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Abstract: Introduction: Hypertension is a major and modifiable risk factor for cardiovascular dis-
eases. Essential, primary, or idiopathic hypertension accounts for 90–95% of all cases. Identifying
novel biomarkers specific to essential hypertension may help in understanding pathophysiological
pathways and developing personalized treatments. We tested whether the integration of circulating
microRNAs (miRNAs) and clinical risk factors via machine learning modeling may provide useful
information and novel tools for essential hypertension diagnosis and management. Materials and
methods: In total, 174 participants were enrolled in the present observational case–control study,
among which, there were 89 patients with essential hypertension and 85 controls. A discovery
phase was conducted using small RNA sequencing in whole blood samples obtained from age- and
sex-matched hypertension patients (n = 30) and controls (n = 30). A validation phase using RT-qPCR
involved the remaining 114 participants. For machine learning, 170 participants with complete
data were used to generate and evaluate the classification model. Results: Small RNA sequencing
identified seven miRNAs downregulated in hypertensive patients as compared with controls in
the discovery group, of which six were confirmed with RT-qPCR. In the validation group, miR-210-
3p/361-3p/362-5p/378a-5p/501-5p were also downregulated in hypertensive patients. A machine
learning support vector machine (SVM) model including clinical risk factors (sex, BMI, alcohol use,
current smoker, and hypertension family history), miR-361-3p, and miR-501-5p was able to classify
hypertension patients in a test dataset with an AUC of 0.90, a balanced accuracy of 0.87, a sensitivity
of 0.83, and a specificity of 0.91. While five miRNAs exhibited substantial downregulation in hyper-
tension patients, only miR-361-3p and miR-501-5p, alongside clinical risk factors, were consistently
chosen in at least eight out of ten sub-training sets within the SVM model. Conclusions: This study
highlights the potential significance of miRNA-based biomarkers in deepening our understanding of
hypertension’s pathophysiology and in personalizing treatment strategies. The strong performance
of the SVM model highlights its potential as a valuable asset for diagnosing and managing essential
hypertension. The model remains to be extensively validated in independent patient cohorts before
evaluating its added value in a clinical setting.

Keywords: miRNA; biomarkers; hypertension; machine learning

1. Introduction

Hypertension is a complex disease resulting from dynamic interactions between ge-
netic, lifestyle, and environmental factors. Given multifaceted pathogenesis, the etiology of
hypertension is unknown in 90–95% of cases and is referred to as essential hypertension.
Recent comprehensive analyses of hypertension prevalence have shown that the number
of people aged 30–79 years with hypertension doubled from 1990 to 2019, with most of
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the increase occurring in low-income and middle-income regions [1]. According to the
World Health Organization, 46% of adults with hypertension are unaware that they have
this condition (World Health Organization). Managing hypertension remains a significant
challenge for public health systems. Despite advancements in blood pressure measure-
ment methods and the availability of effective and safe antihypertensive medications, a
considerable number of individuals with hypertension go undiagnosed, and many of those
receiving treatment do not achieve optimal blood pressure control. For instance, Huguet
et al. (2021) reported a prevalence of 37% of undiagnosed hypertension patients in the
clinical trial NCT0354576 [2]. Another study investigating undiagnosed hypertension in
emergency departments in the United Kingdom reported approximately 3% to 15% of
asymptomatic adults, with about 50% having Stage 1 hypertension, 25% to 36% with Stage
2 hypertension, and 12% to 30% with Stage 3 hypertension [3]. Undiagnosed hypertension
refers to an average blood pressure level that exceeds the criteria for diagnosis without
having any prior ICD-10 codes (the International Classification of Diseases, 10th Edition)
indicating the presence of hypertension [3]. Of note, ICD-10 codes are alphanumeric codes
used by healthcare professionals and medical coders to categorize and document various
health conditions, diseases, injuries, and other medical diagnoses. In addition, a signif-
icant proportion of hypertension patients are untreated with antihypertensive therapy.
Since asymptomatic hypertension remains undiagnosed and untreated, it can have serious
consequences, leading to severe organ damage and increasing the rate of cardiovascular
diseases and premature death [4]. In line with epidemiological data, hypertension remains
a major risk factor in stroke, coronary artery disease, renal disease, heart failure [5,6], and
peripheral vascular disease [2], which, together, constitute the first cause of mortality and
represent a high socioeconomic burden.

The current diagnostic procedure for essential hypertension involves multiple blood
pressure measurements taken over time, as well as a review of the patient’s medical history,
symptoms, and risk factors. However, this approach is not always effective in identifying
patients with essential hypertension, as many people with the condition may have normal
blood pressure readings or do not present with any symptoms. In addition, blood pres-
sure readings can vary significantly throughout the day and in different settings, posing
challenges in obtaining precise measurements. Additionally, the phenomenon of white
coat hypertension, where stress or anxiety leads to temporarily elevated blood pressure
in clinical settings, can yield inaccurate readings. Conversely, individuals with masked
hypertension have normal clinical blood pressure but experience elevated levels in their
daily lives, often leading to under-diagnosis. Furthermore, some patients exhibit resis-
tance to standard antihypertensive treatments, making effective management challenging.
Lastly, high blood pressure can be linked to underlying medical conditions or medications,
occasionally escaping detection during the diagnostic process.

Despite an improvement in hypertension awareness, straightforward diagnosis of
hypertension with a sphygmomanometer, and relatively easy treatment with low-cost
drugs, recent data on hypertension prevalence has pinpointed that significant gaps in
diagnosis and treatment remain. This indicates that alternative and creative strategies
must be explored to enhance the detection and treatment of this condition. For instance,
discovering novel, clinically applicable biomarkers predicting blood pressure (BP) elevation
may shed some light on the molecular mechanism involved in hypertension development
and would allow for the improvement of primary prevention and a reduction in morbidity
and mortality rates via tailored treatments.

Noncoding RNAs, and especially microRNAs (miRNAs), regulate gene expression
and are involved in age-related cardiovascular disease [7]. Circulating in the bloodstream,
miRNAs appeared as attractive biomarkers for many cardiovascular diseases, including
essential hypertension [8–10]. For instance, decreased levels of cardiac-enriched miR-133a
are associated with the development of left ventricular hypertrophy in patients with ar-
terial hypertension [11]. Several circulating miRNAs (miR-145, miR-4516, miR-1299, and
miR-30a-5p) are regulated in primary hypertension [12–14]. Out of 21 deregulated cir-
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culating miRNAs in hypertensive patients, 4 of them are associated with albuminuria,
indicating renal damage [15]. Circulating levels of miR-9 and miR-126 are regulated in
essential hypertension and are associated with prognosis [16]. Overall, since miRNAs
participate in the development and progression of hypertension [17] and are regulated
upon antihypertensive therapy [18–20], they represent promising diagnostic, prognostic,
and surrogate end-point biomarkers for the follow-up of hypertension control. The incorpo-
ration of miRNA expression profiles alongside conventional blood pressure measurements
in clinical practice has the potential to enrich our comprehension and management of
hypertension. miRNA expression profiles can enhance traditional blood pressure readings
by enabling early detection, refining risk stratification, tailoring treatments, monitoring
the effectiveness of antihypertensive therapies, and deepening our understanding of hy-
pertension’s pathophysiology, as well as predicting treatment responses. The synergy of
miRNA data with blood pressure measurements may lead to more precise risk evaluations,
with specific miRNA patterns linked to an elevated risk of cardiovascular events, thereby
assisting in the identification of individuals who may benefit from intensified monitoring
or more aggressive treatment strategies.

Artificial intelligence (AI) is an evolving cluster of interrelated fields, including ma-
chine learning (ML), the most prominent [21]. Current progress in precision medicine
approaches using ML-based models integrating high-throughput multi-omics data and
clinical risk factors shows outstanding potential to improve clinical strategies for a better
understanding and treatment of hypertension. ML-based techniques have been applied
in high blood pressure studies based on hypertension stage classifications using clinical
data and blood pressure estimation based on related physiological signals, demonstrat-
ing an improvement in hypertension prediction, diagnosis, and classification [22–24]. A
random forest model relying on clinical data and electrocardiogram (ECG)-derived fea-
tures distinguished hypertensive from normotensive patients with 84.2% accuracy, 78.0%
specificity, and 84.0% sensitivity [25]. Recently, the potential added value of circulating
miRNAs in ML models aiming to stratify cardiovascular risk in patients with end-stage
renal disease was reported [26]. Using multiple ML feature selection approaches, miR-636
and miR-187-5p were found to discriminate patients with pulmonary arterial hypertension
from healthy controls [27]. However, despite the potential of circulating miRNAs to be
used as biomarkers for essential hypertension, available data on ML-based approaches
remain limited.

In the present study, we assessed whether an ML-based model integrating circulating
miRNA expression patterns and clinical risk factors could improve essential hypertension
risk prediction above the current diagnostic procedure, which relies primarily on blood
pressure measurements and medical history.

2. Results
2.1. Study Participants

Of the 193 participants eligible for the present study, 174 subjects with RNA samples
reaching quality and quantity criteria (cf. Section 5) were included. In total, 89 participants
had hypertension (systolic/diastolic blood pressure >140/90 mmHg), and 85 participants
with systolic/diastolic blood pressure <140/90 mmHg were classified as control subjects.
In total, 60 subjects were included in a discovery phase with small RNA-sequencing, and
the remaining 114 subjects were included in a validation step using RT-qPCR. Clinical and
demographic features of the study population are summarized in Table 1. In both discovery
and validation cohorts, participants in the hypertension group had higher BMI and systolic
and diastolic blood pressure and were more often smokers as compared with the control
group. A family history of hypertension was more frequent in the hypertension group as
compared with the control group in the discovery cohort. Finally, there were fewer patients
consuming alcohol in the hypertension group as compared with the control group in the
validation cohort. Hypertension subjects and controls in the discovery cohort were age-
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and sex-matched, and there was a balanced number of males and females of comparable
age in both groups of the validation cohort.

Table 1. Clinical and demographic features of the study population.

Clinical Characteristics
Discovery Cohort (n = 60) Validation Cohort (n = 114)

Control Group
(n = 30)

Hypertension
Group (n = 30) p Control Group

(n = 55)
Hypertension
Group (n = 59) p

Mean age 45.6 ± 13.167 45.7 ± 13.02 0.955 43.91 ± 15.44 48.57 ± 12.72 0.079

Gender

Males, N (%) 15 (50%) 15 (50%) - 24 (43.64%) 35 (59.32%)
0.133

Females, N (%) 15 (50%) 15 (50%) - 31 (56.36%) 24 (40.68%)

BMI (kg/m2) 25.25 ± 2.238 30.52 ± 3.377 0.0001 25.27 ± 2.95 28.93 ± 3.14 0.0001

Blood pressure

Systolic blood pressure
(mmHg) 120.43 ± 5.67 147.8 ± 13.67 0.0001 122.2 ± 7.91 150.5 ± 14.39 0.0001

Diastolic blood pressure
(mmHg) 77.57 ± 6.24 98.33 ± 6.73 0.0001 78.0 ± 6.55 97.42 ± 5.38 0.0001

Hypertension treatment

Untreated, N (%) - 6 (20%) - - 14 (23.73%) -
Treated, N (%) 24 (80%) - - 45 (76.27%)

Anti-hypertension therapy

No therapy, N (%) - 6 (20%) - - 14 (23.73%)
-

Monotherapy, N (%) - 19 (63.33%) - - 37 (62.71%)

Combined therapy, N (%) 5 (16.67%) - - 8 (13.56%)

Complications caused by hypertension

No complications, N (%) - 27 (90%) - - 54 (91.53%) -
With complications, N (%) 3 (10%) - - 5 (8.47%)

Diabetes mellitus

Non-diabetic patients, N (%) - - - - 50 (84.75%) -

Diabetic patients, N (%) - - - - 8 (13.56%) -

Hospitalization due to
uncontrolled hypertension,

N (%)
- - - - 1 (1.69%) -

Smoking status

Current smokers, N (%) 5 (16.66%) 17 (56.66%)

0.005

13 (23.64%) 27 (45.76%)

0.003Former smokers, N (%) 6 (20.00%) 3 (10.00%) 4 (7.27%) 10 (16.95%)

Non-smokers, N (%) 19 (63.33%) 10 (33.33% 38 (69.09%) 22 (37.29%)

Alcohol consumption, N (%) 5 (16.66%) 12 (40.00%) 0.084 39 (70.91%) 25 (42.37%) 0.002

Hypertension family history

Positive family history 13 (43.33%) 24 (80%)

0.010

16 (29.09%) 45 (76.27%)

0.999Negative family history 15 (50%) 6 (20% 37 (67.27%) 14 (23.73%)

Unknown family history 2 (6.67%) 0 2 (3.64%) 0

2.2. Discovery Phase

Two groups of thirty age- and sex-matched hypertension and control subjects were in-
cluded in the discovery phase. RNAs extracted from whole blood samples collected at study
enrolment were used as input for small RNA sequencing. Differential expression analysis
allowed for the identification of 6 miRNAs upregulated and 34 miRNAs downregulated in
the hypertension group as compared with the control group with a p-value < 0.05 (blue
dots in Figure 1A). Among these, seven miRNAs were downregulated in the hypertension
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group with an FDR < 0.05 (red dots in Figure 1A and Table 2). These seven miRNAs were
able to discriminate, with a relatively good capacity, hypertension patients from controls,
as shown by the t-distributed stochastic neighbor embedding (t-SNE) clustering technique
(Figure 1B) and via unsupervised hierarchical clustering (Figure 1C).
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Figure 1. Discovery study. RNAs extracted from whole blood samples of 2 age- and sex-matched
groups of hypertension and control subjects were subjected to small RNA sequencing. (A) Volcano
plot showing differentially expressed miRNAs between hypertension patients and controls. Six
miRNAs were upregulated and thirty-four miRNAs were downregulated in the hypertension group
as compared with the control group with a p-value < 0.05 (blue dots) and a p-value > 0.05 (black dots).
Of these, 7 miRNAs were downregulated in the hypertension group with an FDR < 0.05 (red dots).
(B) t-distributed stochastic neighbor embedding (t-SNE) showing the distribution of the samples
using the 7 miRNAs with FDR < 0.05 (blue dots: control subjects, orange dots: hypertension subjects).
(C) Heatmap showing unsupervised hierarchical clustering using the 7 miRNAs with FDR < 0.05
(blue: control subjects, orange: hypertension subjects). HTN—hypertension.
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Table 2. Seven differentially expressed miRNAs between hypertension and control subjects in the
discovery cohort.

Mean of Normalized Counts

miRNA Control Group
(n = 30)

Hypertension Group
(n = 30) Log2 FC p FDR

hsa-miR-186-5p 9620 7314 −0.410 0.0013 0.043
hsa-miR-210-3p 130 81 −0.653 0.0012 0.041
hsa-miR-361-3p 3917 3113 −0.344 0.0002 0.028
hsa-miR-362-5p 450 317 −0.494 0.0002 0.028

hsa-miR-378a-5p 349 248 −0.515 0.00005 0.018
hsa-miR-501-5p 26 18 −0.503 0.0008 0.038
hsa-miR-769-5p 47 30 −0.616 0.00003 0.015

FC indicates fold change; FDR—Benjamini–Hochberg false discovery rate.

2.3. Replication Phase

To address the robustness of small RNA sequencing results, we first measured the
seven differentially expressed miRNAs using RT-qPCR in the two groups of 30 age-
and sex-matched hypertension subjects and controls from the discovery cohort. Of the
seven miRNAs, miR-769-5p showed Cq values > 32 in more than 80% of samples and
was discarded from further analysis for unreliable assessment. The expression levels
of the six miRNAs reliably measured with RT-qPCR (miR-186-5p, miR-210-3p, miR-361-
3p, miR-362-5p, miR-378a-5p, miR-501-5p) significantly correlated with sequencing data
(Supplementary Figure S2) and were consistently downregulated in the hypertension group
as compared with the control group, thereby replicating the small RNA sequencing results
(Figure 2).

2.4. Validation Phase

Next, using RT-qPCR, we quantified the expression levels of the six miRNAs differ-
entially expressed in small RNA sequencing and replicated in the discovery cohort in the
whole blood samples of 59 hypertension subjects and 55 controls of the validation cohort.
These 114 participants are independent of the 60 participants included in the discovery
cohort. To keep the test data completely unseen for the evaluation of the machine learning
model, we compared the expression of the miRNAs between the controls (44) and hyperten-
sion subjects (47) from 91 participants after excluding the 23 participants in the test dataset.
Five of these six miRNAs (miR-210-3p, miR-361-3p, miR-362-5p, miR-378a-5p, miR-501-5p)
were less expressed in hypertension subjects as compared with controls, thereby validating,
in an independent cohort, their downregulation in subjects with hypertension (Figure 3).

2.5. Effect of Medication

To test the potential effect of medication on the regulation of miRNAs between hyper-
tension subjects and controls, we compared the expression levels of six miRNAs (miR-186-
5p, miR-210-3p, miR-361-3p, miR-362-5p, miR-378a-5p, miR-501-5p) between the controls,
hypertension subjects not receiving antihypertensive treatment, and hypertension subjects
receiving antihypertensive treatment. We did not find consistent associations between
miRNA levels and medication in either the discovery or validation cohorts, apart from a
lower level of miR-361-3p in treated hypertension subjects as compared with untreated
hypertension subjects in the validation cohort, which was not confirmed in the discovery co-
hort (Supplementary Figures S3 and S4). This observation supports the apparent absence of
the effect of antihypertensive medication on miRNA levels in the present study population.

2.6. Correlation between miRNA Levels and Clinical Features

We then addressed the correlation between the expression levels of six miRNAs (miR-
186-5p, miR-210-3p, miR-361-3p, miR-362-5p, miR-378a-5p, miR-501-5p) determined with
RT-qPCR in whole blood samples of the 55 controls and 59 hypertension subjects and
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clinical characteristics. We observed weak-to-moderate negative correlations between
all six miRNAs except miR-186-5p and BMI, SBP, and DBP. None of the tested miRNAs
correlated with age. Overall, miRNA expression levels tended to positively correlate with
each other, and strong correlations were observed between miR-361-3p and miR-186-5p
(r = 0.77, p < 0.0001) and between miR-378a-5p and miR-501-5p (r = 0.85, p < 0.0001)
(Supplementary Figure S5).
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59 hypertension subjects and 55 controls of the validation cohort. Expression levels of miRNAs
are expressed as the number of copies per ng of RNA and are shown as scatterplots indicating
mean ± standard deviation. p-values from the Mann–Whitney Rank Sum test are indicated.

2.7. Machine Learning Model for Hypertension Prediction

Seven of the most common risk factors of hypertension (age, gender, BMI, current
smoker, former smoker, alcohol use, and hypertension family history [22]) and five miRNAs
consistently downregulated in hypertension subjects as compared with controls (miR-
210-3p, miR-361-3p, miR-362-5p, miR-378a-5p, miR-501-5p) were used to build an ML
model of hypertension. Continuous variables were transformed using cube root since
log2 transformation made some variables highly left-skewed. Categorical variables were
one-hot encoded, i.e., created a binary column for each category. The ML workflow is
described in Supplementary Figure S1. Of the 112 subjects with complete data from the
validation cohort, 20% (n = 23) were randomly extracted as the test dataset, which was
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used only for model evaluation. The remaining samples (n = 89) from the validation cohort,
combined with the sequenced samples with complete clinical data (n = 58), were used
as training datasets for feature selection and hyperparameter tuning. According to the
analysis of Recursive Feature Elimination with 10CV using four different estimators, the
optimal number of features was set to seven, and logistic regression was selected as the
optimal estimator, which provided the highest balanced accuracy of 0.83 (Supplementary
Figure S6). We then performed recursive feature elimination with logistic regression in
10 sub-training sets split by a 10CV applied to the training dataset (n = 147). The features sex,
BMI, current smoker, alcohol use, hypertension family history, miR-361-3p, and miR-501-5p
were selected at least eight times in the ten sub-training sets (Supplementary Table S3).

After the hyperparameter tuning of six different classifiers using the training data
of the seven selected features, the support vector machine (SVM) classifier provided the
highest mean balanced accuracy with two repeated 10CV, and the difference between the
training and validation scores was 5% of the training score (Supplementary Table S4). On
the test dataset, the SVM model had an AUC of 0.9, a balanced accuracy of 0.87, a precision
of 0.9, a sensitivity of 0.83, a specificity of 0.9, and an F1 score of 0.87 (Table 3). Considering
the bias that the train–test–split may produce, we finally tested the model on the entire
dataset of 174 subjects using Leave-One-Out Cross-Validation (LOOCV), and we obtained
an AUC of 0.89, a balanced accuracy of 0.83, a precision of 0.87, a sensitivity of 0.8, a
specificity of 0.86, and an F1 score of 0.83 (Table 3 and Supplementary Figure S7A,B).

Table 3. Performance metrics of the SVM model using the test dataset and LOOCV on the
whole dataset.

AUC Balanced Accuracy F1
(Hypertension)

Precision
(Hypertension)

Sensitivity
(Hypertension)

Specificity
(Hypertension)

Test dataset 0.90 0.87 0.87 0.91 0.83 0.91
LOOCV 0.89 0.83 0.83 0.87 0.80 0.86

LOOCV indicates Leave-One-Out Cross-Validation; AUC—area under the receiver operating characteristic curve.

We then evaluated the performance of the SVM model only with the five clinical
variables from the selected features. On the test dataset, the model had an AUC of 0.89, a
balanced accuracy of 0.87, a precision of 0.9, a sensitivity of 0.83, a specificity of 0.9, and an
F1 score of 0.87 (Table 3). In the entire dataset of 174 subjects using LOOCV, we obtained
an AUC of 0.87, a balanced accuracy of 0.79, a precision of 0.81, a sensitivity of 0.79, a
specificity of 0.8, and an F1 score of 0.8 (Table 4 and Supplementary Figure S8). We then
compared the scores of the model with seven selected features and five clinical features,
only estimated from each 10-fold repeated 10CV using Student’s t-test. We found that AUC,
balanced accuracy, precision, and specificity were significantly (p < 0.05) decreased in the
model with a clinical feature only, while the F1 score was decreased with p = 0.077, and
sensitivity was unchanged (Supplementary Figure S7C,D).

Table 4. Performance metrics of the SVM model only with clinical variables using the test dataset
and LOOCV across the whole dataset.

AUC Balanced Accuracy F1
(Hypertension)

Precision
(Hypertension)

Sensitivity
(Hypertension)

Specificity
(Hypertension)

Test dataset 0.89 0.87 0.87 0.91 0.83 0.91
LOOCV 0.87 0.79 0.80 0.81 0.79 0.80

3. Discussion

Emphasizing the need for novel biomarkers of essential hypertension, we employed
machine learning to construct a classification model distinguishing hypertensive patients
from non-hypertensive controls. Our model incorporated five clinical parameters (gender,
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BMI, smoking status, alcohol consumption, family history of hypertension) and two miR-
NAs (miR-361-3p and miR-501-5p). This model demonstrated performance levels suitable
for clinical applicability, with an AUC of 0.90. Of the five miRNAs consistently associ-
ated with hypertension in the present study, miR-210-3p, miR-361-3p, miR-378a-5p, and
miR-501-5p have not been previously shown to be associated with essential hypertension.

Non-coding RNAs (ncRNAs), which encompass different categories like miRNAs,
lncRNAs, and circular RNAs (circRNAs), hold significant relevance in clinical applications.
Recent research has unveiled that multiple types of ncRNAs play a role in controlling vas-
cular tone to influence the pathophysiology of arterial hypertension (AH) [28]. For instance,
lncRNAs contribute to the regulation of vascular smooth muscle cell function, and miR-221
and miR-222 impact lnc-Ang362, which, in turn, affects the growth of vascular smooth
muscle cells [29]. Several lncRNAs, namely, NR_027032, NR_034083, and NR_104181, can
serve as biomarkers for diagnosing AH [29]. Another lncRNA, GAS5 (growth arrest-specific
5) plays a role in regulating vascular remodeling in hypertension, with primary expression
in endothelial cells (ECs) and VSMCs [28]. Several circRNAs appear to be associated with
vascular endothelial dysfunction, which may contribute to the development of arterial
hypertension. CircRNAs 0037911 and 0126991 exhibit significant upregulation in the blood
of hypertension patients, while circRNA 0005870 shows downregulation [30]. These two
circRNAs appear to be promising potential biomarkers for hypertension. Many research
studies have explored the role of miRNAs in controlling the function of endothelial cells
during the process of angiogenesis. The involvement of miRNAs in the restenosis process
has been substantiated through the detection of several miRNAs (such as miR-21, miR-146,
and miR-142-3p) showing abnormal expression in stented arteries in pig models [31]. The
findings of Parthenakis et al., 2016, underscore the importance of miR-21 in the process of
vascular remodeling and suggest its potential use as a prognostic marker and a target for
therapeutic interventions. Low levels of miR-21 are closely linked to an improvement in
arterial stiffness in individuals with well-managed essential hypertension, even when their
blood pressure is controlled [32].

Using a discovery phase and a validation phase in an observational cohort of 174 hy-
pertension subjects and controls, we found a consistent downregulation of five miRNAs
(miR-210-3p, miR-361-3p, miR-362-5p, miR-378a-5p, miR-501-5p) in hypertension subjects
as compared with control subjects. Increased levels of hypoxia-induced miR-210-3p were
previously linked to pregnancy hypertension [33], pulmonary arterial hypertension in
mice [34], mitochondrial dysfunction, myocardial infarction [35], and atrial fibrillation [36].
In addition, Virga et al., 2021, identified miR-210-3p as a non-genetic immunoregulator of
macrophage metabolism and inflammatory responses [37].

Several active and selective mechanisms for loading miRNAs into extracellular vesi-
cles suggest that exosomal miRNAs hold promise in contributing to the development of
hypertension [17]. Past evidence has demonstrated that exosomal miRNAs can regulate
both the deleterious and beneficial pathways of RAAS, such as the angiotensin-converting
enzyme (ACE)/Ang II pathway and the ACE2/Mas pathway, respectively. In vitro and
in vivo studies have demonstrated that the overexpression of miR-155-5p reduces blood
pressure, vascular remodeling, and vascular proliferation by directly decreasing the levels
of ACE and, subsequently, Ang II [17]. Exosomal miRNAs can also regulate ACE2, which
counterbalances the actions of ACE by degrading its catalytic product, Ang II, into the
beneficial heptapeptide Ang-(1-7) [17].

In our discovery cohort, we also observed that miR-361-3p was significantly down-
regulated in hypertension subjects receiving antihypertensive drugs as compared with the
untreated subjects. Since these findings were not confirmed in the validation cohort, they
need to be taken with caution given the small and unbalanced sample size of untreated and
treated hypertension groups. Elsewhere, Nebivolol, a third-generation, highly selective
β1-adrenergic receptor blocker, attenuated the decrease in miR-133a [38]. Several other
miRNAs, miR-19a, miR-101, and let-7e, were shown to target genes related to β-blocker
pharmacodynamics [39]. Together, these observations suggest that miRNAs may serve
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as indicators of treatment response and may be useful in companion diagnostics in order
to follow medication benefits. Two miRNAs, miR-21 and miR-92, decreased significantly
in heart-failure patients with preserved ejection fraction (HFpEF) after three months of
empagliflozin treatment, with no notable differences in patients treated with metformin
or insulin [40]. These findings highlight the regulation of certain miRNAs related to
endothelial function in frail HFpEF patients with diabetes and their response to SGLT2
inhibition [40]. This could serve as valuable information for clinical practice, offering new
disease biomarkers and insights into treatment response. MiR-361-5p and miR-362-5p were
downregulated in salt-sensitive hypertension patients (ChiCTR-EOC-16009980) from the
Beijing population, suggesting a potential protective effect [41]. MiR-362-5p also regulates
cell proliferation and apoptosis by targeting glutathione–disulfide reductase in the pla-
centa of women with gestational diabetes mellitus [42]. In addition, miR-361-5p, together
with the frequency of sauce and poultry consumption, was selected in a stepwise logistic
regression model allowing for the differentiation of salt resistance from salt-sensitive hy-
pertension [41]. Detailed mechanistic insights and causal relationships between miRNA
signatures, hypertension subtypes, and evolution and the effect of antihypertensive drugs
need to be elucidated in future studies.

In the tested ML model, SVM was the most accurate in discriminating hypertension
subjects from control subjects. SVM is a machine learning algorithm used for classification
and regression tasks. It is particularly well suited for tasks that involve pattern recognition
and data analysis. The fundamental concept behind SVM is to find a hyperplane that best
separates different classes of data points in a way that maximizes the margin between the
classes. This makes SVM a powerful tool for classification problems, as it aims to identify
the most effective boundary or decision boundary between different groups of data. SVM
is notably one of the most frequently used ML models because of the following charac-
teristics: (1) it is suitable for classifying complex data, (2) is able to minimize structural
risk, and (3) can achieve similar results with different kernel functions like artificial neural
networks [43]. In another study, an SVM-based method including 13 anthropometric factors
associated with hypertension demonstrated superior performance in comparison with the
backpropagation neural network method [44]. However, the study did not consider any
single or multi-omics factors associated with hypertension.

Recently, the ENS@T-HT Horizon2020 consortium investigated the ML integration
of multi-omics data including 179 plasma miRNAs for the stratification of arterial hy-
pertension. The consortium reported an improved discriminatory power in comparison
with single-omics data analysis and was able to discriminate different forms of endocrine
hypertension from primary hypertension with high sensitivity and specificity [24]. This
study demonstrated that a combination of miRNAs (miR-15a-5p) and small metabolite
features (C9 and PC ae C38:1) shows the most discriminating power for all hypertension
types of combinations. Suzuki et al. (2021) reported lower levels of miR-126, miR-221,
and miR-222 in the blood, which were significantly linked to higher blood pressure and
the development of hypertension in new-onset patients [45]. The odds ratios adjusted for
confounding factors indicated that, for each one-unit increase in the serum levels of these
miRNAs, the risk of new-onset hypertension decreased. This suggests that these circulating
miRNAs could serve as potential biomarkers for predicting hypertension [45].

Our SVM model included two miRNAs, miR-361-3p and miR-501-5p, which have not
been previously linked to essential hypertension. MiR-361-3p levels were decreased in the
plasma of pulmonary arterial hypertension patients [46]. The overexpression of miR-361-3p
alleviates cerebral ischemia–reperfusion injuries in mice [47]. MiR-378a-5p is involved
in the pathophysiology of cerebrovascular injuries and in various biological processes,
including metabolic pathways, mitochondrial energy homeostasis, muscle development,
differentiation, and regeneration [48]. MiR-378a-5p was significantly overexpressed in
an in vitro model of injury-induced neuronal apoptosis and inhibited cell proliferation
through the regulation of the CAMKK2/AMPK pathway [49]. Silencing of the transcription
factor Forkhead box O1 (FoxO1) via the lncRNA GAS5/miR-378a-5p/Hspa5 axis in mice
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significantly improved neurological function recovery in intracerebral hemorrhage, which
is the most devastating stroke subtype [50]. Since hypertension is associated with over
50% of ischemic and 70% of hemorrhagic strokes and triggers a 10% increase in the risk
of recurrent cerebrovascular events [51], new insights into the role of miR-361-3p and
miR-378a-5p in hypertension-associated cerebrovascular pathophysiology may provide
key targets to prevent chronic cerebrovascular disease. An emerging body of evidence
suggests that miRNAs may be involved in the regulation of the cerebrovascular system, a
research axis that deserves attention [52].

Increased levels of miR-501-5p were observed in patients with chronic thromboem-
bolic pulmonary hypertension [53] and in overweight and low-grade obese children and
adolescents [54]. Contrary to this last study, miR-501-5p was significantly downregulated
in hypertension patients in our study. Overweight and obesity are frequently reported
to be associated with hypertension and diabetes mellitus. In the present study, BMI was
positively correlated with SBP (r = 0.47, p < 0.0001) and DBP (r = 0.51, p < 0.001). How-
ever, miR-501-5p showed weak negative correlations with BMI (r = −0.19, p = 0.01), SBP
(r = −0.21, p = 0.006), and DBP (r = −0.34, p < 0.0001). The molecular mechanisms of
miR-501-5p’s association with metabolic disorders need to be further investigated.

Study strengths: We used an approach using a discovery phase and a validation phase
in independent groups of subjects, which allowed us to identify confirmed associations
between miRNAs and hypertension. The discovery phase was well powered with two
groups of 30 age- and sex-matched subjects enrolled in small RNA sequencing experi-
ments. Various ML approaches were tested, leading to the selection of SVM as the most
powerful model.

Study limitations: The study cohort had a relatively limited sample size, with a total of
174 subjects. This especially limits the strength of model building using ML approaches and
may lead to over-fitting and the possible overestimation of effect sizes despite extensive
cross-validation. Even though we used an ML pipeline with test and training sets, the
accuracy of the SVM classifier requires extensive validation in larger independent datasets.
The association between the two miRNAs included in the model (miR-361-3p and miR-501-
5p) and hypertension remains to be functionally characterized. Finally, the ML model’s
performance must be rigorously validated in diverse patient populations to assess its
accuracy, sensitivity, specificity, and generalizability. This process may require extensive
clinical trials and real-world testing.

There are inherent challenges to incorporating an ML model based on miRNAs into
clinical practice: (1) Data collection and standardization—gathering and standardizing
miRNA data from a diverse patient population might be potentially complex. Ensuring
data quality, accuracy, and consistency is crucial for reliable model performance. (2) Imple-
menting the model within existing clinical workflows requires seamless integration with
electronic health records, diagnostic equipment, and other systems. This may require modi-
fications to ensure efficient use. (3) Patients and healthcare providers must be comfortable
with the model’s use. Education and training may be necessary to ensure both groups
understand and accept the technology. (4) Assessing the cost-effectiveness of implementing
the model is essential, as healthcare resources are finite. Evaluating the model’s impact
on patient outcomes and healthcare costs is crucial prior to its integration into routine
clinical practice.

4. Perspectives

Our study not only offers insight into the biomarker potential of miRNAs in essential
hypertension but also suggests that ML-based modeling represents a promising strategy
for hypertension risk assessment.

In the long term, the deep functional characterization of the role of miRNAs in hy-
pertension may reveal novel disease mechanisms and highlight putative drug targets for
a more effective prevention and hypertension treatment. MiRNAs may help both in the
primary and secondary prevention of hypertension, which could contribute to reducing the
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socioeconomic burden of hypertension. The fast progress of high-throughput experimental
and computational technologies will facilitate the wider use of ML-based techniques to
identify diagnostic biomarkers and improve our understanding of complex diseases such
as hypertension.

5. Methods
5.1. Study Design and Procedures

In the present observational case–control study, patients with essential hypertension
(n = 97) and controls (n = 96) were recruited from the Department of Internal Medicine at
a specialized hospital with a polyclinic, the “Plava Medical Group”, in Tuzla, Bosnia and
Herzegovina. Information regarding participant recruitment is described in the Supple-
mentary Material. The study was conducted in accordance with the Declaration of Helsinki
and has been authorized by the Research Ethics Committee of the University of Tuzla under
reference decision number 03/7-1122-1-2/20 from 21 February 2020. Written informed
consent was obtained directly from all involved subjects. The transfer of blood samples and
associated data from Bosnia and Herzegovina to Luxembourg was performed in accordance
with the Material Transfer Agreement entered between the University of Tuzla, Bosnia and
Herzegovina, and the Luxembourg Institute of Health (LIH), Luxembourg, in June 2020.

5.2. Whole Blood Collection and RNA Isolation

Blood samples were collected as per the usual protocol for standard clinical biochem-
istry procedures from individuals in a stable state, commonly after an overnight fast and
in the early morning. At the time of enrolment of study participants, 2.5 mL of whole
blood was withdrawn via an arterial catheter into PAXgene™ RNA tubes (BD Biosciences,
Erembodegem, Belgium) and stored at −20 ◦C until the transfer for further processing
at the LIH. Shipment of samples was conducted on dry ice. RNAs were extracted from
blood samples with the PAXgene™ Blood miRNA Kit (Qiagen, Venlo, The Netherlands)
according to the manufacturer’s instructions. RNA quantity and quality were determined
via optical density using a NanoDrop spectrophotometer and a fragment analyzer (Agilent
Technologies, Diegem, Belgium). A sample quality check was performed according to
established standards [55–57], and 19 samples were discarded from the study because of
a lack of a recommended volume of blood in PAXgene RNA blood tubes or low RNA
quality (RNA integrity number < 7) and quantity (<20 ng/mL). Therefore, RNA samples
from 174 participants (89 hypertension patients and 85 controls) were available for the
present study.

5.3. Small RNA Sequencing

A discovery phase using small RNA sequencing was performed on samples from
30 age- (±2 years) and sex-matched hypertension patients and 30 controls. A case–control-
matching procedure was used to randomly match hypertension patients and controls based
on age (maximum allowable difference, ±2 years) and sex (exact match) by using the
MedCalc software v20.23. All RNA samples used for small RNA sequencing matched the
following quality and quantity criteria: A260/280 value between 1.8 and 2.0, RQN > 7, and
concentrations >20 ng/µL. cDNA libraries were generated from 100 ng of RNA with the
QIAseq miRNA Library Kit (Qiagen) according to the manufacturer’s guidelines. A unique
molecular index was integrated during the reverse transcription process, and libraries were
cleaned and sizes selected using a magnetic bead-based method. Purified libraries were
quantified with a Qubit® 4 Fluorometer (Thermo Fisher Scientific, Merelbeke, Belgium)
and validated with an Agilent 2100 Bioanalyzer (Agilent Technologies). The 60 samples
were sequenced using an Illumina NovaSeq 6000 sequencing system (Illumina, Eindhoven,
The Netherlands). Library construction and sequencing were performed on the LuxGen
platform in Luxembourg.

After trimming the adapters and performing quality control on the small RNA-seq
data using the FastQC tool (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/,

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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accessed on 4 October 2021), sequencing reads were mapped to reference miRNA sequences
from miRBase 22.1. Then, differentially expressed miRNAs were identified after DESeq2
normalization. Only miRNAs detected with at least ten reads in at least half the samples
from the hypertension or control group were included in differential expression analysis,
which was based on negative binomial distribution using the DESeq2 R package. MiRNAs
with a Benjamini–Hochberg false discovery rate (FDR) < 0.05 were considered significantly
differentially expressed.

We generated a volcano plot using ggplot to show the –log10 p-values versus log2
fold change of the miRNAs. We used a t-distributed stochastic neighbor embedding (tSNE)
plot to visualize sample distribution with the normalized counts of differentially expressed
miRNAs. Cluster analysis for differentially expressed miRNAs was performed using
the pheatmap R package (https://CRAN.R-project.org/package=pheatmap, accessed on
5 October 2021) with Euclidean distance.

5.4. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)

Expression levels of selected miRNAs were assessed using RT-qPCR, first in the
discovery cohort (n = 60) and second in the validation cohort (n = 114). In total, 100 ng
from each sample was reverse transcribed to generate cDNA using the miRCURY LNA
RT Kit (Qiagen) in accordance with the manufacturer’s instructions. The resulting cDNAs
were diluted 6 times before qPCR, which was carried out in a total reaction volume of
10.0 µL, including 3.0 µL of template cDNA, 1 µL of primers (individual miRCURY LNA
miRNA PCR Assays, Qiagen, Supplementary Table S1), 1µL of dH2O, and 5.0 µL of 2x
miRCURY LNA SYBR® Green (Qiagen). Each PCR plate contained an internal standard
calibrator to correct for inter-plate variability, appropriate negative controls (no template
control (NTC), and no reverse transcriptase control (NRT) in order to check for potential
master mix or sample contamination. qPCR was performed using a CFX96 thermocycler
(Bio-Rad, Temse, Belgium). miRNA levels are expressed as the number of miRNA copies
per ng of RNA, determined according to standard curves as described previously [30]
(Supplementary Material).

5.5. Machine Learning Model Selection and Classification

The flowchart of the machine learning model selection is presented in Supplementary
Figure S1. We excluded 4 participants who had missing values in hypertension family
history to avoid the bias introduced by data imputation. We randomly extracted 20%
of the complete data from the non-sequenced samples as a test dataset to evaluate the
classification models. The continuous variables were transformed using the cube root
method and the categorical variables were transformed using one-hot encoding. We
performed feature selection based on 7 clinical variables (age, sex, BMI, alcohol use, current
smoker, former smoker, and hypertension family history) and 5 validated miRNAs with
recursive feature elimination. We found the optimal estimator and the optimal number
features with a 10-fold cross-validation (10CV) from different estimators, including random
forest (RF), logistic regression (Logit), linear support vector machine (LinearSVC), and
extreme gradient boosting (XGBoost, XGB) with default parameters. The estimator and
the number of features, which provided the highest balanced accuracy, were used for the
feature selection. Given the optimal estimator and the number of features, we selected the
features using the sub-training sets split by a 10-fold cross-validator applied to the training
dataset. We kept the features appearing in at least 8 sub-training sets. Using the training
data of the selected features, we finetuned the hyperparameters of different ML models, i.e.,
random forest (RF), support vector machine (SVM), multi-layer perceptron (MLP), extreme
gradient boosting (XGBoost, XGB), k-nearest neighbor’s (kNN), and logistic regression
(Logit), with 2 repeated 10CV. The model with the hyperparameters—which provided
the highest mean balanced accuracy in the validation datasets and the difference between
the training and validation scores that was no more than 10% of the higher score—was
considered the final model.

https://CRAN.R-project.org/package=pheatmap
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We evaluated the final model using the test dataset and the whole dataset with
Leave-One-Out Cross-Validation (LOOCV). We used the area under the receiver oper-
ating characteristic curve (AUC), balanced accuracy, F1 score, precision, sensitivity (re-
call), and specificity to quantify the quality of classification. The ML analysis was per-
formed using Python 3.8 and scikit-learn 0.24.2 (https://scikit-learn.org/0.24/, accessed on
25 October 2021)

5.6. Statistical Analysis

Data were analyzed using GraphPad Prism version 9.0.0. The Shapiro–Wilk test was
employed to determine whether the data were normally distributed based on probability
thresholds of >0.1. Continuous variables were expressed as mean and standard deviation
(SD) when normally distributed. Median and 25th and 75th percentiles were used for
skewed variables. Categorical variables were reported as counts and percentages. When
comparing groups, a t-test or the Mann–Whitney Rank Sum Test was used for continuous
variables, and the chi-square test was used for categorical variables. Pearson’s correlation
coefficient (r) and p-value were calculated to explore the association between small RNA
sequencing data and RT-qPCR data. A p-value < 0.05 was used as the significance threshold.

6. Conclusions

The identification of biomarkers for complex multifactorial disorders such as essential
hypertension is an important challenge to overcome in the application of individualized risk
assessment strategies and tailored treatments. We propose an ML model based on clinical
features and miRNAs to address this challenge, which may allow for more precise and
personalized approaches to hypertension by identifying individuals at risk of hypertension
at an earlier stage, facilitating timely interventions and lifestyle adjustments to mitigate
these risks. This proactive approach may empower patients to undertake preventive
measures and make the necessary lifestyle changes to reduce the risk of hypertension and
related cardiovascular diseases. In addition, by using such an ML model, clinicians may
optimize therapeutic approaches and medications for hypertensive patients, potentially
enhancing treatment efficacy while minimizing side effects. Given that hypertension stands
as a prominent risk factor for cardiovascular diseases, the model’s ability to enable early
detection and optimized management may have the potential to significantly reduce the
healthcare system’s burden, improve overall health, and extend life expectancy across
the population.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/ncrna9060064/s1: Table S1: List of miCURY LNA miRNA
PCR assays used in the present study. Table S2: Linear regression data from qRT-PCR for miRNAs
absolute quantification. Table S3: Feature selection in the ten sub-training sets. Table S4: Hyperparam-
eter tuning of six classifiers. Figure S1: Machine learning workflow. Figure S2: Correlation between
miRNA expression determined with RT-qPCR and small RNA sequencing (RNAseq) data. Figure S3:
Effect of medication on miRNA levels in the discovery cohort. Figure S4: Effect of medication on
miRNA levels in the validation cohort. Figure S5: Correlation between miRNA expression levels and
clinical variables. Figure S6: Optimal number of features (highest balanced accuracy) from logistic
regression (Logit), random forest (RF), linear support vector machine (LinearSVC), and XGBoost
(XGB). Figure S7: Classification accuracy and sensitivity between hypertension patients and controls.
Figure S8: Evaluation scores of the SVM model using 10 repeated 10CVs across the whole dataset of
7 selected features or 5 clinical features only.
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