressed gene 3 (MEG3), which is located on
14q32.2, promotes the differentiation of MM BMSCs into OBs. Mechanistically, MEG3 promotes the
translation of the downstream BMP4 gene by preventing the inhibitory effect of SOX2 on the BMP4
promoter [121]. Conversely, Li et al. showed that MEG3 is downregulated during adipose-derived
MSC differentiation into adipogenic cells, while upregulated during osteogenic differentiation.
Interestingly, MEG3 silencing promoted the osteogenic and adipogenic differentiation of human
adipose-derived MSCs [122]. Additional studies are indeed required to clarify the role of MEG3 in
MMBD pathophysiology.

3.3. Circular RNAs

Circular RNAs (circRNAs) are covalently closed single-stranded lncRNAs whose expression is
finely regulated in a tissue- and disease-specific manner. They can act as modulators of transcription,
as miRNA sponges or can even sequester factors, such as RNA-binding proteins or ribonucleoprotein
complexes [123]; of note, they can be also packaged and released into extracellular vesicles (EVs) [124].
Emerging evidence has highlighted that circRNAs are implicated in various malignancies and
can function as potential diagnostic and prognostic biomarkers [125–128]. High-throughput RNA
sequencing has recently revealed thousands of circRNAs expressed in different cancer cell lines [129].
Collectively, few studies have been addressed in MM [130–133]. Dahl et al. [127] identified 619 unique
circRNAs in the MM cell line NCI-H929. By RNA-seq, Liu et al. identified circRNAs differentially
expressed in MM patients respect to the healthy individuals, focusing on hsa_circRNA_101237,
that positively correlated with some clinical features of MM patients, including bone destruction [132].
Upregulation of hsa_circRNA_101237 in recurrent/refractory patients compared to first-episode
treatment-naive patients was shown; similar results were obtained after analysis of expression
levels of hsa_circRNA_101237 in different MM cells lines, with the highest expression levels of
hsa_circRNA_101237 observed in bortezomib resistant cell lines. They also analyzed the correlation
between hsa_circRNA_101,237 expression levels and MM types or bone lesions, chromosomal variations
and genetic variations. Interestingly, it was found that hsa_circRNA_101237 was overexpressed in
positive patients for 13q14 deletion, 1q21 amplification, P53 deletion and t(4,14) and t(14,16), along with
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KRAS, NRAS, FAM46C, DIS3, BRAF, TRAF3 and TP53 gene mutations, associated with poor prognosis
of MM patients. In particular, the overexpression of hsa_circRNA_101237 was closely related in MM
patients with cytogenetic abnormalities and BD, which were of R-ISS stage III, defining it as a marker
of high clinical value [132]. The mechanistic role of this circRNA in the context of MM and MMBD is
yet to be analyzed.

4. Extracellular Vesicle-Associated ncRNAs

It has been widely demonstrated that different ncRNAs species are contained in extracellular
vesicles, which are lipoproteic structures heterogeneous in size and content, released by almost all cell
types [134,135]. In recent years, EVs have gained attention because of the identification of biological
molecules as cargo. In fact, if they were initially considered a way of elimination of waste products [136],
current knowledge indicates that EVs represent a cell–cell means of communication.

EVs play a crucial role in the context of MM pathobiology, and specifically in the crosstalk that
malignant PCs establish with other cells of the BMM such as endothelial, stromal, MSCs and immune
cells [137–142]. Such interaction is key both in the progression of the disease and in the onset of
pharmacological resistance [143,144]. Moreover, growing experimental evidence indicates that EVs
released by MM cells alter bone homeostasis and, therefore, contribute to the onset of MMBD [145–149].

We firstly demonstrated that EVs were released from MM cell lines and were also detectable in
the serum of MM patients. Such EVs induced the osteoclastic differentiation of murine macrophages
as well as of human pre-osteoclasts, enhancing the expression of specific OC differentiation markers,
such as CTSK, MMP9 and TRAP. MM-EVs were able to induce a complete osteoclastic differentiation.
Notably, pre-osteoclast treated with MM-EVs differentiated in multinuclear and giant OCs, having a
strong erosive capability, as evidenced by bone resorption pit assays; these effects were not observed
when EVs derived by the metastatic colorectal cancer cell line SW620 were used, demonstrating the
MM cell-type specificity of EVs within the BMM [145].

Subsequently, many studies have disclosed the molecular mechanisms underlying the
EV-dependent osteoclastogenic effect. In 2019, Raimondo et al. showed that the presence of the EGFR
ligand, amphiregulin (AREG), partially mediates the EV-mediated OC activation. Authors observed
that AREG was specifically enriched in exosome samples, leading to the activation of EGFR in pre-OCs;
such effects were abrogated by exosome pre-treatment with anti-AREG neutralizing Ab [146].

In parallel, the role of EVs on another crucial cell population involved in bone homeostasis,
i.e., OBs, has been investigated. The results of these studies indicate that MM EVs can inhibit the
osteogenic differentiation of MSCs, thus contributing to increased osteolysis [146–148,150–152]. In one
of these studies, it emerged that MM EVs carry DKK1 in OBs leading to reduced levels of Runx2,
osterix and collagen 1A1 [152].

Noteworthy, increasing evidence suggests that the EV-associated ncRNA cargo mediates the
profound impact that EVs exert on the gene expression profile of target cells [153–155].

Research has been performed to identify the mechanisms underlying the specific sorting of certain
ncRNAs in EVs. For some miRNAs, a small sequence, called hEXO motif, has been identified as
recognized by the RNA binding protein SYNCRIP, and found to be responsible for the specific sorting
of these miRNAs in vesicles [156].

Recent evidence also correlated the osteolytic effect of MM-EVs with its ncRNAs content. A study
published by Li et al., showed that the lncRNA RUNX2-AS1 is packaged in MM-EVs and transferred
to MSCs, resulting in the transcriptional repression of Runx2 and, thus, prematurely blocking MSCs
osteogenic differentiation [147]. Finally, by analyzing the miRNA repertoire of MM-EVs, several
miRNAs involved in the inhibition of osteogenic differentiation [148,149] were identified. In a recent
study, miR-103a-3p was identified as one of the upregulated miRNAs following the treatment of MSCs
with MM-EVs [148]; in parallel, miR-129-5p, carried by MM-EVs, was found to reduce ALPL levels in
MSCs. In addition, the authors also observed that miR-129-5p was more abundant in EVs isolated from
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MM patients with active BD than in SMM, supporting the notion that this miRNA is key in mediating
the EV-dependent MMBD [149].

A more in-depth characterization of the ncRNAs contained in these structures will allow
the development of new biomarkers for the diagnosis and prognosis of the disease. In parallel,
the identification of the mechanisms underlying the exact sorting of ncRNAs, and/or other biomolecules,
in EVs, could provide the basis for the definition of new therapeutic targets against MMBD.

5. Conclusions

Preclinical studies have clarified the pathophysiology of MMBD identifying new possible
druggable targets, which could hopefully enlarge the spectrum of therapeutic opportunities against
this severe MM complication. In this context, a novel area of investigation is represented by ncRNA
molecules, which can finely tune the gene expression programs of BMM cells finally regulating bone
homeostasis. ncRNAs have been found to be expressed and secreted within EVs by various cellular
components of the BMM. By modulating the expression of signaling molecules implicated in OC
development, ncRNAs have been demonstrated to control different processes in OCs precursors
and mature OCs. A graphic overview of the molecular and cellular scenario underlying MMBD
pathophysiology and overall reviewed in this manuscript is reported in Figure 2. Collectively,
available literature findings presented in this review point to a promising role of these molecules as
novel therapeutic and prognostic tools in MMBD, able to affect the expression of some of the most
important MMBD-related pathways. However, it has to be noticed that although the prognostic
relevance of ncRNAs different from miRNAs (i.e., lncRNAs, circRNAs) is progressively emerging,
functional studies clarifying their biological activity are at their infancy or still missing and need to be
mandatorily performed to dissect their precise role in MMBD. Moreover, lncRNA expression profiling
of BMM cells under specific differentiation stimuli is warranted to identify useful lncRNA signatures
to be functionally characterized in the context of MMBD.
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Figure 2. Cartoon showing the effect of dysregulated non-coding RNAs (ncRNAs) (miRNAs and
long (>200 nucleotides) non-coding RNAs (lncRNAs)) on multiple myeloma bone disease (MMBD).
ncRNAs modulate bone remodeling both in physiologic conditions (on the left side of the red line across
the bone) or in MM (on the right side of the red line across the bone). Under physiologic conditions,
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osteoclasts (OCs) and osteoblasts (OBs) work together to balance bone resorption and formation.
Their activities are governed by specific gene programs, whose expression is regulated by ncRNAs,
i.e., miRNA or lncRNAs produced by MM cells and/or other cells of the BMM, and released within
extracellular vesicles (EVs). In MMBD, dysregulated ncRNAs contribute to enhance OCs activity
for instance acting on RANKL/OPG pathway, while OB activity is inhibited, thus establishing an
unbalanced condition that fosters the development of osteolytic lesions.

The most relevant ncRNAs functionally implicated in MMBD, their main molecular targets and
their bone-related effects are summarized in Table 1.

Table 1. Molecular targets and bone-related effects of functionally characterized ncRNAs in MMBD.

ncRNAs Target(s) in
MMBD Bone-Related Effects Function in

MMBD Reference(s)

hsa-miR-221 SMAD3 Decreases the osteogenic potential
of hMSCs oncomiRNA [68]

hsa-miR-138 ROCK2, TRPS1
and SULF2

Decreases the osteogenic and
chondrogenic potential of hMSCs oncomiRNA [69,70]

hsa-miR-203a-3p.1
SMAD9 and

Wnt/β-catenin
pathway

Decreases the osteogenic potential
of hMSCs oncomiRNA [71]

hsa-miR-21 OPG Regulates RANKL/OPG ratio in
the MM BM microenvironment oncomiRNA [76,77]

hsa-miR-29b c-FOS; MMP2 Negatively regulates human OCs
differentiation and function TS miRNA [84,85]

hsa-miR-135b SMAD5

Impairs the osteogenic
differentiation capability of

BM-derived MSCs from
MM patients

oncomiRNA [88]

hsa-miR-342 and
miR-363 Runx2

Impact the BMM decreasing OBs
activity and increasing

OCs activity
TS miRNA [89]

hsa-miR-223 Runx2
Osteopontin

Impairs the osteogenic
differentiation potential of

MM-BMMSCs
TS miRNA [93]

HOXC-AS3 HOXC10 Represses the osteogenic potential
of MSCs

Oncogenic
lncRNA [110]

MEG3 BMP4 Promotes the differentiation of
MSCs into OBs TS lncRNA [121]

TS, tumor suppressor.
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Abbreviations

BM bone marrow
BMM bone marrow microenvironment
circRNA circular RNA
EV extracellular vesicle
hMSCs human mesenchymal stem cells
lncRNA long non-codingRNA
miRNA microRNA
MM multiple myeloma
MMBD multiple myeloma bone disease
MGUS monoclonal gammopathy of undetermined significance
ncRNA non-coding RNA
OB osteoblast
OC osteoclast
OCY osteocyte
PC plasma cell
sMM smoldering multiple myeloma
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