Photoelectrochemical Response of WO₃/Nanoporous Carbon Anodes for Photocatalytic Water Oxidation

Alicia Gomis-Berenguer 1,*, Jesús Iniesta ², David J. Fermín ³ and Conchi O. Ania 1,*

- ¹ POR2E Group, CEMHTI, CNRS (UPR 3079), Université d'Orléans, 45071 Orléans, France
- ² Institute of Electrochemistry, Faculty of Science, Univ. Alicante, 03080 Alicante, Spain; jesus.iniesta@ua.es
- ³ School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, UK; david.fermin@bristol.ac.uk
- * Correspondence: alicia.gomis-berenguer@cnrs-orleans.fr (A.G.-B.); conchi.ania@cnrs-orleans.fr (C.O.A.); Tel.: +33-(0)-238-255-513 (C.O.A.)

Figure S1. X-Ray diffraction patterns of (**A**) m-WO₃, NC and the m-WO₃/carbon mixtures; (**B**) h-WO₃, NC and the h-W/NC50, diffractograms are shifted for clarity; red bars indicate the standard pattern (JPDS-01-083-0950 and JCPDS-01-075-2187 corresponding to monoclinic and hexagonal lattice, respectively). Absorbance spectra of (**C**) m-WO₃ and the corresponding m-WO₃/carbon mixtures and (**D**) h-WO₃ and h-W/NC50.

Figure S2. X-Ray diffraction patterns of h-WO₃ with increasing the calcination temperature; dots indicate the standard patterns corresponding to the hexagonal and monoclinic lattices.

Figure S3. Nitrogen adsorption isotherms at –196 °C performed for the nanonoporous carbon and the semiconductor/carbon mixtures analysed (close symbols represent adsorption; empty symbols represent desorption).

Figure S4. Cyclic voltammograms recorded at 20 mV/s of WO₃ and WO₃/carbon electrodes under (A–C) dark conditions and (D–F) and square-wave light perturbation at 371 nm (black line) for selected electrodes: (D) m-WO₃, (E) m-W/NC20 and (F) h-WO₃. Potentials are expressed vs. NHE.

Figure S5. Evolution of the open-circuit potential (vs. Ag/AgCl) of (**A**) h-WO₃ and (**B**) m-WO₃ electrodes under illumination at 371 nm (photon flux of $3.4 \times 10^{14} \text{ cm}^{-2}\text{s}^{-1}$).

Figure S6. Mott-Schottky plots of WO3 at 3.1 kHz under dark conditions in 0.5 M Na2SO4 pH 1.3.

Figure S7. Consecutive transient photocurrent responses of m-W/NC10 electrode at 0.5 V vs Ag/AgCl (left). Cyclic voltammetry of m-W fresh and after irradiation (right).

Table S1. Main textural parameters of the semiconductors and the semiconductor/carbon mixtures obtained from the equilibrium nitrogen adsorption/desorption isotherms at -196 °C and surface pH.

	SBET	V_{total^A}	Wo N ₂ ^B	SBET (theoretical) ^C	pH_{pzc}
	[m ² g ⁻¹]	[cm ³ g ⁻¹]	[cm ³ g ⁻¹]	[m ₂ g ⁻¹]	
h-WO ₃	20	0.041	0.006		5.2
m-WO ₃	6	0.038	0.002		4.3
h-W/NC5	62	0.057	0.026	71	n.a.
h-W/NC10	113	0.087	0.048	124	n.a.
h-W/NC20	207	0.134	0.074	223	n.a.
h-W/NC50	512	0.292	0.202	527	n.a.
m-W/NC5	56	0.077	0.019	59	5.2
m-W/NC10	108	0.104	0.037	110	5.9
m-W/NC20	205	0.160	0.070	212	6.0
m-W/NC50	524	0.315	0.187	520	7.2
NC	1033	0.520	0.320		8.9

 $^{\rm A}$ Total pore volume evaluated at p/p_0 ~0.99.

^B Micropore volume evaluated using the Dubinin-Radushkevich method.

 $^{\rm C}$ Calculated from the S_{BET} of WO_3 and NC.

n.a. Not available