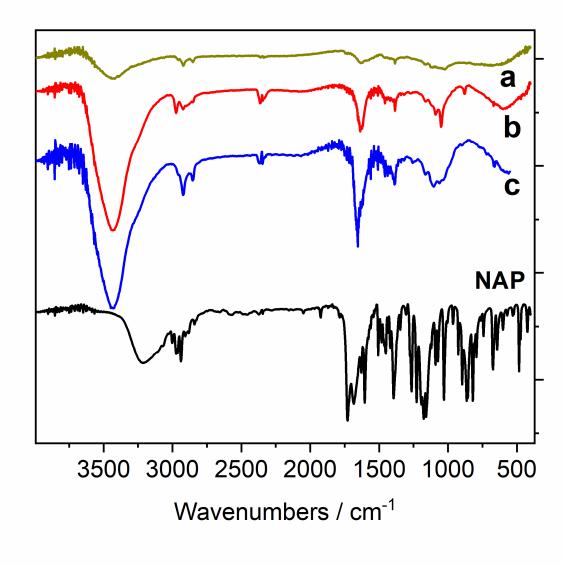
Facile Method to Prepare pH-Sensitive PEI-Functionalized Carbon Nanotubes As Rationally Designed Vehicles For NSAIDs Delivery

Vassilis Tangoulis ^{1,*}, Nikolia Lalioti ¹, John Parthenios ², Nathan Langford ³, Eugenia Valsami-Jones ³, Chrisoula Kakoulidou ⁴, Giorgos Psomas ⁴ and Vlasoula Bekiari ⁵


- ¹ Department of Chemistry, University of Patras, GR-26504 Patras, Greece; Email: vtango@upatras.gr
- ² Foundation for Research and Technology, Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE/HT), P.O. Box 1414 GR 26504 Patras Greece
- ³ School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
- ⁴ Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, P.O. Box 135, GR-54124 Thessaloniki, Greece.
- ⁵ Department of Crop Science, University of Patras, 30200 Messolonghi, Greece.

Supplementary Information

S1. IR spectra	2
S2. Interaction with serum albumins	3
S3. Interaction with CT DNA	5
S4. Competitive studies with EB	6
S5. References	7

FIGURES

Figure S1. IR spectra of the a) carboxylated MWCNTs b) The PEI-functionalized MWCNTs and c)	2
the final hybrid material MWCNTS@PEI@NAP (NL004) .	
Figure S2 . Plot of relative BSA fluorescence emission intensity at λ_{em} = 343 nm (I/Io, %) versus r (r =	
[NL004]/[BSA]) (up to 70.9% of the initial BSA fluorescence) in buffer solution (150 mM	
NaCl and 15 mM trisodium citrate at pH 7.0) in the presence of NL004	4
Figure S3. Stern-Volmer quenching plot of BSA for NL004.	4
Figure S4. Scatchard plot of BSA for NL004.	4
Figure S5. Plot of [DNA]/(ε _A -ε _f) versus [DNA] for NL004.	5
Figure S6. Plot of relative EB-DNA fluorescence emission intensity (I/Io, %) at λ_{em} = 592 nm <i>versus</i> r (r	
= [NL004]/[DNA]) in buffer solution (150 mM NaCl and 15 mM trisodium citrate at pH	
7.0) in the presence of NL004.	6
Figure S7. Stern-Volmer quenching plot of EB-DNA fluorescence for NL004.	6

Figure S1. IR spectra of the a) carboxylated MWCNTs (NL002) b) The PEI-functionalized MWCNTS (NL003) and c) the final hybrid material MWCNTS@PEI@NAP (NL004); and the NAP (NAPROXEN) drug.

S2. Interaction with serum albumins

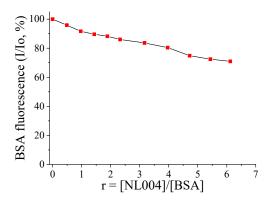
The extent of the inner-filter effect can be roughly estimated with the following formula:

$$I_{corr} = I_{meas} \times 10^{\frac{\epsilon(\lambda_{exc})cd}{2}} \times 10^{\frac{\epsilon(\lambda_{em})cd}{2}}$$
(eq. S1)

where I_{corr} = corrected intensity, I_{meas} = the measured intensity, c = the concentration of the quencher (i.e. compound under study), d = the cuvette (1 cm), $\varepsilon(\lambda_{exc})$ and $\varepsilon(\lambda_{em})$ = the ε of the quencher at the excitation and the emission wavelength, respectively, as calculated from the UV-vis spectra of the quencher [1].

The Stern-Volmer and Scatchard graphs are used in order to study the interaction of a quencher with serum albumins. According to Stern-Volmer quenching equation [2]:

$$\frac{10}{I} = 1 + k_q \tau_0[Q] = 1 + K_{SV}[Q]$$
(eq. S2)


where Io = the initial tryptophan fluorescence intensity of SA, I = the tryptophan fluorescence intensity of SA after the addition of the quencher (i.e. compound under study), k_q = the quenching constant, K_{sv} = the Stern-Volmer constant, τ_o = the average lifetime of SA without the quencher, [Q] = the concentration of the quencher. K_{sv} (M⁻¹) is obtained by the slope of the diagram Io/I *versus* [Q], and the quenching constant (k_{q_r} M⁻¹s⁻¹) is calculated from eq. S3, with τ_o = 10⁻⁸ s as fluorescence lifetime of tryptophan in SA:

$$K_{SV} = k_q \tau_o \qquad (eq. S3)$$

From the Scatchard equation [3]:

$$\frac{\Delta I}{[Q]} = nK - K\frac{\Delta I}{Io}$$
 (eq. S4)

where n is the number of binding sites per albumin and K is the SA-binding constant, K (in M⁻¹) is calculated from the slope in plot (Δ I/Io)/[Q] *versus* Δ I/Io and n is given by the ratio of y intercept to the slope [3].

Figure S2. Plot of relative BSA fluorescence emission intensity at λ_{em} = 343 nm (I/Io, %) *versus* r (r = [NL004]/[BSA]) (up to 70.9% of the initial BSA fluorescence) in buffer solution (150 mM NaCl and 15 mM trisodium citrate at pH 7.0) in the presence of NL004.

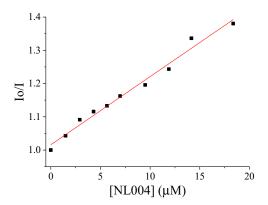
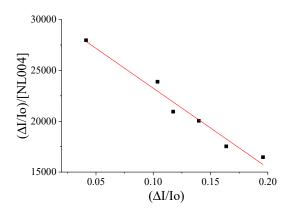
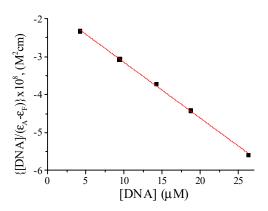


Figure S3. Stern-Volmer quenching plot of BSA for NL004.




Figure S4. Scatchard plot of BSA for NL004.

S3. Interaction with CT DNA

The DNA-binding constant (K_b in M⁻¹) can be obtained by monitoring the changes in the absorbance at the corresponding λ_{max} with increasing concentrations of CT DNA and it is given by the ratio of slope to the y intercept in plots [DNA]/($\epsilon_{A}-\epsilon_{f}$) *versus* [DNA], according to the Wolfe-Shimer equation [4]:

$$\frac{[\text{DNA}]}{(\varepsilon_{\text{A}} - \varepsilon_{\text{f}})} = \frac{[\text{DNA}]}{(\varepsilon_{\text{b}} - \varepsilon_{\text{f}})} + \frac{1}{K_{\text{b}}(\varepsilon_{\text{b}} - \varepsilon_{\text{f}})}$$
(eq. S5)

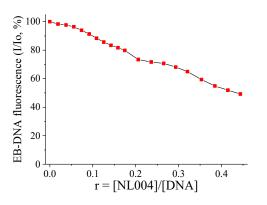

where [DNA] is the concentration of DNA in base pairs, $\varepsilon_A = A_{obsd}/[NL004]$, ε_f = the extinction coefficient for the free compound and ε_b = the extinction coefficient for the compound in the fully bound form.

Figure S5. Plot of [DNA]/(ε_A-ε_f) *versus* [DNA] for NL004.

S4. Competitive studies with EB

The Stern-Volmer constant (K_{sv}, in M⁻¹) is used to evaluate the quenching efficiency for the compound under study according to the Stern-Volmer equation (eq. S2) [2], where Io and I are the emission intensities of the EB-DNA solution in the absence and the presence of the quencher, respectively, [Q] is the concentration of the quencher (i.e. compound under study), τ_0 = the average lifetime of the emitting system without the quencher and k_q = the quenching constant. K_{sv} is obtained from the Stern-Volmer plot by the slope of the diagram Io/I *versus* [Q]. Taking τ_0 = 23 ns as the fluorescence lifetime of the EB-DNA system [5], the quenching constants (k_q, in M⁻¹s⁻¹) of the compound can be determined according to eq. S3.

Figure S6. Plot of relative EB-DNA fluorescence emission intensity (I/Io, %) at λ_{em} = 592 nm *versus* r (r = [NL004]/[DNA]) in buffer solution (150 mM NaCl and 15 mM trisodium citrate at pH 7.0) in the presence of NL004.

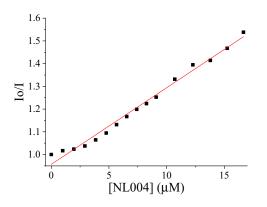


Figure S7. Stern-Volmer quenching plot of EB-DNA fluorescence for NL004.

S5. References

- 1 Stella, L.; Capodilupo, A.L.; Bietti, M. A reassessment of the association between azulene and [60]fullerene. Possible pitfalls in the determination of binding constants through fluorescence spectroscopy. *Chem. Commun.*, **2008**, 4744-4746.
- 2 Lakowicz, J.R. Principles of Fluorescence Spectroscopy, third ed., Plenum Press, New York, 2006.
- 3 Wang, Y.; Zhang, H.; Zhang, G.; Tao, W.; Tang, S. Interaction of the flavonoid hesperidin with bovine serum albumin: A fluorescence quenching study. *J. Luminescence* , **2007**, *126*, 211-218.
- 4 Wolfe, A.; Shimer, G.; Meehan, T. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. *Biochemistry*, **1987**, *26*, 6392-6396.
- 5 Heller, D.P.; Greenstock, C.L. Fluorescence lifetime analysis of DNA intercalated ethidium bromide and quenching by free dye. *Biophys. Chem.*, **1994**, *50*, 305-312.