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Abstract: Hierarchically porous activated carbon materials from agro-waste, Jackfruit seeds are
prepared by a chemical activation method involving the treatment with zinc chloride (ZnCl2)
at different temperatures (600–1000 ◦C). The electrochemical supercapacitance performances of
the prepared materials were studied in an aqueous electrolyte (1 M sulfuric acid, H2SO4) in
a three-electrode system. Jackfruit seed carbons display nanoporous structures consisting of
both micro- and mesopore architectures and they are amorphous in nature and also contain
oxygenated surface functional groups, as confirmed by powder X-ray diffraction (pXRD), Raman
scattering, and Fourier-transformed infrared (FTIR) spectroscopy, respectively. The surface areas
and pore volumes were found to be 1216.0 to 1340.4 m2

·g−1 and 0.804 to 1.144 cm3
·g−1, respectively,

demonstrating the better surface textural properties compared to the commercial activated carbons.
Due to the high surface area, large pore volume, and well developed hierarchical micro- and
mesoporosity, the optimal sample achieved a high specific capacitance of 292.2 F·g−1 at 5 mV·s−1

and 261.3 F·g−1 at 1 A·g−1 followed by outstanding high rate capability. The electrode sustained
71.6% capacity retention at a high current density of 20 A·g−1. Furthermore, the electrode displayed
exceptional cycling stability with small capacitance loss (0.6%) even after 10,000 charging–discharging
cycles, suggesting that Jackfruit seed would have potential in low-cost and scalable production of
nanoporous carbon materials for supercapacitors applications.

Keywords: agricultural waste; Jackfruit seed; chemical activation; nanoporous carbon; supercapacitors

1. Introduction

Electrochemical energy storage devices such as batteries and supercapacitors are the
key components in the significant development of renewable and sustainable energy sources.
The exponential growth of small portable electronics and also large hybrid-electric devices is demanding
an instant supply of energy storage systems. Currently, the storage of electrochemical energy appears
to be the most cost-effective and viable way to meet the increasing demand [1–9]. Lithium-ion
batteries (LIBs) and electrochemical supercapacitors (SCs) or electrical double-layer capacitors (EDLCs)
have emerged as the most promising candidates [10–14]. Supercapacitors with high power density
(>400 kW·kg−1) and long cycle stability (>100,000) have been extensively used in high power devices
such as hybrid cars, electric buses and even in a jumbo passenger plane, Airbus A380 [15–19].
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Additionally, the high rate capability with fast charging-discharging abilities makes supercapacitors
suitable for further hands-on application. With the many positive aspects, supercapacitors suffer from
one major problem; lower energy density compared to Li-ion batteries [20–22]. The energy density
of supercapacitors can be improved either by increasing the specific capacitance (CS) or increasing
the potential window (V) [23]. Increment in the potential window is fully dependent on the type of
electrolytes, and commonly used aqueous electrolytes can provide ~1.2 V. On the other hand, specific
capacitance mainly depends on the charge storage capacity of the electrode materials. Therefore,
extensive investigations are going on to explore new low-cost materials with excellent charge storage
capacity to attain very high specific capacitance [24–27].

Carbon-based electrode materials, specifically those resulting from nanoporous activated carbons,
are extensively used as electrode materials in commercial supercapacitors owing to their high surface
area, excellent chemical and thermal stabilities [28–32]. Most of the commercial activated carbons are
produced from the combustion of fossil fuel-based precursors, such as coal, gasoline, pitch, etc., which
is not environmentally friendly and also not economical [33–36]. Therefore, the preparation of carbon
materials requires an alternative method or precursors, which can be environmentally friendly and
economically sustainable. In this regard, biomass precursors have emerged as an alternative source
for the preparation of activated carbons through direct carbonization or chemical activation methods.
Natural biomasses are mainly composed of carbohydrate polymers (cellulose and hemicellulose) and
aromatic polymers (lignin, and tannin). Additionally, these biomasses are usually rich in heteroatoms,
such as nitrogen, sulfur, and phosphorus, which enables the preparation of heteroatom-doped porous
carbons for enhanced energy storage [37,38]. Theses biomasses, upon pyrolysis at low temperatures
(200–300 ◦C), produce biochar with a very low specific surface area due to the lack of well-developed
nanoporosity. However, chemical or physical activation of these biochars leads to the formation of
high surface area and well-developed porous carbon materials. Recently, using biomass or various
agricultural wastes such as fish scales [39], corncob [40], washnuts [41], rice husks [42], pistachio
shell [43], bamboo [44], pitch [45], algae [46], batata leaves and stalks [47], peanut dregs [48], lapsi
seed [49], etc., porous carbon materials were produced. These biomass-derived carbon materials
exhibit high surface area and large pore volumes. Such large porosity carbon materials together
with interconnected mesopore structure and uniform pore size distribution are highly demanded
in supercapacitors applications. Various activating agents such as zinc chloride (ZnCl2), sodium
carbonate, phosphoric acid, potassium and sodium hydroxides are commonly used during the chemical
activation process [50–53]. The selection of appropriate activating agents and proper carbonization
conditions is very important to enhance the specific surface area via the development of hierarchical
micro and mesopores with favorable surface functional groups. ZnCl2 dehydrates the biochar and
boosts the decomposition process, and enhances the yield of carbon via the reduction in tar content.

In this contribution, low-cost and scalable preparation of hierarchical nanoporous activated carbon
materials from agro-waste, namely Jackfruit seeds, via the ZnCl2 activation method is reported, and
their electrochemical energy storage capacity is studied in 1 M H2SO4 in a three-electrode system
at 25 ◦C. First, Jackfruit seed powder was heated (pre-carbonized) at 300 ◦C in the air to obtain
the biochar, which was then chemically activated, impregnating with ZnCl2 at a 1:1 weight ratio,
and carbonized at different temperatures from 600 to 1000 ◦C under a constant flux of nitrogen gas
(120 cc·min−1). Jackfruit seed-derived activated carbons were characterized by scanning electron
microscopy, powder X-ray diffraction, Fourier-transformed infrared (FTIR) spectroscopy, and Raman
scattering. Surface textural properties, namely surface area, pore volume, and pore size distribution,
were determined by nitrogen adsorption–desorption isotherms. Electron microscopy and nitrogen
sorption isotherms revealed that the prepared carbon materials show hierarchical porous architecture
consisting of both micro- and mesoporous architecture. The optimal sample exhibits a high specific
surface area (1340.4 m2

·g−1) and a large pore volume (1.144 cm3
·g−1). Owing to the high surface area,

large pore volume, and well-developed micro- and mesoporosity, the optimal sample showed excellent
electrochemical charge storage capacity achieving a high specific capacitance of 292.2 F·g−1 at 5 mV·s−1
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and 261.3 F·g−1 at 1 A·g−1. The observed high capacity retention of 71.6% at a high current density
of 20 A·g−1 demonstrates the outstanding rate capability of the electrode material. Furthermore,
the electrode showed excellent performance on cyclic stability test and retained 99.4% capacity after
10,000 charging–discharging cycles. These results suggest that the agro-waste Jackfruit seed would
be a suitable precursor material for the scale-up synthesis of hierarchically porous activated carbon
materials that can be used as the electrode materials in supercapacitors.

2. Materials and Methods

2.1. Preparation of Nanoporous Activated Carbons

The natural biomass Jackfruit seed collected from the local market was cleaned several times
with distilled water, oven-dried at 80 ◦C for 12 h, crushed into the powder in a mechanical grinder,
and heated at 300 ◦C (pre-carbonized) in the air for 3h to obtain biochar. Pre-carbonized biochar was
mixed with ZnCl2 at a 1:1 weight ratio and carbonized at 600, 800, and 1000 ◦C under the nitrogen flow
(120 cc·min−1) in a tube furnace (KOYO, Tokyo, Japan). During the carbonization, the temperature
ramp was set to 5 ◦C min−1 with a hold time of 3 h. The as-prepared activated carbons were then
treated with 0.5 M aqueous hydrochloric acid solution to remove unreacted zinc chloride. The obtained
materials were further washed with distilled water to remove excess acid. Finally, the obtained carbon
materials were vacuum dried at 80 ◦C for 6 h and further ground into fine particles. Depending on the
carbonization temperature, ZnCl2 activated carbon samples were referred to as JFSC_Z600, JFSC_Z800,
and JFSC_Z1000. As a control sample, Jackfruit seed powder was directly carbonized at 800 ◦C without
ZnCl2 and the derived carbon was referred to as JFS_800.

2.2. Characterizations

The prepared Jackfruit carbon materials were characterized by scanning electron microscopy (SEM:
S-4800, Hitachi Co. Ltd., Tokyo, Japan), powder X-ray diffraction (XRD: Rigaku X-ray diffractometer,
RINT, Tokyo, Japan), Raman scattering (NRS-3100, JASCO, Tokyo, Japan), and Fourier-transformed
infrared (FTIR) spectroscopy (Nicolet 4700, Thermo Electron Corporation, Waltham, MA, USA). Surface
textural properties (surface areas, pore volumes, average pore sizes, and pore size distributions) were
determined by recording nitrogen adsorption–desorption isotherms at liquid nitrogen temperature
77.35 K on the Quantachrome Autosorb-iQ2, Boynton Beach, FL, USA: an automatic adsorption
instrument. The carbon sample (~30 mg) was degassed at 120 ◦C for 24 h before the measurements.
From the nitrogen adsorption isotherms, Brunauer–Emmett–Teller (BET) surface areas were estimated.
The pore size distributions were determined by the Barrett–Joyner–Halenda method (BJH method:
for mesopore) method and density functional theory (DFT method: for micropore). The DFT method
is based on the independent pore model proposed by Seaton et al. [54]. The adsorption isotherm can
be represented as a set of independent non-interconnected pores. Since nanoporous activated carbons
have slit-shaped pores, the experimental adsorption isotherm N(P) represents an average of all the
pore sizes existing in the material and can be expressed as:

N(P) =
∫ Hmax

Hmin

ρ(P, H) f (H) dH (1)

where Hmin and Hmax are the smallest and largest pore widths, ρ(P,H) is the mean density of the
adsorbed nitrogen in the pore width of H at pressure P, and f (H) represents the pore size distributions,
which is the distribution of pore volumes as a function of the pore width of the nanoporous carbon
materials. Detailed calculations of the DFT method can be found elsewhere [55,56].
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2.3. Electrochemical Measurements

Using cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) measurements,
the electrochemical energy storage capacity of the Jackfruit seed-derived carbons was studied in
a three-electrode setup in an aqueous electrolyte solution (1 M H2SO4) at 25 ◦C. Glassy carbon electrode
(GCE, the geometric surface area of 7.85 mm2, ALS Co., Ltd. Tokyo, Japan) was modified and used as
the working electrode, while a platinum wire and Ag/AgCl electrodes were used as counter and the
reference electrode, respectively. GCE was modified with Jackfruit seed carbons as follows. First, using
alumina (Al2O3) slurry GCE was mirror polished and washed with distilled water and dried at 60 ◦C
for 3 h. Suspensions of the carbon samples were prepared by dispersing them in a water–ethanol (4:1)
solvent mixture (1 mg·mL−1). The mixture was sonicated for 60 min in a bath sonicator (BRANSON
3510, Hampton, NH, USA). The suspension (3 µL) was drop cast onto the GCE surface and dried at
60 ◦C for 6 h to remove the solvent, and a Nafion solution (5 µL: 5% in ethanol) was then added as a
binder and dried at 80 ◦C in a vacuum for 12 h. The mass of the electrode materials was determined
by the quartz crystal microbalance (QCM: 9 MHz, AT-cut, Affinix QN pro; Initium, Tokyo, Japan)
technique. CV and CD profiles were recorded on a CHI 850D workstation (CH Instruments, Inc. Austin,
TX, USA) at 25 ◦C. Electrochemical impedance spectroscopy (EIS) measurements of the prepared
carbon materials were performed on a CHI 660E electrochemical workstation (CH Instruments, Inc.
Austin, TX, USA) at 25 ◦C at an open-circuit potential within the frequency range of 10−2–105 Hz at an
amplitude of 5 mV.

Specific capacitances (CS) of the carbon materials were calculated from both CV and CD
measurements. From curves, CS were calculated as:

Cs =
1

ν.m·∆V

∫
IdV (2)

where I, ν, m, and ∆V indicate the current (A), scan rate (V·s−1), mass of active electrode materials (g),
and the operating potential window (V), respectively.

From CD curves, CS were calculated as:

Cs =
I·t

m·∆V
(3)

where I is the discharge current (A), t is the discharge time (s), m is the mass of the active electrode
material (g), and ∆V is the potential window (V).

3. Results and Discussion

Figure 1 shows the representative SEM images of the directly carbonized Jackfruit seed carbon
(JFS_800) and ZnCl2 activated carbon materials (JFSC_Z600, JFSC_Z800, and JFSC_Z1000) both at low-
and high-resolution modes.
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Irregular granules with interconnected macropore channels are the common surface morphology
of the prepared activated carbons (Figure 1c,e,g). Macropores are less obvious in the direct carbonized
sample (Figure 1a). A high-resolution SEM image of the JFS_800 sample (Figure 1b) does not
have any micro/mesoporous structures, while ZnCl2 activated samples have an obvious porous
structure with uniform and interconnected mesoporous structure (Figure 1d,f,h), suggesting that the
direct carbonization of Jackfruit seed powder does not produce porosity in the carbon framework.
The interconnected mesoporous structure is common in all the activated carbons, irrespective of
the carbonization temperature. During the carbonization process at higher temperatures, ZnCl2
promotes the decomposition of the carbonaceous precursors resulting in the formation of highly
nanoporous carbons.

Figure 2a shows the pXRD patterns of the Jackfruit seed-derived carbon materials. All the samples
show the characteristic feature of amorphous carbon with characteristic broad peaks at diffraction
angles of approximately 23 and 43◦, which correspond to (002) and (100) planes of the graphitic
carbons commonly observed in carbonaceous precursors derived activated carbons [57]. A broad
XRD peak corresponding to the (002) plane suggests the poorly ordered amorphous structure of
the Jackfruit seed-derived carbons. The amorphous structure of the prepared carbon materials is
further confirmed by the Raman scattering spectra (Figure 2b). All the samples exhibit two distinctive
Raman bands approximately at 1350 and 1588 cm−1, corresponding to the D and G bands, respectively.
The D band represents the disordered structure of carbon induced by defects and impurities due to
high-temperature carbonization and the G band represents the ordered graphitic layer structure. To
confirm the graphitization degree of the samples, the intensity ratio of G and D band (IG/ID) was
calculated and it was found to be 0.99 to 1.04, which indicates the formation of amorphous graphitic
carbon with a minimal degree of defects, as in commercially available activated carbon materials [57,58].
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Surface functional groups of the precursor (Jackfruit seed powder) and the derived carbon
materials were confirmed by FTIR spectroscopy. The FTIR spectrum of the Jackfruit seed powder
precursor (Figure 3a) shows oxygenated functional groups (–OH, C=O, COOH, ether, phenol and
lactones) [41,42]. The board vibration peak at 3428 cm−1 indicates the presence of alcoholic or phenolic
-OH group.
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Figure 3. (a) FTIR spectrum of Jackfruit seed precursor recorded at 25 ◦C. (b) FTIR spectra of derived
carbons JFS_800, JFSC_Z600, JFSC_Z800 and JFSC_Z1000 recorded at 25 ◦C.

Additionally, absorption bands at 2926 cm−1 corresponds to the aromatic ring, and the peak
at 1639 cm−1 can be assigned to the C=O stretching vibrations of the groups referring to ketones,
carboxyl acids and aldehydes. The new FTIR peak at 1384 cm−1 may be assigned for S=O group of the
Jackfruit seed biomass. After the high-temperature direct carbonization of the Jackfruit seed powder
and ZnCl2 activation, the obtained carbon materials could retain some of these oxygen-containing
surface functional groups (Figure 3b). A broad peak centered at 3444 cm−1 suggests the presence of
O-H functional groups and a weak peak at 1629 cm−1 can be assigned to the aromatic C=C stretching
vibration, which is often detected in activated carbons.

Figure 4a shows the nitrogen adsorption–desorption isotherms of the prepared carbon materials.
The directly carbonized sample (JFS_800) display Type-III isotherm, which is an indication of nonporous
or macroporous structure, which is in consistent with the SEM observations. Meanwhile, ZnCl2
activated carbon materials (JFSC_Z600, JFSC_Z800, and JFSC_Z1000) exhibit a mixed Type-I/Type-IV
isotherms inferring the hierarchical micro- and mesoporous structure [59]. Excessive nitrogen
adsorption at a low relative pressure confirms a large number of micropores. The hysteresis loop at
high relative pressure indicates the existence of mesopores.

Figure 4b,c, respectively, show the pore size distribution profiles obtained from the BJH and
DFT methods, which further confirm the existence of micro- and mesopores architecture in the ZnCl2
activated carbons. Moreover, the presence of micro- and mesopore in all the ZnCl2 activated carbons
is in favor of enhancing the synergistic effects between pores of different sizes and providing more
channels for ion/electrolyte transfer in high-energy storage systems. Table 1 summarizes the surface
area, pore volumes, and average pore diameters of the prepared nanoporous carbon materials.

Table 1. Surface textural properties of nanoporous activated carbons obtained from Jackfruit seed.

Carbon Sample SSA
(m2
·g−1)

Smicro
(m2
·g−1)

Smeso
(m2
·g−1)

Vp
(cm3

·g−1)
Vmicro

(cm3
·g−1)

Dmeso
(nm)

JFS_800 58.7 23.3 35.4 0.122 0.055 3.09
JFSC_Z600 1216.0 1101.6 114.4 0.804 0.639 3.10
JFSC_Z800 1340.4 1214.7 125.7 1.144 0.958 3.09
JFSC_Z1000 1321.4 1149.9 171.5 0.965 0.704 3.10

SSA, Smicro, and Smeso respectively represents specific, micropore, and mesopore surface area, Vp, and Vmicro,
represents total and micropore volume as obtained from the DFT method, Dmeso represents the average mesopore
diameter as obtained from the BJH method.
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Using cyclic voltammetry (CV) and chronopotentiometry, the electrochemical charge storage
capacity of the prepared carbon materials was studied. Figure 5a shows a comparison of the CV curves
at a fixed scan rate of 50 mV·s−1. All the CV curves display a quasi-rectangular shape, suggesting the
EDLC type of charge storage mechanism [57,60].

The total integral current output is different depending on the sample and follows the following
order, JFSC_Z800 > JFSC_Z1000 > JFSC_Z600 > JFS_800, which is in agreement with the surface textural
properties suggesting that the higher the specific surface area better the energy storage capacity (Table 1).
Due to the high micropore surface area, the JFSC_Z800 sample offers plenty of sites for the formation of
the electrical double layer together with the fast electrolyte ion diffusion promoted by the mesoporous
structure. Figure 5b–e show the CV profiles of the directly carbonized sample without ZnCl2, JFS_800
(Figure 5b), and chemically (ZnCl2) activated samples JFSC_Z600 (Figure 5c), JFSC_Z800 (Figure 5d),
and JFSC_Z1000 (Figure 5e) at different scan rates starting from 5 to 500 mV·s−1. CV profiles of all
the samples show that the total current increases with increasing the scan rate and quasi-rectangular
shape are retained up to a high scan rate of 500 mV·s−1, suggesting fast charge propagation kinetics
with excellent reversibility even at a very high scan rate of 500 mV·s−1. Figure 5f compares the specific
capacitance (CS) calculated from the CV curves for all the carbon samples. As expected, due to the
low surface area and small porosity, the directly carbonized sample showed poor supercapacitance
performance. The specific capacitance was ca. 19.6 F·g−1 at 5 mV·s−1, while the ZnCl2 activated
samples showed excellent specific capacitances. The optimal sample JFSC_Z800 achieved the highest
specific capacitance of 292.2 F·g−1 at a scan rate 5 mV·s−1, retaining 77.8% capacitance retention even at
a high scan rate of 500 mV·s−1. Specific capacitances of JFSC_Z600 and JFSC_Z1000 were ca. 171.7 and
214.7 F·g−1, respectively.
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Figure 5. (a) Comparison of cyclic voltammetry (CV) profiles of all the derived nanoporous carbons
at fixed scan rate 5 mV·s−1, and the CV profiles at different scan rate 5-500 mV·s−1. (b) JFS_800,
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Figure 6 shows the results obtained from the galvanostatic charge–discharge (CD) measurements.
Comparison of CD profiles at a fixed current density of 1 A·g−1 exhibit triangular shape of CD curves
(Figure 6a), which a the typical characteristic of the EDLC behavior of the carbon electrodes [57,61–63].
The linear decay of the discharge curves is an indication of the well-balanced charge storage. The shorter
discharge time of the directly carbonized samples indicates the poorer energy storage capacity of
the material compared to the ZnCl2 activated samples. The best sample (JFSC_Z800) exhibits the
longest discharge time, indicating the maximum energy storage capacity of the material compared to
JFSC_Z600 and JFSC_Z1000. Figure 6b–d show the CD profiles for JFS_800, JFSC_Z800 and JFSC_Z1000,
respectively. The triangular shape of the CD profiles persisted at high current density, indicating
good electrochemical energy storage performances. Using Equation (3), specific capacitances were ca.
19.6 F·g−1 (JFS_800), 171.7 F·g−1 (JFSC_Z600), 261.3 F·g−1 (JFSC_Z800) and 214.7 (JFSC_1000) at 1 A·g−1.
Specific capacitances vs. current density curves for all the samples are shown in Figure 6e. The higher
capacitance of the JFSC_Z800 sample is caused due to the high specific surface (particularly micropore
surface area) and large pore volume compared to the rest of the samples.
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Figure 6. (a) Comparison of charge–discharge (CD) profiles of Jackfruit seed nanoporous carbons at
1 A·g1, and the corresponding CD profiles at different scan rates (1–20 A·g1), (b) JFS_800, (c) JFSC_Z800,
(d) JFSC_Z1000, (e) Calculated specific capacitance from CD profiles ad different current density, and (f)
Cycling stability for JFSC_Z800 and JFSC_Z1000 up to 10,000 charging-discharging cycles.

Capacitance retention for all the activated samples is more than 62% at a high current
density of 20 A·g−1 with the optimal sample achieving outstanding capacity retention of 77.8%.
Furthermore, the electrode shows admirable cycling stability at the cost of only 0.6% capacity loss after
10,000 charging-discharging cycles (Figure 6f). The cyclic stability of JFSC_Z1000 is comparable with
the optimal samples.

Figure 7 shows Nyquist plots of the prepared carbon materials obtained from the EIS measurements.
The plots show ideal EDLC behavior with poor semicircular behavior in the high frequency region.
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A sharp rise of the curves in the chemically activated sample at the lower frequency region
demonstrates the fast electrolyte ion transport within the electrode materials due to high porosity.
The slow ion transport in the directly carbonized sample can be attributed to the lack of well-developed
porosity. From the intersection point on the real axis, the equivalent series resistances (ESR) were
ca. 4.18 Ω (JFS_800), 4.26 Ω (JFSC_Z600), 3.95 Ω (JFSC_Z800), and 4.11 Ω (JFSC_Z1000), which
demonstrates that the optimal sample exhibits lowest ESR. Generally, high mass loading (~10 mg) and
a two-electrode system are required to get more accurate and practical information on the capability of
the materials in the electrochemical energy storage performance (energy density and power density)
of the supercapacitor devices [64,65]. Nevertheless, our results obtained from the electrochemical
measurements suggest that ZnCl2 activated Jackfruit seed carbons due to hierarchical micro- and
mesopore architecture serves as the high rate capability long cycling life electrode materials for
supercapacitors applications.

4. Conclusions

In conclusion, hierarchical micro- and mesoporous carbon materials have been prepared from
Jackfruit seeds by the chemical activation method using ZnCl2 as the dehydrating agent, and their
electrochemical energy storage capacity performance was studied in 1 M sulfuric acid aqueous
electrolyte solution by cyclic voltammetry and chronopotentiometry. Pre-carbonized Jackfruit seed
powder impregnated with ZnCl2 (1:1 weight ratio) upon carbonization at higher temperatures
(600–1000 ◦C) resulted in the formation of highly porous carbon materials with a hierarchically
structured micro- and mesoporous structure. The specific surface areas and pore volumes found
in the range of 1216–1340 m2

·g−1 and 0.804–1.114 cm3
·g−1, respectively, which is much higher than

the conventional active carbon and the directly carbonized Jackfruit seed carbon without activating
agent. Owing to the high surface area and well-developed porosity with the hierarchical nanoporous
structure, Jackfruit seed carbons showed excellent supercapacitance performance concerning specific
capacitance, capacitance retention, rate capability, and cycle life. The electrode prepared with the
optimal sample achieved a high specific capacitance of 292.2 F·g−1 at 5 mV·s−1 and 261.3 F·g−1 at
1 A·g−1. Capacitance retention was ca. 77.8% at a high scan rate of 500 mV·s−1, and rate capability
was ca. 71.6% at a high current density of 20 A·g−1 followed by outstanding cycling life sustaining
99.4% capacitance after 10,000 charging-discharging cycles. These results suggest that Jackfruit seed
agro-waste would be suitable for low-cost precursor materials for the green synthesis of high-surface
area nanoporous carbon materials for potential use in advanced supercapacitor applications.
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