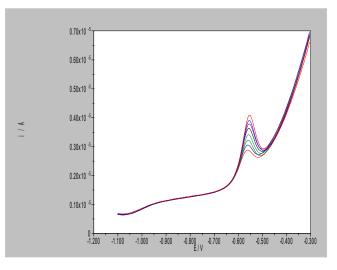
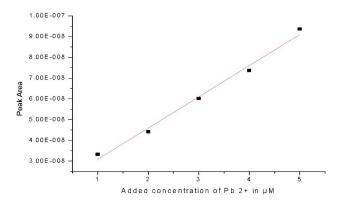


Supplementary Information

Removal of Lead by Oxidized Graphite


Namasivayam Selvanantharajah¹, Poobalasuntharam Iyngaran¹, Poobalasingam Abiman¹, and Navaratnarajah Kuganathan^{2*}

- ¹ Department of Chemistry, University of Jaffna, Sir. Pon Ramanathan Road, Thirunelvely, Jaffna, 40000, Srilanka.
- ² Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom.
 *Correspondence: n.kuganathan@imperial.ac.uk;


Received: date; Accepted: date; Published: date

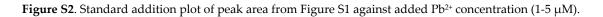
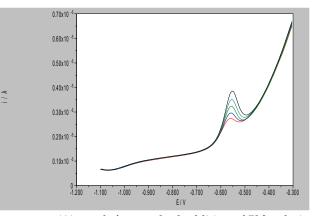

1. Potential (V) versus current (A) graph for standard addition of Pb²⁺ for graphite powder

Figure S1 shows current versus potential graph of SWASV with standard addition of Pb^{2+} (1-8 μ M). Figure S2 shows standard addition plot of peak area from Figure S1 against added lead ion concentration (1-8 μ M).

Figure S1. Potential versus current graph for standard addition of Pb²⁺ for graphite powder.



A 10.0 ml of 100 μ M of Pb²⁺ solution was exposed to 100.0 mg of graphite carbon powder. Bare graphite exhibits an adsorption capacity of 41.18%.

2. Potential (V) versus current (A) graph for standard addition of Pb²⁺ solution for oxidized graphite powder.

Figure S3 shows the current versus potential graph of SWASV with standard addition of Pb^{2+} (1-5 μ M). Figure S4 shows the standard addition plot of peak area from Figure S3 against added Pb^{2+} concentration (1-5 μ M).

Figure S3. Potential (V) versus current (A) graph for standard addition of Pb²⁺ solution for oxidized graphite powder.

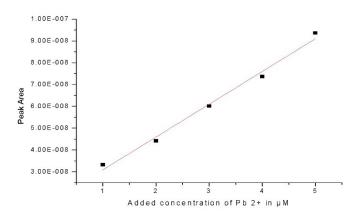


Figure S4. Standard addition plot of peak area from Figure S3 against added Pb²⁺ concentration (1-5 μ M).

A 10.0 ml of 100 μ M of Pb²⁺ solution was exposed to 100 mg of oxidized graphite carbon powder. Adsorption capacity of oxidized graphite powder for Pb²⁺ was found to be 73.3%. Oxidized graphite powder has greater adsorption capacity of Pb²⁺ than graphite because of the presence of COOH or OH groups upon oxidation.