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Abstract: It is now commonly accepted that most of the mammalian genome is transcribed as RNA,
yet less than 2% of such RNA encode for proteins. A majority of transcribed RNA exists as non-
protein-coding RNAs (ncRNAs) with various functions. Because of the lack of sequence homologies
among most ncRNAs species, it is difficult to infer the potential functions of ncRNAs by examining
sequence patterns, such as catalytic domains, as in the case of proteins. Added to the existing
complexity of predicting the functions of the ever-growing number of ncRNAs, increasing evidence
suggests that various enzymes modify ncRNAs (e.g., ADARs, METTL3, and METTL14), which has
opened up a new field of study called epitranscriptomics. Here, we examine the current status of
ncRNA research from the perspective of epitranscriptomics.

Keywords: epitranscriptomics; non-coding RNA; RNA modifications

1. Introduction

Just as DNA and proteins, RNA can be modified by a variety of enzymes. There are
170+ RNA modifications known to date [1,2], which is much higher than DNA and proteins.
Historically, RNA modifications have been studied for those of housekeeping RNAs, such
as ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs) [3–7] and only recently that the
field of RNA modifications (called epitranscriptomics [8]) has been extended to other RNA
molecules, including protein-coding genes, microRNAs (miRNAs) and long non-coding
RNAs (lncRNAs). This expansion of the epitranscriptomic field is the result of the recent
development of high-throughput methods, such as mass spectrometry and next-generation
sequencing (NGS), especially RNA sequencing (RNA-seq) [9–13]. Among many RNA
modifications, the most famous one in recent years is N6-methyladenosine (m6A), which is
reversible methylation of nitrogen-6 position of adenosine (A) [14,15]. This modification fre-
quently occurs in most eukaryotes, especially in the messenger RNAs (mRNAs) [16–19] and
has been shown to increase during organ maturation and development [20–23] especially
in the adult brain [24], cancer pathogenesis, and progression [25,26]. Because of increased
interest in epitrascriptomics, there is an explosion in the number of publications covering
various aspects of cellular processes, organ developments, and disease progressions for
many different RNA modifications, including m6A, RNA editing, and pseudouridylation.
These RNA modifications have contributed significantly to RNA metabolism, including
transcription, splicing, subcellular location, stability, and translation. Thus, in this review,
we will summarize the current status of epitranscriptomics by focusing on the biogen-
esis of lncRNAs and their functions to provide a concise view of epitranscriptomics in
lncRNA biology.
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2. Different Types of RNA Modification Marks Reported for lncRNAs

Like DNA and histones, RNA undergoes epigenetic modifications termed epitranscrip-
tomics, which exploded over the recent years studying 170+ RNA modifications [1,2]. In
this review article, we focus on the following RNA modifications: m6A, N1-methyladenosine
(m1A), adenosine (A) to inosine (I) RNA editing, 5-methylcytidine (m5C), and pseudouri-
dine (Ψ) [27] (Figure 1).

Figure 1. Schematic representations of RNA modifications. ADAR, adenosine (A) to inosine (I)
RNA editing; AlyREF, Aly/REF export factor; ALKBH proteins, alkB homolog; DNMT2, DNA
methyltransferase-like 2; FTO, fat mass and obesity-associated protein; m1A, N1-methyladenosine;
m6A, N6-methyladenosine; m5C, 5-methylcytosine; METTL, methyltransferase-like; NSUN,
NOP2/Sun domain family members; PUS, pseudouridine synthase; RNMT, RNA guanine-7 methyl-
transferase; RPUSD, RNA pseudouridine synthase domain-containing protein; TRM6, transfer RNA
methyltransferase non-catalytic subunit 6; TRM61, transfer RNA methyltransferase catalytic subunit
61; TRMT10, transfer RNA methyltransferase 10; YTHDC, YTH domain-containing; YTHDF, YTH
domain-containing family. Created with BioRender.com accessed on 31 March 2021.
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2.1. m6A Modification

The methylation of adenosine is catalyzed by two writer proteins, methyl transferase
3 and methyl transferase 14 (METTL3 and METTL14), forming m6A methyl transferase
complex (MTC) [28,29]. Moreover, Wilms tumor 1-associated protein (WTAP) acts as an
adaptor protein that recruits other RNAs and proteins to MTC to target multiple RNA
transcripts [30–32]. Recent studies identified other adaptor proteins, such as RNA-binding
motif protein 15 (RBM15). RBM15B interacts with MTC in a WTAP-dependent manner and
represses the lncRNA X-inactive specific transcript (XIST) transcription [33].

Recent studies uncovered methyl transferase 16 (METTL16) as another writer protein
in the MTC. Importantly, crosslinking sites of METTL16 were found in the ACm6AGAGA
motif, which is mainly found in intronic regions. Intriguingly, ACm6AGAGA motif was
associated with spliceosomes [34,35], suggesting subsets of m6A methyltransferases have
diverse functions, and future studies focusing on understanding the role of METTL16 in
alternative splicing is warranted. On the other hand, recent studies underscored demethy-
lases acting as eraser proteins. Two such proteins, fat mass- and obesity-associated protein
(FTO) and alkylation repair homolog protein 5 (ALKBH5), gained much attention recently,
emphasizing the concept that m6A is a reversible and dynamic process [36]. Mechanisti-
cally, FTO oxidizes m6A to unstable intermediates N6-hydroxymethyladenosine (hm6A) or
N6-formyladenosine (f6A), which further hydrolyzes to adenine. In contrast, ALKBH5 re-
moves the adenosine’s methyl group directly [37]. A group of RNA binding proteins (YTH
N6-methyladenosine RNA binding proteins: YTHDF1, YTHDF2, YTHDF3, and YTHDC1)
specifically recognize the methylated adenosine on RNA that participates in RNA stability
or translation (reviewed in [38]). Overall, m6A writers, erasers, and readers participate in a
complex mechanism crucial for lncRNA functions, especially related to pathogenesis and
progression of various diseases, such as those summarized in the following paragraphs
(Table 1).

Just as mRNAs, m6A modification stabilizes lncRNAs to affect their functions. Exam-
ples include metastasis-associated lung adenocarcinoma transcript 1 (MALAT1); one of
the most studied lncRNA that is involved in many disease conditions [39]. Interestingly,
MALAT1 owns multiple m6A sites (A2515, A2577, A2611, and A2720) [40]. The MALAT1
hairpin contains the domain for the binding of heterogeneous nuclear ribonucleoprotein C
(HNRNPC) and m6A methylation site (A2577) [40]. In the presence of m6A mark, methyla-
tion destabilizes hairpin and enhances HNRNPC binding. Recent work demonstrated that
YTHDC1, an m6A reader, recognizes m6A marks on MALAT1, which plays a crucial role in
maintaining the expression of vital oncogenes via reshaping nuclear spots and genomic
binding [41]. Simultaneously, m6A-deficient MALAT1 rescued the metastatic nature of
esophageal cancer cells [41], suggesting the functional role of m6A marks on MALAT1.

As in the case of MALAT1, most of the published studies on the effects of m6A marks
on the functions of lncRNAs are related to cancers. For example, a study investigating
lncRNA expression profile in 502 head and neck squamous cell carcinoma (HNSCC)
patients identified a significantly elevated level of lncRNA activating regulator of DKK1
(LNCAROD) associated with tumor stage and reduced overall survival [42]. Mechanistically,
the m6A modification through m6A writers, METTL3 and METTL14, stabilizes LNCAROD
expression. Then, LNCAROD by forming a ternary complex with heat shock protein family
A (Hsp70) member 1A (HSPA1A) and Y-box binding protein 1 (YBX1) promotes HNSCC
disease progression [42]. In pancreatic cancer, the m6A demethylase.

(Eraser) ALKBH5 inhibits the disease progression by demethylating the lncRNA
KCNK15 and WISP2 antisense RNA 1 (KCNK15-AS1) and increasing the stability of
KCNK15-AS1, while the down-regulation of KCNK15-AS1 inhibited the cell migration
and invasion [43]. Besides m6A writers and erasers, m6A readers also affect the functions
of lncRNAs via m6A marks. For example, the m6A reader, insulin-like growth factor
2 mRNA binding protein 2 (IGF2BP2), regulates the stability of differentiation antagonizing
non-protein coding RNA (DANCR), which is crucial for pancreatic cancer cell growth and
tumorigenesis [44].
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Table 1. A non-exhaustive list of m6A modified lncRNAs.

LncRNA m6A Regulator Function References

MALAT1 YTHDC1 Reshapes the composition of nuclear spots and enhances oncogene
expression. [41]

LNCAROD METTL3 and METTL14 Promotes HNSCC disease progression. [42]

KCNK15-AS1 ALKBH5 Enhances pancreatic cell migration and invasion. [43]

DANCR IGF2BP2 Enhances pancreatic cancer cell growth and tumorigenesis. [44]

PVT1 ALKBH5 Promotes osteosarcoma cell proliferation, migration, and invasion. [45]

GAS5 YTHDF3 Involved in colorectal cancer. [46]

RP11-138 J23.1 METTL3 Progresses colorectal cancer. [47]

FAM225A METTl3 Enhances nasopharyngeal carcinoma cell, proliferation, migration,
invasion, and metastasis. [48]

LINC00958 METTl3 Promotes hepatocellular carcinoma. [49]

linc1281 METTl3 Induces mouse embryonic stem cell differentiation. [50]

BDNF-AS METTL3 Increases the risk of AUD. [51]

Olfr29-ps1 METTl3 Promotes immunosuppressive function and differentiation of
myeloid-derived suppressor cells. [52]

Yes1 associated transcriptional regulator (YAP) has been a critical factor in colorectal
cancer (CRC) progression [53]. Interestingly, a functional link between m6A modification
and lncRNA in YAP signaling and CRC was reported. In this study [46], an m6A reader,
YTHDF3, is a novel target of YAP that can promote the degradation of m6A modified
lncRNA, growth arrest-specific 5 (GAS5), in CRC progression. In regards to m6A modified
lncRNAs, another lncRNA was reported to be involved in CRC. In this study [47], the
lncRNA RP11-138 J23.1 (RP11) was elevated in CRC patients with the disease progression.
RP11 promoted CRC cell proliferation and metastasis ability by suppressing the proteaso-
mal degradation of the transcription factor, zinc finger E-box binding homeobox 1 (ZEB1);
thereby enhancing epithelial to mesenchymal transition. m6A RNA-immunoprecipitation
(RIP) assays revealed an increased association of RP11 to m6A antibody in CRC cells com-
pared to control cells. Further, the overexpression of METTL3 increased RP11 expression
in the CRC cells, suggesting m6A-induced RP11 expression promotes CRC progression
and is likely a potential biomarker and a novel therapeutic target for CRC [47]. The m6A
modifications on lncRNAs can also play a vital role in their binding efficiency to miRNAs
and/or proteins. For example; the significance of lncRNAs in nasopharyngeal carcino-
genesis (NPC) was addressed in a recent study [48]. Using a microarray-based screening
approach, the authors identified a lncRNA, family with sequence similarity 225 member A
(FAM225A), as the most upregulated lncRNA in NPC associated with poor survival in these
patients. FAM225A enhanced cancer cell proliferation, migration, invasion, and metastasis
by sponging miR-590-3p and miR-1275, which activate integrin-β3 and PI3K/AKT cell
survival pathways. The authors identified two RRACU m6A consensus motifs in the last
exon of FAM225A. Subsequent methylated RNA immunoprecipitation (Me-RIP) assay
revealed elevated m6A levels in NPC cell lines (SUNE-1 and HONE-1) compared to control
nasopharyngeal epithelial cell lines (NP69 and N2Tert). Further, METTL3 knockdown
experiments revealed 50% to 60% reduced total FAM225A expression, suggesting the role
of m6A marks on the FAM225A stability in NPC patients [48]. Another well characterized
oncogenic lncRNA is Pvt1 oncogene (PVT1) [54]. A study shows that the expression of
PVT1 was elevated in osteocarcinoma (OS) tissues and significantly associated with clinical
stage, tumor size, and prognosis of OS patients [45]. Mechanistically, m6A demethylase
(eraser), ALKBH5, interacts with PVT1 to prevent its degradation. Long non-coding RNA
00958 (LINC00958) has been shown to be upregulated in gastric, glioma, gynecological,
oral, and pancreatic cancer [49]. However, its role in hepatocellular carcinoma (HCC) was
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unclear. To address this lack of information, a study demonstrated that METTL3-mediated
m6A modification enhanced the stability of LINC00958 [49]. Mechanistically, LINC00958
acts as miRNA sponge against miR-3619-5p to increase the expression of its target gene,
hepatoma-derived growth factor (HDGF), which promotes HCC growth [49]. The func-
tional connection between m6A marks and lncRNAs as miRNA sponges has been shown in
several studies. One such study demonstrated that m6A modification of a rodent-specific
lncRNA, linc1281, acting as miRNA sponge against let-7, induced mouse embryonic stem
cell differentiation [50]. At the same time, mutations or deletion of METTL3 abolished
linc1281 binding to let-7. Another study identified a lncRNA pseudogene, olfactory recep-
tor 29, pseudogene 1 (Olfr29-ps1), was upregulated in myeloid-derived suppressor cells
(MDSCs) upon proinflammatory stress induced by interleukin 6 (IL-6) [52]. Mechanistically,
Olfr29-ps1 sequestered miR-214 to promote immunosuppressive function and differenti-
ation of MDSCs, whereas these effects were abolished with silencing METTL3 [52]. The
above studies highlight that m6A modifications in lncRNAs dictate their binding efficiency
and functions.

Besides their role in various cancers, it is now clear that m6A modifications in lncRNA
involvement in alcohol use disorders (AUD). For instance, it is well known that adolescent
alcohol drinking contributes to developing AUDs in adulthood. In this perspective, an
elegant study was performed to understand a link between m6A and lncRNAs in the
postmortem amygdala of adolescent drinking individuals (subjects who started drinking
alcohol before or at 21 years of age) [51]. The authors observed that reduced m6A modifi-
cation in the lncRNA BDNF antisense RNA (BDNF-AS) results in the increased levels of
BDNF-AS, subsequently repressing brain-derived neurotrophic factor (BDNF) expression,
a critical factor in the central nervous system and increasing the risk of AUDs, indicating
m6A-mediated action on lncRNAs in another disorder [51].

Circular RNAs (circRNA) are covalently circularized RNA loops that are mainly gener-
ated by pre-mRNA splicing (reviewed in [55]). CircRNAs exhibits differential expression in
response to cellular stress events and various human diseases, including cancers and cardio-
vascular and neurodegenerative diseases [55–59]. Owing to their unique circular structure,
they are naturally inaccessible to exonucleases, resulting in their increased half-life. Thus,
circRNAs represent reliable biomarkers to detect various human diseases. How circRNAs
degrade within cells has been an unanswered question. In this regard, a study revealed
P/MRP endonuclease cuts m6A containing circRNAs via recruiting its reader, YTHDF2,
and its adaptor protein, reactive intermediate imine deaminase A homolog (HRSP12 or
RIDA), to degrade circRNAs [60]. Although circRNAs are considered non-coding, except
for a few circRNAs that exhibited peptide/protein-coding ability [61,62], a remarkable
study demonstrated that single nucleotide m6A modification on circRNAs is sufficient to
promote translation via the recruitment of initiation factor initiation factor eukaryotic trans-
lation factor 4 gamma (elF4G2) and m6A reader, YTHDF [63]. A significant proportion of
circRNAs come from open reading frame (ORF) containing protein-coding genes; however,
what drives ORF-circRNA biogenesis was unclear. In this context, a study revealed that
m6A modification in circRNA drives the biogenesis of circRNA with coding potential in
mouse male germ cells [64]. Taken together, future studies are warranted to address the
functions of the circRNA-derived peptides and proteins.

The role of m6A modifications on circRNAs in immune responses has been a focus
of recent research efforts. A study demonstrated how mammalian cells detect foreign
circRNAs and induce innate immunity [65]. In this study, the m6A modifications in endoge-
nous or self circRNAs inhibit innate immunity, while the absence of m6A modifications
in exogenous or foreign circRNAs activates RNA pattern recognition regulation of RIG-I
(retinoic acid-inducible gene I; official gene name, DExD/H-box helicase 58 (DDX58)) to
induce a robust immune response by activating T-cells and antibody production in human
cells [65]. In contrast, another study showed that the transfection of purified circRNAs did
not induce an immune response and, therefore, propose circRNA potential therapeutic
usage without adverse immune reactions [66]. Taken together, the role of circRNAs in



Non-coding RNA 2021, 7, 31 6 of 16

the immune-stimulatory function needs further investigation, especially addressing how
endogenous circRNAs achieve self-tolerance and how m6A or other RNA modifications on
circRNAs contribute to inflammation in endogenous vs. foreign circRNAs.

In summary, with the ongoing research on lncRNAs and m6A modification, it has
become evident that m6A modifications regulate multiple biological functions, especially
in various cancers. Future research needs to address the role of m6A modifications on
lncRNAs in other human diseases. Furthermore, m6A modifications on circRNA sequences
and their functional relevance in health and disease need to be thoroughly explored.

2.2. m1A Modification

m1A forms by introducing a methyl group to the N1 position of adenosine. It is not
as abundant as m6A. Unlike m6A, m1A writers include TRMT6, TRMT61A, TRMT10C;
readers for m1A sites include YTHDF1, YTHDF2, YTHDF3, and YTHDC1, which are
mainly similar to m6A. An exciting aspect of m1A is its erasers, ALKBH3 and ALKBH1,
which ensure demethylation of m1A [67–69]. Dysregulation of m1A on tRNA has been
reported in cancers, and an elevated level of ALKBH3 has been reported in pancreatic
cancer [70]. However, how m1A modifications affect lncRNA structures and functions is
still not evident.

2.3. Adenosine (A) to Inosine (I) RNA Editing

Conversion of adenosine (A) to inosine (I) by adenosine deaminase (ADAR) is an-
other prevalent form of RNA modification [71]. Three of these gene family members
were identified in vertebrates [72]. ADAR1 and ADAR2 are expressed in most tissues,
whereas ADAR3 is only expressed in the brain [73]. A-to-I change results in changes in
transcripts and alternative splicing. A-to-I modifications in lncRNAs exhibited cancer pro-
gression and cardiovascular disease [71,74]. Moreover, ADAR1-mediated A-to-I changes in
prostate cancer antigen 3 (PCA3) lncRNA increased its binding with PRUNE2 pre-mRNA
to promote cancer cell proliferation, migration, and invasion [75]. Using hoc indexing and
de novo editing events, a comprehensive inosinome in lncRNAs was performed in the
healthy brain cortex and glioblastoma [76]. The authors identified >10,000 new sites and
335 novel lncRNAs that undergo editing, suggesting the A-to-I RNA editing on lncRNAs
maintains the physiology of healthy brain as well as its dysregulation is linked to tumor
progression [76].

2.4. m5C Modification

m5C is a methylated form of cytosine (C), which is well studied in DNA, tRNA, and
rRNA. Enzymes NOL1/NOP2/SUN domain family member (NSUN) family, NSUN1 to
NSUN7, and DNA methyltransferase-like 2 (DNMT2) have been reported to participate
in this RNA modification [77]. A recent study using modified RNA bisulfite sequencing
identified m5C sites on lncRNAs in HeLa cells, with a low stoichiometry [78]. An elegant
study has shown that methylated cytosine sites in the functional domain of the lncRNA
HOTAIR and XIST are essential for binding to chromatin-associated protein complexes [79].
Furthermore, another study identified comprehensive methylated cytosine in the epitran-
scriptome of the mouse brain and embryonic stem cells in ncRNAs as well, although low
in number [80]. These findings highlight the role of cytosine methylation modifications on
lncRNAs. This is encouraging, and future studies on m5C modification on lncRNAs would
help us better understand their biological and functional role in health and disease.

2.5. Ψ Modificatio

Ψ is known as the “fifth nucleotide” due to its abundance and represents the most
prevalent RNA modifications. Pseudouridine is an isomer of nucleoside uridine catalyzed
by Ψ synthase (PUS) that removes nitrogen-carbon glycosidic bond and replaces its carbon-
carbon glycosidic bond [81]. The presence of 170 Ψ sites was recently identified in lncRNAs;
interestingly, in well-characterized lncRNAs, including MALAT1, XIST, and KCNQ1 oppo-
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site strand/antisense transcript 1 (KCNQ1OT1) [82,83]. Thus, future studies are warranted
to uncover functional and mechanistic insights of Ψ in lncRNAs in the context of health
and disease.

3. Impact of Epitranscriptomic Marks on lncRNA Structures

When the first draft of the human genome was introduced, there were high hopes for
understanding many of nature’s rules about the human body. Two decades later, we have
realized that there is more to human genes than simply looking at DNA sequences. The
same situation applies to elucidating the functions of lncRNAs. Many researchers were
excited to read about terminal differentiation-induced non-coding RNA (TINCR) as the
authors identified TINCR box motifs, which are 25-nt long RNA sequences that interact
with many other mRNAs [84]. The discovery of TINCR box motifs prompted a further
search for similar binding domains of other lncRNAs. However, such screening did not
yield fruitful results [85,86]. Not only was such search not successful, but it also recently
became clear that TINCR owns an evolutionary conserved open reading frame, which
encodes for peptides of 87 amino acids [87]. Within this TINCR peptide, one of 10 TINCR
box motifs is included, suggesting that sequence alone cannot be used to infer functions of
lncRNAs. There are a number of methods proposed and used to predict the functions of
lncRNAs by combining different features of lncRNAs, including evolutionary-conserved
sequence motifs, secondary structures, and potential binding of RNA-binding proteins and
miRNAs [85,86,88,89]. Yet, none of such methods can predict the functions of all lncRNAs,
which is not surprising as not all protein-coding genes have been functionally characterized.
In addition to the current challenges facing the computational functional predictions of
lncRNAs, growing evidence of epitranscriptomic marks on lncRNAs is of particular interest
as yet another parameter that researchers need to consider when investigating the functions
of lncRNAs and other types of RNA species.

More than half of the human genome is made up of repetitive sequences [90]. The
Ensembl database currently classifies these repeat sequences into 10 classes (centromere,
low complexity regions, RNA repeats, satellite repeats, simple repeats, tandem repeats,
LTRs (long tandem repeats), SINE (short interspersed nuclear element), LINE (long in-
terspersed nuclear element), and Type II transposons) and categorize those that cannot
be classified into above 10 classes as “Unknown” (https://m.ensembl.org/info/genome/
genebuild/assembly_repeats.html accessed on 22 March 2021). Not surprisingly, such
repetitive sequences are also present in lncRNAs [91–93]. For example, the subfamily of
SINE, Alu elements, can be found in 11% of the human genome [94]. These 300-nt repetitive
repeats are derived from transposons and exist only in primates. These elements can be
expressed as their own RNA [95] or parts of other transcripts (e.g., introns of mRNAs,
lncRNAs), where their expression levels increase upon stresses (e.g., heat shock, hypoxia,
viral infection) [96,97]. When two Alu elements in opposite directions meet, they form
double-stranded RNA, which can be recognized by RNA-binding proteins, such as ADARs.
The ADAR-mediated A-to-I changes also occur frequently in lncRNAs [98–100]. Not sur-
prisingly, these A-to-I conversions change the secondary structures of RNA [101], which
is also an important point to be considered when analyzing for lncRNA functions as the
binding of other macromolecules (i.e., DNA, RNA, and proteins) can alter depending on
the presence (or absence) of double-stranded RNA motifs within a lncRNA [102–104].

Besides A-to-I RNA editing, other epitranscriptomic marks affect the structures of
lncRNAs. In particular, m6A marks are of interest as it has been shown to be in a negative
relationship with A-to-I RNA editing [105]. More recently study shows that silencing of
the m6A writer, METTL3, in glioma stem-like cells altered A-to-I and C-to-U RNA editing
(another type of RNA editing, which is less frequent than A-to-I) events by differentially
regulating RNA editing enzymes ADAR and APOBEC3A, respectively [106]. An interesting
model is proposed recently regarding m6A marks affecting the secondary structure of
one of the most well studied lncRNA, MALAT1 [107]. By performing secondary data
analyses of dimethyl sulfate-sequencing (DMS-Seq) data from human erythroleukemic
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https://m.ensembl.org/info/genome/genebuild/assembly_repeats.html


Non-coding RNA 2021, 7, 31 8 of 16

cell line K562 and psoralen analysis of RNA interactions and structure (PARIS) data from
cervical cancer-derived HeLa cells compared to the working structural model of MALAT1 in
noncancerous cells, the authors postulated that m6A-based structural changes of MALAT1
might mediate cancer in a cell-type-specific manner [107]. Thus, increasing evidence
suggests that examining epitranscriptomic marks on lncRNAs is important to uncover the
potential functions of lncRNAs [108].

4. Secondary Analysis of RNA-Seq and m6A-Seq Data to Reveal the Impact of m6A
Marks on lncRNAs

As stated earlier, the most well-studied epitranscriptomic marks in recent years are
m6A. Indeed, a number of lncRNAs have been shown to own m6A marks, including
lincRNA 1281 (official gene name; ephemeron, early developmental lncRNA (Eprn)) during
the differentiation of mouse embryonic stem cells [50], MALAT1 in obstructive nephropa-
thy [109], Pvt1 in sustaining stemness of epidermal progenitor cells [110], and XIST in tran-
scriptional repression [33]. Many more m6A-marked lncRNAs are found in cancers, such
as FOXF1 adjacent non-coding developmental regulatory RNA (FENDDR) in endometrioid
endometrial carcinoma [111], KCNK15 and WISP2 antisense RNA 1 (KCNK15-AS1) in
pancreatic cancer [43], nuclear paraspeckle assembly transcript 1 (NEAT1) in the colon [112]
and gastric cancer [113], as well as miRNA sponges, including long intergenic non-protein
coding RNA 857 (LINC00857) in pancreatic cancer [114], long intergenic non-protein coding
RNA 958 (LINC00958) in breast cancer [115], and PVT1 in osteosarcoma [45]. Further-
more, there are several high-throughput screening studies reporting m6A marks in lncR-
NAs [16,24,116–119] as well as databases (CVm6A [120], DRUM [121], m6A-Atlas [122],
m6Acorr [123], M6A2Target [124], m6AVar [125], MeT-DB [126,127], REPIC [128], RM-
Base [129,130], RMDisease [131], RMVar [132], and RNAWRE [133]) have been released
with m6A marks (and also other epigenetic marks, such as m1A, m5C, RNA editing, and Ψ,
for some databases) in protein-coding and lncRNAs. These screenings are the results of
RNA immunoprecipitation (RIP) using anti-m6A antibody (often termed as m6A-seq) [18]
as well as more elaborate techniques, such as amplicon sequencing evaluation method for
RNA m6A sites after chemical deamination (NOseq) [134], MeRIP-seq (methylated RNA
immunoprecipitation sequencing) [24], and miCLIP (m6A individual-nucleotide-resolution
cross-linking and immunoprecipitation) [118] technologies. As there are several enzymes
involved in m6A (writers, readers, and erasers), in some screening studies, knockdown
of each m6A enzyme was performed to record the dependency of m6A marks for each
enzyme. Yet, most of these studies mainly focus on protein-coding genes as further biologi-
cal validation experiments are possible by examining protein expressions of m6A-marked
transcripts that encode. Furthermore, it is not clear whether m6A-dependent (based on
m6A marks) and -independent effects of m6A enzymes (changes in gene expressions due to
the loss of a particular m6A enzyme but not affecting m6A marks) in such screening studies.

We performed a secondary analysis of previously published RNA-seq data to address
the above point directly. In the original study [135], the authors report that METTL14 is a
crucial component for the crosstalk between histone H3 trimethylation at Lys36 (H3K36me3,
a marker for pre-mRNA splicing) and m6A marks. Using the human hepatoma cell
line HepG2, RNA-seq and m6A-seq experiments were performed upon silencing of m6A
writers—METTL3, METTL14, and WTAP (Gene Expression Omnibus (GEO) accession
GSE110320). Since the original study analyzed only for protein-coding genes and used the
older version of the genome, hg19, a secondary analysis of this data set was performed
using the latest annotation provided by the Ensembl database (GRCh38.103). The usage of
the latest annotation of the human genome is crucial as the number of lncRNAs has been
increased drastically in recent years, which allows us to examine the lncRNAs more care-
fully. Of 19,796 protein-coding and 16,593 lncRNA genes without readthrough transcripts
registered under the GRCh38.103 annotation file, there are less than 100 differentially
expressed genes (both protein-coding and lncRNA genes) upon silencing of each m6A
writer compared to the control (HepG2 cells treated with short hairpin RNA (shRNA)
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against non-specific sequences) (Figure 2A,B, Supplementary Tables S1–S3. When up-and
down-regulated protein-coding genes are compared among silencing of m6A writers, only
two protein-coding genes (HMGCS2 (3-hydroxy-3-methylglutaryl-CoA synthase 2) and
LGALS2 (galectin 2)) are shared between silencing of METTL3 and METTL14, while three
protein-coding genes (BHMT (betaine–homocysteine S-methyltransferase), CYP4F2 (cy-
tochrome P450 family 4 subfamily F member 2), and STMN4 (stathmin 4)) are shared
between silencing of METTL3 and WTAP. However, no protein-coding gene is shared
among all three conditions (Figure 2C). In the case of down-regulated protein-coding genes,
no gene was shared (Figure 2D). Unlike the protein-coding genes, only 11 non-overlapping
lncRNA genes are identified as up-regulated (Figure 2E). Simultaneously, there is no down-
regulated lncRNA gene in the silencing of any of three m6A writers compared to the control,
suggesting that at the level of transcriptional control, m6A writers influence different sets of
protein-coding genes. However, such transcriptional influence is rather minimal, especially
since such transcriptional control via m6A writers is negligible for lncRNA genes, even for
the mRNA-seq (targeting only RNA with poly A tails; thus missing about half of lncRNAs
without poly A tails).

Figure 2. RNA-seq data of silencing of m6A writers in HepG2 cells. (A) volcano plots comparing
silencing of METTL3, METTL14, or WTAP to the control sample group. With the threshold values of
2-fold and FDR-adjusted p < 0.05, protein-coding genes are colored in red, lncRNA genes in blue, and
other genes (e.g., pseudogenes) in yellow-green. (B) the table indicates the number of differentially
expressed genes for each category. (C,D) Venn diagrams for shared protein-coding genes that are
(C) up- and (D) down-regulated in each condition. (E) heatmaps of target m6A reader genes followed
by up-regulated lncRNA genes in each condition.
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5. Materials and Methods
5.1. RNA-Seq Data Analysis

RNA-seq data were downloaded from the Sequence Read Archive (SRA) database
using SRA Toolkit. [136] FASTQ files were preprocessed with fastp [137] (version 0.21.0)
using the default setting. After preprocessing of sequencing reads, STAR [138] (version
020201) was used to map the reads to the reference genome (GRCh38.103). To calculate
counts per million (CPM) values and derive differentially expressed genes, the R package,
edgeR [139] (version 3.30.3), was used. False discovery rate (FDR)-adjusted p-values were
used for further analysis.

5.2. Data Analysis and Visualization

Volcano plots were generated using R-package, ggplot2 [140]. To draw heat maps,
MultiExperiment Viewer (MeV) [141] was used.

6. Conclusions

On the whole, we summarize updates on lncRNA epitranscriptomics, in the context of
lncRNA function and biology. Even though the last couple of decades of research revealed
the importance of epitranscriptomics in health and disease, several questions still need to
be answered, such as future insights into the functional importance of RNA modification in
lncRNAs? Are these modifications conserved between species, whether these modifications
are mediators or actual drivers? How do we identify different modifications on the same
lncRNA? Can these modifications be targeted to restrict disease progression? All these
above questions would unravel our understanding of epitranscriptomics as novel disease
mechanisms to design effective and targeted therapeutics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ncrna7020031/s1, Table S1: Differentially expressed genes in silencing of METTL3 (shMETTL3)
compared to the control; Table S2: Differentially expressed genes in silencing of METTL14 (shMETTL14)
compared to the control; Table S3: Differentially expressed genes in silencing of WTAP (shWTAP)
compared to the control.

Author Contributions: S.U. performed data analysis of RNA-seq data. V.N.S.G. and S.U. wrote the
manuscript, generated figures, and approved the final version of this manuscript. Both authors have
read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the American Heart Association Career Development
Award 18CDA34110277 and startup funds from the Ohio State University to VNSG.

Institutional Review Board Statement: Ethical review and approval were waived for this study, due
to the usage of publicly available data sets.

Informed Consent Statement: Patient consent was waived due to the usage of publicly available
data sets.

Data Availability Statement: The commands and programs used in this study can be found in
the Github repository (https://github.com/heartlncrna/Analysis_of_GSE110320). The data sets
analyzed in this study can be found in the Zenodo repository (https://doi.org/10.5281/zenodo.4635
589, accessed on 22 March 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Boo, S.H.; Kim, Y.K. The emerging role of RNA modifications in the regulation of mRNA stability. Exp. Mol. Med. 2020, 52,

400–408. [CrossRef]
2. Frye, M.; Harada, B.T.; Behm, M.; He, C. RNA modifications modulate gene expression during development. Science 2018, 361,

1346–1349. [CrossRef] [PubMed]
3. Bjork, G.R.; Kjellin-Straby, K. General screening procedure for RNA modificationless mutants: Isolation of Escherichia coli strains

with specific defects in RNA methylation. J. Bacteriol. 1978, 133, 499–507. [CrossRef]

https://www.mdpi.com/article/10.3390/ncrna7020031/s1
https://www.mdpi.com/article/10.3390/ncrna7020031/s1
https://github.com/heartlncrna/Analysis_of_GSE110320
https://doi.org/10.5281/zenodo.4635589
https://doi.org/10.5281/zenodo.4635589
http://doi.org/10.1038/s12276-020-0407-z
http://doi.org/10.1126/science.aau1646
http://www.ncbi.nlm.nih.gov/pubmed/30262497
http://doi.org/10.1128/JB.133.2.499-507.1978


Non-coding RNA 2021, 7, 31 11 of 16

4. Caboche, M.; Bachellerie, J.P. RNA methylation and control of eukaryotic RNA biosynthesis. Effects of cycloleucine, a specific
inhibitor of methylation, on ribosomal RNA maturation. Eur. J. Biochem. 1977, 74, 19–29. [CrossRef]

5. Klootwijk, J.; Planta, R.J. Modified sequences in yeast ribosomal RNA. Mol. Biol. Rep. 1973, 1, 187–191. [CrossRef]
6. Fittler, F.; Hall, R.H. Selective modification of yeast seryl-t-RNA and its effect on the acceptance and binding functions. Biochem.

Biophys. Res. Commun. 1966, 25, 441–446. [CrossRef]
7. Doi, R.H.; Goehler, B. Reversible modification of lysyl-tRNA which affects its binding to poly A-ribosome complexes. Biochem.

Biophys. Res. Commun. 1966, 24, 44–49. [CrossRef]
8. Saletore, Y.; Meyer, K.; Korlach, J.; Vilfan, I.D.; Jaffrey, S.; Mason, C.E. The birth of the Epitranscriptome: Deciphering the function

of RNA modifications. Genome Biol. 2012, 13, 175. [CrossRef] [PubMed]
9. Motorin, Y.; Marchand, V. Analysis of RNA Modifications by Second- and Third-Generation Deep Sequencing: 2020 Update.

Genes 2021, 12, 278. [CrossRef] [PubMed]
10. Shi, H.; Wei, J.; He, C. Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers.

Mol. Cell 2019, 74, 640–650. [CrossRef] [PubMed]
11. Asadi-Atoi, P.; Barraud, P.; Tisne, C.; Kellner, S. Benefits of stable isotope labeling in RNA analysis. Biol. Chem. 2019, 400, 847–865.

[CrossRef] [PubMed]
12. Jora, M.; Lobue, P.A.; Ross, R.L.; Williams, B.; Addepalli, B. Detection of ribonucleoside modifications by liquid chromatography

coupled with mass spectrometry. Biochim. Biophys. Acta Gene Regul. Mech. 2019, 1862, 280–290. [CrossRef] [PubMed]
13. Meng, Z.; Limbach, P.A. Mass spectrometry of RNA: Linking the genome to the proteome. Brief. Funct. Genomic. Proteomic 2006, 5,

87–95. [CrossRef] [PubMed]
14. He, P.C.; He, C. m(6) A RNA methylation: From mechanisms to therapeutic potential. EMBO J. 2021, 40, e105977. [CrossRef]
15. Zaccara, S.; Ries, R.J.; Jaffrey, S.R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 2019, 20, 608–624.

[CrossRef]
16. Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S.; Cesarkas, K.; Jacob-Hirsch, J.;

Amariglio, N.; Kupiec, M.; et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012,
485, 201–206. [CrossRef]

17. Wang, X.; Lu, Z.; Gomez, A.; Hon, G.C.; Yue, Y.; Han, D.; Fu, Y.; Parisien, M.; Dai, Q.; Jia, G.; et al. N6-methyladenosine-dependent
regulation of messenger RNA stability. Nature 2014, 505, 117–120. [CrossRef]

18. Dominissini, D.; Moshitch-Moshkovitz, S.; Salmon-Divon, M.; Amariglio, N.; Rechavi, G. Transcriptome-wide mapping of
N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing. Nat. Protoc. 2013, 8, 176–189.
[CrossRef]

19. Wang, X.; Zhao, B.S.; Roundtree, I.A.; Lu, Z.; Han, D.; Ma, H.; Weng, X.; Chen, K.; Shi, H.; He, C. N(6)-methyladenosine Modulates
Messenger RNA Translation Efficiency. Cell 2015, 161, 1388–1399. [CrossRef]

20. Wang, Y.; Li, Y.; Toth, J.I.; Petroski, M.D.; Zhang, Z.; Zhao, J.C. N6-methyladenosine modification destabilizes developmental
regulators in embryonic stem cells. Nat. Cell Biol. 2014, 16, 191–198. [CrossRef]

21. Xiao, S.; Cao, S.; Huang, Q.; Xia, L.; Deng, M.; Yang, M.; Jia, G.; Liu, X.; Shi, J.; Wang, W.; et al. The RNA N(6)-methyladenosine
modification landscape of human fetal tissues. Nat. Cell Biol. 2019, 21, 651–661. [CrossRef]

22. Hsu, P.J.; Zhu, Y.; Ma, H.; Guo, Y.; Shi, X.; Liu, Y.; Qi, M.; Lu, Z.; Shi, H.; Wang, J.; et al. Ythdc2 is an N(6)-methyladenosine
binding protein that regulates mammalian spermatogenesis. Cell Res. 2017, 27, 1115–1127. [CrossRef] [PubMed]

23. Geula, S.; Moshitch-Moshkovitz, S.; Dominissini, D.; Mansour, A.A.; Kol, N.; Salmon-Divon, M.; Hershkovitz, V.; Peer, E.; Mor,
N.; Manor, Y.S.; et al. Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation.
Science 2015, 347, 1002–1006. [CrossRef]

24. Meyer, K.D.; Saletore, Y.; Zumbo, P.; Elemento, O.; Mason, C.E.; Jaffrey, S.R. Comprehensive analysis of mRNA methylation
reveals enrichment in 3’ UTRs and near stop codons. Cell 2012, 149, 1635–1646. [CrossRef] [PubMed]

25. He, X.; Tan, L.; Ni, J.; Shen, G. Expression pattern of m(6)A regulators is significantly correlated with malignancy and antitumor
immune response of breast cancer. Cancer Gene Ther. 2020. [CrossRef]

26. Ueda, Y.; Ooshio, I.; Fusamae, Y.; Kitae, K.; Kawaguchi, M.; Jingushi, K.; Hase, H.; Harada, K.; Hirata, K.; Tsujikawa, K. AlkB
homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci. Rep. 2017, 7, 42271. [CrossRef]
[PubMed]

27. Yang, X.; Liu, M.; Li, M.; Zhang, S.; Hiju, H.; Sun, J.; Mao, Z.; Zheng, M.; Feng, B. Epigenetic modulations of noncoding RNA: A
novel dimension of Cancer biology. Mol. Cancer 2020, 19, 64. [CrossRef] [PubMed]

28. Liu, J.; Yue, Y.; Han, D.; Wang, X.; Fu, Y.; Zhang, L.; Jia, G.; Yu, M.; Lu, Z.; Deng, X.; et al. A METTL3-METTL14 complex mediates
mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 2014, 10, 93–95. [CrossRef]

29. Wang, X.; Feng, J.; Xue, Y.; Guan, Z.; Zhang, D.; Liu, Z.; Gong, Z.; Wang, Q.; Huang, J.; Tang, C.; et al. Structural basis of
N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature 2016, 534, 575–578. [CrossRef] [PubMed]

30. Scholler, E.; Weichmann, F.; Treiber, T.; Ringle, S.; Treiber, N.; Flatley, A.; Feederle, R.; Bruckmann, A.; Meister, G. Interactions,
localization, and phosphorylation of the m(6)A generating METTL3-METTL14-WTAP complex. RNA 2018, 24, 499–512. [CrossRef]

31. Ping, X.L.; Sun, B.F.; Wang, L.; Xiao, W.; Yang, X.; Wang, W.J.; Adhikari, S.; Shi, Y.; Lv, Y.; Chen, Y.S.; et al. Mammalian WTAP is a
regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014, 24, 177–189. [CrossRef] [PubMed]

http://doi.org/10.1111/j.1432-1033.1977.tb11362.x
http://doi.org/10.1007/BF00357640
http://doi.org/10.1016/0006-291X(66)90225-7
http://doi.org/10.1016/0006-291X(66)90407-4
http://doi.org/10.1186/gb-2012-13-10-175
http://www.ncbi.nlm.nih.gov/pubmed/23113984
http://doi.org/10.3390/genes12020278
http://www.ncbi.nlm.nih.gov/pubmed/33669207
http://doi.org/10.1016/j.molcel.2019.04.025
http://www.ncbi.nlm.nih.gov/pubmed/31100245
http://doi.org/10.1515/hsz-2018-0447
http://www.ncbi.nlm.nih.gov/pubmed/30893050
http://doi.org/10.1016/j.bbagrm.2018.10.012
http://www.ncbi.nlm.nih.gov/pubmed/30414470
http://doi.org/10.1093/bfgp/ell012
http://www.ncbi.nlm.nih.gov/pubmed/16769684
http://doi.org/10.15252/embj.2020105977
http://doi.org/10.1038/s41580-019-0168-5
http://doi.org/10.1038/nature11112
http://doi.org/10.1038/nature12730
http://doi.org/10.1038/nprot.2012.148
http://doi.org/10.1016/j.cell.2015.05.014
http://doi.org/10.1038/ncb2902
http://doi.org/10.1038/s41556-019-0315-4
http://doi.org/10.1038/cr.2017.99
http://www.ncbi.nlm.nih.gov/pubmed/28809393
http://doi.org/10.1126/science.1261417
http://doi.org/10.1016/j.cell.2012.05.003
http://www.ncbi.nlm.nih.gov/pubmed/22608085
http://doi.org/10.1038/s41417-020-00208-1
http://doi.org/10.1038/srep42271
http://www.ncbi.nlm.nih.gov/pubmed/28205560
http://doi.org/10.1186/s12943-020-01159-9
http://www.ncbi.nlm.nih.gov/pubmed/32209098
http://doi.org/10.1038/nchembio.1432
http://doi.org/10.1038/nature18298
http://www.ncbi.nlm.nih.gov/pubmed/27281194
http://doi.org/10.1261/rna.064063.117
http://doi.org/10.1038/cr.2014.3
http://www.ncbi.nlm.nih.gov/pubmed/24407421


Non-coding RNA 2021, 7, 31 12 of 16

32. Kobayashi, M.; Ohsugi, M.; Sasako, T.; Awazawa, M.; Umehara, T.; Iwane, A.; Kobayashi, N.; Okazaki, Y.; Kubota, N.; Suzuki,
R.; et al. The RNA Methyltransferase Complex of WTAP, METTL3, and METTL14 Regulates Mitotic Clonal Expansion in
Adipogenesis. Mol. Cell Biol. 2018, 38. [CrossRef] [PubMed]

33. Patil, D.P.; Chen, C.K.; Pickering, B.F.; Chow, A.; Jackson, C.; Guttman, M.; Jaffrey, S.R. m(6)A RNA methylation promotes
XIST-mediated transcriptional repression. Nature 2016, 537, 369–373. [CrossRef] [PubMed]

34. Brown, J.A.; Kinzig, C.G.; DeGregorio, S.J.; Steitz, J.A. Methyltransferase-like protein 16 binds the 3’-terminal triple helix of
MALAT1 long noncoding RNA. Proc. Natl. Acad. Sci. USA 2016, 113, 14013–14018. [CrossRef] [PubMed]

35. Warda, A.S.; Kretschmer, J.; Hackert, P.; Lenz, C.; Urlaub, H.; Hobartner, C.; Sloan, K.E.; Bohnsack, M.T. Human METTL16 is a
N(6)-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 2017, 18,
2004–2014. [CrossRef]

36. Huang, Y.; Su, R.; Sheng, Y.; Dong, L.; Dong, Z.; Xu, H.; Ni, T.; Zhang, Z.S.; Zhang, T.; Li, C.; et al. Small-Molecule Targeting of
Oncogenic FTO Demethylase in Acute Myeloid Leukemia. Cancer Cell 2019, 35, 677–691. [CrossRef]

37. Zheng, G.; Dahl, J.A.; Niu, Y.; Fedorcsak, P.; Huang, C.M.; Li, C.J.; Vagbo, C.B.; Shi, Y.; Wang, W.L.; Song, S.H.; et al. ALKBH5 is a
mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell. 2013, 49, 18–29. [CrossRef]

38. Meyer, K.D.; Jaffrey, S.R. Rethinking m(6)A Readers, Writers, and Erasers. Annu. Rev. Cell Dev. Biol. 2017, 33, 319–342. [CrossRef]
39. Wu, Y.; Huang, C.; Meng, X.; Li, J. Long Noncoding RNA MALAT1: Insights into its Biogenesis and Implications in Human

Disease. Curr. Pharm. Des. 2015, 21, 5017–5028. [CrossRef]
40. He, R.Z.; Jiang, J.; Luo, D.X. The functions of N6-methyladenosine modification in lncRNAs. Genes. Dis. 2020, 7, 598–605.

[CrossRef]
41. Wang, X.; Liu, C.; Zhang, S.; Yan, H.; Zhang, L.; Jiang, A.; Liu, Y.; Feng, Y.; Li, D.; Guo, Y.; et al. N(6)-methyladenosine modification

of MALAT1 promotes metastasis via reshaping nuclear speckles. Dev. Cell 2021, 56, 702–715. [CrossRef]
42. Ban, Y.; Tan, P.; Cai, J.; Li, J.; Hu, M.; Zhou, Y.; Mei, Y.; Tan, Y.; Li, X.; Zeng, Z.; et al. LNCAROD is stabilized by m6A methylation

and promotes cancer progression via forming a ternary complex with HSPA1A and YBX1 in head and neck squamous cell
carcinoma. Mol. Oncol. 2020, 14, 1282–1296. [CrossRef] [PubMed]

43. He, Y.; Hu, H.; Wang, Y.; Yuan, H.; Lu, Z.; Wu, P.; Liu, D.; Tian, L.; Yin, J.; Jiang, K.; et al. ALKBH5 Inhibits Pancreatic Cancer
Motility by Decreasing Long Non-Coding RNA KCNK15-AS1 Methylation. Cell. Physiol. Biochem. 2018, 48, 838–846. [CrossRef]
[PubMed]

44. Hu, X.; Peng, W.X.; Zhou, H.; Jiang, J.; Zhou, X.; Huang, D.; Mo, Y.Y.; Yang, L. IGF2BP2 regulates DANCR by serving as an
N6-methyladenosine reader. Cell Death Differ. 2020, 27, 1782–1794. [CrossRef]

45. Chen, S.; Zhou, L.; Wang, Y. ALKBH5-mediated m(6)A demethylation of lncRNA PVT1 plays an oncogenic role in osteosarcoma.
Cancer Cell Int. 2020, 20, 34. [CrossRef] [PubMed]

46. Ni, W.; Yao, S.; Zhou, Y.; Liu, Y.; Huang, P.; Zhou, A.; Liu, J.; Che, L.; Li, J. Long noncoding RNA GAS5 inhibits progression of
colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the
m(6)A reader YTHDF3. Mol. Cancer 2019, 18, 143. [CrossRef]

47. Wu, Y.; Yang, X.; Chen, Z.; Tian, L.; Jiang, G.; Chen, F.; Li, J.; An, P.; Lu, L.; Luo, N.; et al. m(6)A-induced lncRNA RP11 triggers
the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol. Cancer 2019, 18, 87. [CrossRef]

48. Zheng, Z.Q.; Li, Z.X.; Zhou, G.Q.; Lin, L.; Zhang, L.L.; Lv, J.W.; Huang, X.D.; Liu, R.Q.; Chen, F.; He, X.J.; et al. Long
Noncoding RNA FAM225A Promotes Nasopharyngeal Carcinoma Tumorigenesis and Metastasis by Acting as ceRNA to Sponge
miR-590-3p/miR-1275 and Upregulate ITGB3. Cancer Res. 2019, 79, 4612–4626. [CrossRef] [PubMed]

49. Zuo, X.; Chen, Z.; Gao, W.; Zhang, Y.; Wang, J.; Wang, J.; Cao, M.; Cai, J.; Wu, J.; Wang, X. M6A-mediated upregulation of
LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. J. Hematol. Oncol. 2020, 13, 5.
[CrossRef]

50. Yang, D.; Qiao, J.; Wang, G.; Lan, Y.; Li, G.; Guo, X.; Xi, J.; Ye, D.; Zhu, S.; Chen, W.; et al. N6-Methyladenosine modification of
lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Res. 2018, 46, 3906–3920. [CrossRef]

51. Bohnsack, J.P.; Teppen, T.; Kyzar, E.J.; Dzitoyeva, S.; Pandey, S.C. The lncRNA BDNF-AS is an epigenetic regulator in the human
amygdala in early onset alcohol use disorders. Transl. Psychiatry 2019, 9, 34. [CrossRef]

52. Shang, W.; Gao, Y.; Tang, Z.; Zhang, Y.; Yang, R. The Pseudogene Olfr29-ps1 Promotes the Suppressive Function and Differentiation
of Monocytic MDSCs. Cancer Immunol. Res. 2019, 7, 813–827. [CrossRef]

53. Huyghe, J.R.; Bien, S.A.; Harrison, T.A.; Kang, H.M.; Chen, S.; Schmit, S.L.; Conti, D.V.; Qu, C.; Jeon, J.; Edlund, C.K.; et al.
Discovery of common and rare genetic risk variants for colorectal cancer. Nat. Genet. 2019, 51, 76–87. [CrossRef] [PubMed]

54. Onagoruwa, O.T.; Pal, G.; Ochu, C.; Ogunwobi, O.O. Oncogenic Role of PVT1 and Therapeutic Implications. Front. Oncol. 2020,
10, 17. [CrossRef]

55. Xiao, M.S.; Ai, Y.; Wilusz, J.E. Biogenesis and Functions of Circular RNAs Come into Focus. Trends Cell Biol. 2020, 30, 226–240.
[CrossRef] [PubMed]

56. Kishore, R.; Garikipati, V.N.S.; Gonzalez, C. Role of Circular RNAs in Cardiovascular Disease. J. Cardiovasc. Pharmacol. 2020, 76,
128–137. [CrossRef]

57. Garikipati, V.N.S.; Verma, S.K.; Cheng, Z.; Liang, D.; Truongcao, M.M.; Cimini, M.; Yue, Y.; Huang, G.; Wang, C.; Benedict, C.;
et al. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat. Commun. 2019,
10, 4317. [CrossRef] [PubMed]

http://doi.org/10.1128/MCB.00116-18
http://www.ncbi.nlm.nih.gov/pubmed/29866655
http://doi.org/10.1038/nature19342
http://www.ncbi.nlm.nih.gov/pubmed/27602518
http://doi.org/10.1073/pnas.1614759113
http://www.ncbi.nlm.nih.gov/pubmed/27872311
http://doi.org/10.15252/embr.201744940
http://doi.org/10.1016/j.ccell.2019.03.006
http://doi.org/10.1016/j.molcel.2012.10.015
http://doi.org/10.1146/annurev-cellbio-100616-060758
http://doi.org/10.2174/1381612821666150724115625
http://doi.org/10.1016/j.gendis.2020.03.005
http://doi.org/10.1016/j.devcel.2021.01.015
http://doi.org/10.1002/1878-0261.12676
http://www.ncbi.nlm.nih.gov/pubmed/32216017
http://doi.org/10.1159/000491915
http://www.ncbi.nlm.nih.gov/pubmed/30032148
http://doi.org/10.1038/s41418-019-0461-z
http://doi.org/10.1186/s12935-020-1105-6
http://www.ncbi.nlm.nih.gov/pubmed/32021563
http://doi.org/10.1186/s12943-019-1079-y
http://doi.org/10.1186/s12943-019-1014-2
http://doi.org/10.1158/0008-5472.CAN-19-0799
http://www.ncbi.nlm.nih.gov/pubmed/31331909
http://doi.org/10.1186/s13045-019-0839-x
http://doi.org/10.1093/nar/gky130
http://doi.org/10.1038/s41398-019-0367-z
http://doi.org/10.1158/2326-6066.CIR-18-0443
http://doi.org/10.1038/s41588-018-0286-6
http://www.ncbi.nlm.nih.gov/pubmed/30510241
http://doi.org/10.3389/fonc.2020.00017
http://doi.org/10.1016/j.tcb.2019.12.004
http://www.ncbi.nlm.nih.gov/pubmed/31973951
http://doi.org/10.1097/FJC.0000000000000841
http://doi.org/10.1038/s41467-019-11777-7
http://www.ncbi.nlm.nih.gov/pubmed/31541092


Non-coding RNA 2021, 7, 31 13 of 16

58. Rai, A.K.; Lee, B.; Gomez, R.; Rajendran, D.; Khan, M.; Garikipati, V.N.S. Current Status and Potential Therapeutic Strategies for
Using Non-coding RNA to Treat Diabetic Cardiomyopathy. Front. Physiol. 2020, 11, 612722. [CrossRef] [PubMed]

59. Zhang, Z.; Yang, T.; Xiao, J. Circular RNAs: Promising Biomarkers for Human Diseases. EBioMedicine 2018, 34, 267–274. [CrossRef]
60. Park, O.H.; Ha, H.; Lee, Y.; Boo, S.H.; Kwon, D.H.; Song, H.K.; Kim, Y.K. Endoribonucleolytic Cleavage of m(6)A-Containing

RNAs by RNase P/MRP Complex. Mol. Cell 2019, 74, 494–507. [CrossRef]
61. Legnini, I.; Di Timoteo, G.; Rossi, F.; Morlando, M.; Briganti, F.; Sthandier, O.; Fatica, A.; Santini, T.; Andronache, A.; Wade,

M.; et al. Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. Mol. Cell 2017, 66, 22–37 e29.
[CrossRef]

62. Pamudurti, N.R.; Bartok, O.; Jens, M.; Ashwal-Fluss, R.; Stottmeister, C.; Ruhe, L.; Hanan, M.; Wyler, E.; Perez-Hernandez, D.;
Ramberger, E.; et al. Translation of CircRNAs. Mol. Cell 2017, 66, 9–21 e27. [CrossRef]

63. Yang, Y.; Fan, X.; Mao, M.; Song, X.; Wu, P.; Zhang, Y.; Jin, Y.; Yang, Y.; Chen, L.L.; Wang, Y.; et al. Extensive translation of circular
RNAs driven by N(6)-methyladenosine. Cell Res. 2017, 27, 626–641. [CrossRef]

64. Tang, C.; Xie, Y.; Yu, T.; Liu, N.; Wang, Z.; Woolsey, R.J.; Tang, Y.; Zhang, X.; Qin, W.; Zhang, Y.; et al. m(6)A-dependent biogenesis
of circular RNAs in male germ cells. Cell Res. 2020, 30, 211–228. [CrossRef]

65. Chen, Y.G.; Chen, R.; Ahmad, S.; Verma, R.; Kasturi, S.P.; Amaya, L.; Broughton, J.P.; Kim, J.; Cadena, C.; Pulendran, B.; et al.
N6-Methyladenosine Modification Controls Circular RNA Immunity. Mol. Cell 2019, 76, 96–109 e109. [CrossRef]

66. Wesselhoeft, R.A.; Kowalski, P.S.; Parker-Hale, F.C.; Huang, Y.; Bisaria, N.; Anderson, D.G. RNA Circularization Diminishes
Immunogenicity and Can Extend Translation Duration In Vivo. Mol. Cell 2019, 74, 508–520 e504. [CrossRef] [PubMed]

67. Dai, X.; Wang, T.; Gonzalez, G.; Wang, Y. Identification of YTH Domain-Containing Proteins as the Readers for N1-
Methyladenosine in RNA. Anal. Chem. 2018, 90, 6380–6384. [CrossRef] [PubMed]

68. Shi, L.; Yang, X.M.; Tang, D.D.; Liu, G.; Yuan, P.; Yang, Y.; Chang, L.S.; Zhang, L.R.; Song, D.K. Expression and significance of
m1A transmethylase, hTrm6p/hTrm61p and its related gene hTrm6/hTrm61 in bladder urothelial carcinoma. Am. J. Cancer Res.
2015, 5, 2169–2179. [PubMed]

69. Dominissini, D.; Nachtergaele, S.; Moshitch-Moshkovitz, S.; Peer, E.; Kol, N.; Ben-Haim, M.S.; Dai, Q.; Di Segni, A.; Salmon-Divon,
M.; Clark, W.C.; et al. The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 2016, 530, 441–446.
[CrossRef] [PubMed]

70. Chen, Z.; Qi, M.; Shen, B.; Luo, G.; Wu, Y.; Li, J.; Lu, Z.; Zheng, Z.; Dai, Q.; Wang, H. Transfer RNA demethylase ALKBH3
promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res. 2019, 47, 2533–2545. [CrossRef]

71. Stellos, K.; Gatsiou, A.; Stamatelopoulos, K.; Perisic Matic, L.; John, D.; Lunella, F.F.; Jae, N.; Rossbach, O.; Amrhein, C.; Sigala,
F.; et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated
post-transcriptional regulation. Nat. Med. 2016, 22, 1140–1150. [CrossRef] [PubMed]

72. Walkley, C.R.; Li, J.B. Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs. Genome Biol. 2017, 18, 205.
[CrossRef] [PubMed]

73. Savva, Y.A.; Rieder, L.E.; Reenan, R.A. The ADAR protein family. Genome Biol. 2012, 13, 252. [CrossRef] [PubMed]
74. Peng, X.; Xu, X.; Wang, Y.; Hawke, D.H.; Yu, S.; Han, L.; Zhou, Z.; Mojumdar, K.; Jeong, K.J.; Labrie, M.; et al. A-to-I RNA Editing

Contributes to Proteomic Diversity in Cancer. Cancer Cell 2018, 33, 817–828 e817. [CrossRef]
75. Salameh, A.; Lee, A.K.; Cardo-Vila, M.; Nunes, D.N.; Efstathiou, E.; Staquicini, F.I.; Dobroff, A.S.; Marchio, S.; Navone, N.M.;

Hosoya, H.; et al. PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc.
Natl. Acad. Sci. USA 2015, 112, 8403–8408. [CrossRef]

76. Li, Y.; Jiang, T.; Zhou, W.; Li, J.; Li, X.; Wang, Q.; Jin, X.; Yin, J.; Chen, L.; Zhang, Y.; et al. Pan-cancer characterization of
immune-related lncRNAs identifies potential oncogenic biomarkers. Nat. Commun. 2020, 11, 1000. [CrossRef] [PubMed]

77. Hussain, S.; Aleksic, J.; Blanco, S.; Dietmann, S.; Frye, M. Characterizing 5-methylcytosine in the mammalian epitranscriptome.
Genome Biol. 2013, 14, 215. [CrossRef]

78. Khoddami, V.; Yerra, A.; Mosbruger, T.L.; Fleming, A.M.; Burrows, C.J.; Cairns, B.R. Transcriptome-wide profiling of multiple
RNA modifications simultaneously at single-base resolution. Proc. Natl. Acad. Sci. USA 2019, 116, 6784–6789. [CrossRef]
[PubMed]

79. Amort, T.; Souliere, M.F.; Wille, A.; Jia, X.Y.; Fiegl, H.; Worle, H.; Micura, R.; Lusser, A. Long non-coding RNAs as targets for
cytosine methylation. RNA Biol. 2013, 10, 1003–1008. [CrossRef]

80. Amort, T.; Rieder, D.; Wille, A.; Khokhlova-Cubberley, D.; Riml, C.; Trixl, L.; Jia, X.Y.; Micura, R.; Lusser, A. Distinct 5-
methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biol. 2017, 18, 1. [CrossRef]

81. Zhao, B.S.; He, C. Pseudouridine in a new era of RNA modifications. Cell Res. 2015, 25, 153–154. [CrossRef]
82. Li, X.; Zhu, P.; Ma, S.; Song, J.; Bai, J.; Sun, F.; Yi, C. Chemical pulldown reveals dynamic pseudouridylation of the mammalian

transcriptome. Nat. Chem. Biol. 2015, 11, 592–597. [CrossRef] [PubMed]
83. Schwartz, S.; Bernstein, D.A.; Mumbach, M.R.; Jovanovic, M.; Herbst, R.H.; Leon-Ricardo, B.X.; Engreitz, J.M.; Guttman, M.;

Satija, R.; Lander, E.S.; et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA
and mRNA. Cell 2014, 159, 148–162. [CrossRef] [PubMed]

84. Kretz, M.; Siprashvili, Z.; Chu, C.; Webster, D.E.; Zehnder, A.; Qu, K.; Lee, C.S.; Flockhart, R.J.; Groff, A.F.; Chow, J.; et al. Control
of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 2013, 493, 231–235. [CrossRef]

http://doi.org/10.3389/fphys.2020.612722
http://www.ncbi.nlm.nih.gov/pubmed/33551838
http://doi.org/10.1016/j.ebiom.2018.07.036
http://doi.org/10.1016/j.molcel.2019.02.034
http://doi.org/10.1016/j.molcel.2017.02.017
http://doi.org/10.1016/j.molcel.2017.02.021
http://doi.org/10.1038/cr.2017.31
http://doi.org/10.1038/s41422-020-0279-8
http://doi.org/10.1016/j.molcel.2019.07.016
http://doi.org/10.1016/j.molcel.2019.02.015
http://www.ncbi.nlm.nih.gov/pubmed/30902547
http://doi.org/10.1021/acs.analchem.8b01703
http://www.ncbi.nlm.nih.gov/pubmed/29791134
http://www.ncbi.nlm.nih.gov/pubmed/26328247
http://doi.org/10.1038/nature16998
http://www.ncbi.nlm.nih.gov/pubmed/26863196
http://doi.org/10.1093/nar/gky1250
http://doi.org/10.1038/nm.4172
http://www.ncbi.nlm.nih.gov/pubmed/27595325
http://doi.org/10.1186/s13059-017-1347-3
http://www.ncbi.nlm.nih.gov/pubmed/29084589
http://doi.org/10.1186/gb-2012-13-12-252
http://www.ncbi.nlm.nih.gov/pubmed/23273215
http://doi.org/10.1016/j.ccell.2018.03.026
http://doi.org/10.1073/pnas.1507882112
http://doi.org/10.1038/s41467-020-14802-2
http://www.ncbi.nlm.nih.gov/pubmed/32081859
http://doi.org/10.1186/gb4143
http://doi.org/10.1073/pnas.1817334116
http://www.ncbi.nlm.nih.gov/pubmed/30872485
http://doi.org/10.4161/rna.24454
http://doi.org/10.1186/s13059-016-1139-1
http://doi.org/10.1038/cr.2014.143
http://doi.org/10.1038/nchembio.1836
http://www.ncbi.nlm.nih.gov/pubmed/26075521
http://doi.org/10.1016/j.cell.2014.08.028
http://www.ncbi.nlm.nih.gov/pubmed/25219674
http://doi.org/10.1038/nature11661


Non-coding RNA 2021, 7, 31 14 of 16

85. Gandhi, M.; Caudron-Herger, M.; Diederichs, S. RNA motifs and combinatorial prediction of interactions, stability and localization
of noncoding RNAs. Nat. Struct. Mol. Biol. 2018, 25, 1070–1076. [CrossRef] [PubMed]

86. Zhang, Y.; Huang, H.; Zhang, D.; Qiu, J.; Yang, J.; Wang, K.; Zhu, L.; Fan, J.; Yang, J. A Review on Recent Computational Methods
for Predicting Noncoding RNAs. Biomed. Res. Int. 2017, 2017, 9139504. [CrossRef] [PubMed]

87. Eckhart, L.; Lachner, J.; Tschachler, E.; Rice, R.H. TINCR is not a non-coding RNA but encodes a protein component of cornified
epidermal keratinocytes. Exp. Dermatol. 2020, 29, 376–379. [CrossRef]

88. Chillon, I.; Marcia, M. The molecular structure of long non-coding RNAs: emerging patterns and functional implications. Crit.
Rev. Biochem. Mol. Biol. 2020, 55, 662–690. [CrossRef]

89. Chen, X.; Sun, Y.Z.; Guan, N.N.; Qu, J.; Huang, Z.A.; Zhu, Z.X.; Li, J.Q. Computational models for lncRNA function prediction
and functional similarity calculation. Brief. Funct. Genom. 2019, 18, 58–82. [CrossRef] [PubMed]

90. Haubold, B.; Wiehe, T. How repetitive are genomes? BMC Bioinform. 2006, 7, 541. [CrossRef]
91. Ninomiya, K.; Hirose, T. Short Tandem Repeat-Enriched Architectural RNAs in Nuclear Bodies: Functions and Associated

Diseases. Noncoding RNA 2020, 6, 6. [CrossRef] [PubMed]
92. Weirick, T.; Militello, G.; Muller, R.; John, D.; Dimmeler, S.; Uchida, S. The identification and characterization of novel transcripts

from RNA-seq data. Brief. Bioinform. 2016, 17, 678–685. [CrossRef]
93. Johnson, R.; Guigo, R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA 2014,

20, 959–976. [CrossRef]
94. Deininger, P. Alu elements: know the SINEs. Genome Biol. 2011, 12, 236. [CrossRef] [PubMed]
95. Caudron-Herger, M.; Pankert, T.; Seiler, J.; Nemeth, A.; Voit, R.; Grummt, I.; Rippe, K. Alu element-containing RNAs maintain

nucleolar structure and function. EMBO J. 2015, 34, 2758–2774. [CrossRef]
96. Capshew, C.R.; Dusenbury, K.L.; Hundley, H.A. Inverted Alu dsRNA structures do not affect localization but can alter translation

efficiency of human mRNAs independent of RNA editing. Nucleic Acids Res. 2012, 40, 8637–8645. [CrossRef]
97. Malik, T.N.; Doherty, E.E.; Gaded, V.M.; Hill, T.M.; Beal, P.A.; Emeson, R.B. Regulation of RNA editing by intracellular acidification.

Nucleic Acids Res. 2021. [CrossRef] [PubMed]
98. Silvestris, D.A.; Scopa, C.; Hanchi, S.; Locatelli, F.; Gallo, A. De Novo A-to-I RNA Editing Discovery in lncRNA. Cancers 2020, 12,

2959. [CrossRef] [PubMed]
99. Galipon, J.; Ishii, R.; Suzuki, Y.; Tomita, M.; Ui-Tei, K. Differential Binding of Three Major Human ADAR Isoforms to Coding and

Long Non-Coding Transcripts. Genes 2017, 8, 68. [CrossRef]
100. John, D.; Weirick, T.; Dimmeler, S.; Uchida, S. RNAEditor: easy detection of RNA editing events and the introduction of editing

islands. Brief. Bioinform. 2017, 18, 993–1001. [CrossRef]
101. Solomon, O.; Di Segni, A.; Cesarkas, K.; Porath, H.T.; Marcu-Malina, V.; Mizrahi, O.; Stern-Ginossar, N.; Kol, N.; Farage-Barhom,

S.; Glick-Saar, E.; et al. RNA editing by ADAR1 leads to context-dependent transcriptome-wide changes in RNA secondary
structure. Nat. Commun. 2017, 8, 1440. [CrossRef]

102. Jones, A.N.; Sattler, M. Challenges and perspectives for structural biology of lncRNAs-the example of the Xist lncRNA A-repeats.
J. Mol. Cell Biol. 2019, 11, 845–859. [CrossRef] [PubMed]

103. Lai, W.C.; Kayedkhordeh, M.; Cornell, E.V.; Farah, E.; Bellaousov, S.; Rietmeijer, R.; Salsi, E.; Mathews, D.H.; Ermolenko, D.N.
mRNAs and lncRNAs intrinsically form secondary structures with short end-to-end distances. Nat. Commun. 2018, 9, 4328.
[CrossRef]

104. Blythe, A.J.; Fox, A.H.; Bond, C.S. The ins and outs of lncRNA structure: How, why and what comes next? Biochim. Biophys. Acta
2016, 1859, 46–58. [CrossRef]

105. Xiang, J.F.; Yang, Q.; Liu, C.X.; Wu, M.; Chen, L.L.; Yang, L. N(6)-Methyladenosines Modulate A-to-I RNA Editing. Mol. Cell 2018,
69, 126–135 e126. [CrossRef]

106. Visvanathan, A.; Patil, V.; Abdulla, S.; Hoheisel, J.D.; Somasundaram, K. N(6)-Methyladenosine Landscape of Glioma Stem-Like
Cells: METTL3 Is Essential for the Expression of Actively Transcribed Genes and Sustenance of the Oncogenic Signaling. Genes
2019, 10, 141. [CrossRef] [PubMed]

107. Wang, M.C.; McCown, P.J.; Schiefelbein, G.E.; Brown, J.A. Secondary Structural Model of MALAT1 Becomes Unstructured in
Chronic Myeloid Leukemia and Undergoes Structural Rearrangement in Cervical Cancer. Noncoding RNA 2021, 7, 6. [CrossRef]

108. Liu, N.; Dai, Q.; Zheng, G.; He, C.; Parisien, M.; Pan, T. N(6)-methyladenosine-dependent RNA structural switches regulate
RNA-protein interactions. Nature 2015, 518, 560–564. [CrossRef] [PubMed]

109. Liu, P.; Zhang, B.; Chen, Z.; He, Y.; Du, Y.; Liu, Y.; Chen, X. m(6)A-induced lncRNA MALAT1 aggravates renal fibrogenesis in
obstructive nephropathy through the miR-145/FAK pathway. Aging (Albany NY) 2020, 12, 5280–5299. [CrossRef]

110. Lee, J.; Wu, Y.; Harada, B.T.; Li, Y.; Zhao, J.; He, C.; Ma, Y.; Wu, X. N(6) methyladenosine modification of lncRNA Pvt1 governs
epidermal stemness. EMBO J. 2021, e106276. [CrossRef]

111. Shen, J.; Feng, X.P.; Hu, R.B.; Wang, H.; Wang, Y.L.; Qian, J.H.; Zhou, Y.X. N-methyladenosine reader YTHDF2-mediated long
noncoding RNA FENDRR degradation promotes cell proliferation in endometrioid endometrial carcinoma. Lab. Invest 2021.
[CrossRef] [PubMed]

112. Guo, T.; Liu, D.F.; Peng, S.H.; Xu, A.M. ALKBH5 promotes colon cancer progression by decreasing methylation of the lncRNA
NEAT1. Am. J. Transl. Res. 2020, 12, 4542–4549. [PubMed]

http://doi.org/10.1038/s41594-018-0155-0
http://www.ncbi.nlm.nih.gov/pubmed/30420773
http://doi.org/10.1155/2017/9139504
http://www.ncbi.nlm.nih.gov/pubmed/28553651
http://doi.org/10.1111/exd.14083
http://doi.org/10.1080/10409238.2020.1828259
http://doi.org/10.1093/bfgp/ely031
http://www.ncbi.nlm.nih.gov/pubmed/30247501
http://doi.org/10.1186/1471-2105-7-541
http://doi.org/10.3390/ncrna6010006
http://www.ncbi.nlm.nih.gov/pubmed/32093161
http://doi.org/10.1093/bib/bbv067
http://doi.org/10.1261/rna.044560.114
http://doi.org/10.1186/gb-2011-12-12-236
http://www.ncbi.nlm.nih.gov/pubmed/22204421
http://doi.org/10.15252/embj.201591458
http://doi.org/10.1093/nar/gks590
http://doi.org/10.1093/nar/gkab157
http://www.ncbi.nlm.nih.gov/pubmed/33721028
http://doi.org/10.3390/cancers12102959
http://www.ncbi.nlm.nih.gov/pubmed/33066171
http://doi.org/10.3390/genes8020068
http://doi.org/10.1093/bib/bbw087
http://doi.org/10.1038/s41467-017-01458-8
http://doi.org/10.1093/jmcb/mjz086
http://www.ncbi.nlm.nih.gov/pubmed/31336384
http://doi.org/10.1038/s41467-018-06792-z
http://doi.org/10.1016/j.bbagrm.2015.08.009
http://doi.org/10.1016/j.molcel.2017.12.006
http://doi.org/10.3390/genes10020141
http://www.ncbi.nlm.nih.gov/pubmed/30781903
http://doi.org/10.3390/ncrna7010006
http://doi.org/10.1038/nature14234
http://www.ncbi.nlm.nih.gov/pubmed/25719671
http://doi.org/10.18632/aging.102950
http://doi.org/10.15252/embj.2020106276
http://doi.org/10.1038/s41374-021-00543-3
http://www.ncbi.nlm.nih.gov/pubmed/33692441
http://www.ncbi.nlm.nih.gov/pubmed/32913527


Non-coding RNA 2021, 7, 31 15 of 16

113. Zhang, J.; Guo, S.; Piao, H.Y.; Wang, Y.; Wu, Y.; Meng, X.Y.; Yang, D.; Zheng, Z.C.; Zhao, Y. ALKBH5 promotes invasion and
metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1. J. Physiol. Biochem. 2019, 75, 379–389. [CrossRef]
[PubMed]

114. Meng, X.; Deng, Y.; He, S.; Niu, L.; Zhu, H. m(6)A-Mediated Upregulation of LINC00857 Promotes Pancreatic Cancer Tumorigen-
esis by Regulating the miR-150-5p/E2F3 Axis. Front. Oncol. 2021, 11, 629947. [CrossRef]

115. Rong, D.; Dong, Q.; Qu, H.; Deng, X.; Gao, F.; Li, Q.; Sun, P. m(6)A-induced LINC00958 promotes breast cancer tumorigenesis via
the miR-378a-3p/YY1 axis. Cell Death Discov. 2021, 7, 27. [CrossRef]

116. Zeng, Y.; Wang, S.; Gao, S.; Soares, F.; Ahmed, M.; Guo, H.; Wang, M.; Hua, J.T.; Guan, J.; Moran, M.F.; et al. Refined RIP-seq
protocol for epitranscriptome analysis with low input materials. PLoS Biol. 2018, 16, e2006092. [CrossRef]

117. Chen, K.; Luo, G.Z.; He, C. High-Resolution Mapping of N(6)-Methyladenosine in Transcriptome and Genome Using a Photo-
Crosslinking-Assisted Strategy. Methods Enzymol. 2015, 560, 161–185. [CrossRef]

118. Linder, B.; Grozhik, A.V.; Olarerin-George, A.O.; Meydan, C.; Mason, C.E.; Jaffrey, S.R. Single-nucleotide-resolution mapping of
m6A and m6Am throughout the transcriptome. Nat. Methods 2015, 12, 767–772. [CrossRef]

119. Liu, N.; Parisien, M.; Dai, Q.; Zheng, G.; He, C.; Pan, T. Probing N6-methyladenosine RNA modification status at single nucleotide
resolution in mRNA and long noncoding RNA. RNA 2013, 19, 1848–1856. [CrossRef]

120. Han, Y.; Feng, J.; Xia, L.; Dong, X.; Zhang, X.; Zhang, S.; Miao, Y.; Xu, Q.; Xiao, S.; Zuo, Z.; et al. CVm6A: A Visualization and
Exploration Database for m(6)As in Cell Lines. Cells 2019, 8, 168. [CrossRef]

121. Tang, Y.; Chen, K.; Wu, X.; Wei, Z.; Zhang, S.Y.; Song, B.; Zhang, S.W.; Huang, Y.; Meng, J. DRUM: Inference of Disease-Associated
m(6)A RNA Methylation Sites From a Multi-Layer Heterogeneous Network. Front. Genet. 2019, 10, 266. [CrossRef]

122. Tang, Y.; Chen, K.; Song, B.; Ma, J.; Wu, X.; Xu, Q.; Wei, Z.; Su, J.; Liu, G.; Rong, R.; et al. m6A-Atlas: a comprehensive
knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome. Nucleic Acids Res. 2021, 49, D134–D143.
[CrossRef] [PubMed]

123. Li, J.; Huang, Y.; Cui, Q.; Zhou, Y. m6Acorr: an online tool for the correction and comparison of m(6)A methylation profiles. BMC
Bioinform. 2020, 21, 31. [CrossRef] [PubMed]

124. Deng, S.; Zhang, H.; Zhu, K.; Li, X.; Ye, Y.; Li, R.; Liu, X.; Lin, D.; Zuo, Z.; Zheng, J. M6A2Target: a comprehensive database for
targets of m6A writers, erasers and readers. Brief. Bioinform. 2020. [CrossRef]

125. Zheng, Y.; Nie, P.; Peng, D.; He, Z.; Liu, M.; Xie, Y.; Miao, Y.; Zuo, Z.; Ren, J. m6AVar: a database of functional variants involved in
m6A modification. Nucleic Acids Res. 2018, 46, D139–D145. [CrossRef]

126. Liu, H.; Flores, M.A.; Meng, J.; Zhang, L.; Zhao, X.; Rao, M.K.; Chen, Y.; Huang, Y. MeT-DB: a database of transcriptome
methylation in mammalian cells. Nucleic Acids Res. 2015, 43, D197–D203. [CrossRef] [PubMed]

127. Liu, H.; Wang, H.; Wei, Z.; Zhang, S.; Hua, G.; Zhang, S.W.; Zhang, L.; Gao, S.J.; Meng, J.; Chen, X.; et al. MeT-DB V2.0: elucidating
context-specific functions of N6-methyl-adenosine methyltranscriptome. Nucleic Acids Res. 2018, 46, D281–D287. [CrossRef]
[PubMed]

128. Liu, S.; Zhu, A.; He, C.; Chen, M. REPIC: a database for exploring the N(6)-methyladenosine methylome. Genome Biol. 2020, 21,
100. [CrossRef] [PubMed]

129. Sun, W.J.; Li, J.H.; Liu, S.; Wu, J.; Zhou, H.; Qu, L.H.; Yang, J.H. RMBase: a resource for decoding the landscape of RNA
modifications from high-throughput sequencing data. Nucleic Acids Res. 2016, 44, D259–D265. [CrossRef] [PubMed]

130. Xuan, J.J.; Sun, W.J.; Lin, P.H.; Zhou, K.R.; Liu, S.; Zheng, L.L.; Qu, L.H.; Yang, J.H. RMBase v2.0: deciphering the map of RNA
modifications from epitranscriptome sequencing data. Nucleic Acids Res. 2018, 46, D327–D334. [CrossRef] [PubMed]

131. Chen, K.; Song, B.; Tang, Y.; Wei, Z.; Xu, Q.; Su, J.; de Magalhaes, J.P.; Rigden, D.J.; Meng, J. RMDisease: a database of genetic
variants that affect RNA modifications, with implications for epitranscriptome pathogenesis. Nucleic Acids Res. 2021, 49,
D1396–D1404. [CrossRef] [PubMed]

132. Luo, X.; Li, H.; Liang, J.; Zhao, Q.; Xie, Y.; Ren, J.; Zuo, Z. RMVar: an updated database of functional variants involved in RNA
modifications. Nucleic Acids Res. 2021, 49, D1405–D1412. [CrossRef]

133. Nie, F.; Feng, P.; Song, X.; Wu, M.; Tang, Q.; Chen, W. RNAWRE: a resource of writers, readers and erasers of RNA modifications.
Database (Oxford) 2020, 2020. [CrossRef]

134. Werner, S.; Galliot, A.; Pichot, F.; Kemmer, T.; Marchand, V.; Sednev, M.V.; Lence, T.; Roignant, J.Y.; Konig, J.; Hobartner, C.; et al.
NOseq: amplicon sequencing evaluation method for RNA m6A sites after chemical deamination. Nucleic Acids Res. 2021, 49, e23.
[CrossRef] [PubMed]

135. Huang, H.; Weng, H.; Zhou, K.; Wu, T.; Zhao, B.S.; Sun, M.; Chen, Z.; Deng, X.; Xiao, G.; Auer, F.; et al. Histone H3 trimethylation
at lysine 36 guides m(6)A RNA modification co-transcriptionally. Nature 2019, 567, 414–419. [CrossRef]

136. Leinonen, R.; Sugawara, H.; Shumway, M.; International Nucleotide Sequence Database Collaboration. The sequence read
archive. Nucleic Acids Res. 2011, 39, D19–D21. [CrossRef] [PubMed]

137. Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [CrossRef]
[PubMed]

138. Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: ultrafast
universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [CrossRef]

139. Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene
expression data. Bioinformatics 2010, 26, 139–140. [CrossRef]

http://doi.org/10.1007/s13105-019-00690-8
http://www.ncbi.nlm.nih.gov/pubmed/31290116
http://doi.org/10.3389/fonc.2021.629947
http://doi.org/10.1038/s41420-020-00382-z
http://doi.org/10.1371/journal.pbio.2006092
http://doi.org/10.1016/bs.mie.2015.03.012
http://doi.org/10.1038/nmeth.3453
http://doi.org/10.1261/rna.041178.113
http://doi.org/10.3390/cells8020168
http://doi.org/10.3389/fgene.2019.00266
http://doi.org/10.1093/nar/gkaa692
http://www.ncbi.nlm.nih.gov/pubmed/32821938
http://doi.org/10.1186/s12859-020-3380-6
http://www.ncbi.nlm.nih.gov/pubmed/31996134
http://doi.org/10.1093/bib/bbaa055
http://doi.org/10.1093/nar/gkx895
http://doi.org/10.1093/nar/gku1024
http://www.ncbi.nlm.nih.gov/pubmed/25378335
http://doi.org/10.1093/nar/gkx1080
http://www.ncbi.nlm.nih.gov/pubmed/29126312
http://doi.org/10.1186/s13059-020-02012-4
http://www.ncbi.nlm.nih.gov/pubmed/32345346
http://doi.org/10.1093/nar/gkv1036
http://www.ncbi.nlm.nih.gov/pubmed/26464443
http://doi.org/10.1093/nar/gkx934
http://www.ncbi.nlm.nih.gov/pubmed/29040692
http://doi.org/10.1093/nar/gkaa790
http://www.ncbi.nlm.nih.gov/pubmed/33010174
http://doi.org/10.1093/nar/gkaa811
http://doi.org/10.1093/database/baaa049
http://doi.org/10.1093/nar/gkaa1173
http://www.ncbi.nlm.nih.gov/pubmed/33313868
http://doi.org/10.1038/s41586-019-1016-7
http://doi.org/10.1093/nar/gkq1019
http://www.ncbi.nlm.nih.gov/pubmed/21062823
http://doi.org/10.1093/bioinformatics/bty560
http://www.ncbi.nlm.nih.gov/pubmed/30423086
http://doi.org/10.1093/bioinformatics/bts635
http://doi.org/10.1093/bioinformatics/btp616


Non-coding RNA 2021, 7, 31 16 of 16

140. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. In Use R! 2nd ed.; Springer International Publishing: Cham, Switzerland,
2016.

141. Howe, E.A.; Sinha, R.; Schlauch, D.; Quackenbush, J. RNA-Seq analysis in MeV. Bioinformatics 2011, 27, 3209–3210. [CrossRef]

http://doi.org/10.1093/bioinformatics/btr490

	Introduction 
	Different Types of RNA Modification Marks Reported for lncRNAs 
	m6A Modification 
	m1A Modification 
	Adenosine (A) to Inosine (I) RNA Editing 
	m5C Modification 
	 Modificatio 

	Impact of Epitranscriptomic Marks on lncRNA Structures 
	Secondary Analysis of RNA-Seq and m6A-Seq Data to Reveal the Impact of m6A Marks on lncRNAs 
	Materials and Methods 
	RNA-Seq Data Analysis 
	Data Analysis and Visualization 

	Conclusions 
	References

