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Abstract: Biomass wastes are abundant around us. They are renewable and inexpensive. Product
manufacturing from renewable resources has caught increasing interest recently. Activated carbon
preparation from biomass resources, including various trees, leaves, plant roots, fruit peels, and
grasses, is a good example. In this paper, an overview of activated carbon production from biomass
resources will be given. The first part will be on the processing technologies. The second part will
focus on the carbon activation methods. The third part will introduce the biomass resources. The
fourth part will be on surface modification of activated carbon through the addition of various
components. Finally, the development of product applications will be discussed with an emphasis on
adsorption, filtration, water purification, energy conversions, and energy storage.

Keywords: activated carbon; porous carbon; biomass resources; sustainable resources; processing
technology; surface modification; adsorption; water purification; energy storage and conversions

1. Introduction

One of the most important forms of carbon, called activated carbon, has a high
surface area and a large volume of micropores. The specific surface area of activated
carbon can reach as high as 3000 m2/g, which makes it very effective in the removal of
inorganic pollutants such as heavy metals from water [1]. Activated carbon has also been
studied for mercury removal from water [2,3]. Activated carbon is sometimes called active
carbon because it can participate in chemical reactions or it can be used as the support for
catalysis. Recent applications of activated carbons are in the field of energy storage and
conversions [4]. What are the differences between porous carbon and activated carbon?
Generally speaking, porous carbon is characterized by its physicochemical properties, such
as large surface area, large pore size range, relatively low density, etc. Activated carbon
refers to carbon materials experienced with the activation of their surfaces or modification
on the structures via functionalization, metal or oxide deposition, etc., for well-defined
applications. All activated carbons are porous carbons. However, not all porous carbons
are activated carbons. The porosity of porous carbons spans a very wide range of pore
sizes, while the activated carbons are, in essence, microporous materials. Although this
fundamental difference should not be overlooked, sometimes the boundary between the
activated carbons and porous carbons may not be so distinct, especially from processing
and application perspectives. As will be discussed in next section, the pore generation and
activation of carbon materials happen in the same process. Surface functionalization and
activation result in pore generation simultaneously.

Traditionally, activated carbon is made from coal or charcoal. However, making
activated carbon from renewable resources is more intriguing because it is sustainable. The
carbonizing of naturally grown grass and tree leaves has been studied for various potential
industrial applications [5]. Date palm-tree branches (DPB) generated from the regular
trimming of palm-trees were carbonized to generate an activated carbon product for toluene
adsorption [6]. Although some biomass may be directly used for the adsorption of cationic
dyes with high concentration at lower cost [7], activated sorbents after carbonization
showed higher efficiency in dye removal [8]. Usually, curry tree (Murraya koenigii) stem
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is considered as an agricultural waste [9]. It is present in various vegetable markets. To
convert it to a value-added product, carbonization of curry tree bark was conducted to
generate activated carbon. The activated carbon was used to effectively remove the crystal
violet dye from wastewater [9].

The abundance and diversity of bioresources are other reasons for the preparation of
new activated carbon from woods, tree barks and leaves, grasses, and roots. In the following
sections, recent development in various techniques for generating high performance and
low cost activated carbon from representative renewable sources will be dealt with. The
physical and chemical activation methods will be discussed. In the last part of the paper,
typical applications of the activated carbons for gas adsorption, water purification, and
energy storage will be presented.

2. Processing Techniques

Activated carbon materials are made through three required processes. The first
process is the pretreatment of biomass raw materials. The second process is carbonization.
The third process is activation. During the pretreatment process, most of the nutrients
and solvable impurities are removed. The carbonization process allows organic lignin
and cellulose to be converted into carbonaceous materials. Carbonization also reduces the
amount of water, nutrients, oxygen, hydrogen, sulfur, and other elements. Carbon loss
may happen in the carbonization process due to heating to temperatures above 400 ◦C.
With the increase of temperature, the grains in raw materials are dehydrated. The oxygen
in the raw materials is released in forms of H2O, CO, CO2, etc. Such reaction products
facilitate subsequent activation reactions [10]. Typically, the activation process follows
carbonization. However, they may be conducted at the same time. The carbonaceous
materials (biochars) can be activated by two different approaches: physical activation (PA),
and chemical activation (CA). In the physical activation process, a raw material is activated
in the temperature range from 750 to 1000 ◦C in a vacuum or inert gas atmosphere. In the
chemical activation process, chemical agents are incorporated into raw materials. They are
heated up together in an inert gas, and carbonization and activation occur simultaneously.
Recently, chemical activation has been studied for processing high-performance activation
carbons. There are some challenges associated with the chemical activation of carbon
as well. A washing step is always required to remove byproducts following chemical
activation. This washing, followed by drying, is typically time consuming, which is
why physical activation is claimed as a more mature process used for producing most
commercially available activated carbons. Considering the increased research interest in the
chemical activation process, in the following subsections, the activated carbon processing
techniques based mainly on the chemical activation approach will be discussed.

2.1. Pretreatment and Carbonization

Activated carbon is made through the general procedures including pre-carbonization,
carbonization, and activation. Sometimes a pre-treatment procedure is needed. As shown
in [4], tamarisk-tree branches were collected as the starting material, and the pre-treatment
was performed by soaking the tamarisk-tree branch in distilled water for 12 h. Then the
sample was air dried at 60 ◦C for a sufficiently long period of time. The whole process for
making activated carbon from the tree branch is schematically shown in Figure 1a [4]. The
abbreviation of FLC@BC in Figure 1a stands for the “few-layer carbon@bulk carbon”, a
unique structure due to the activation treatment of the tamarisk tree sample with the KOH
solution. The pre-carbonization was carried out at 320 ◦C for 5 h. The carbonization and
activation of the sample are shown in more detail in [4]. Briefly, a typical pre-carbonized
sample with a weight of 1 g was soaked in 20 mL KOH solution for a day. For multiple
experiments, the mass ratios of the pre-carbonized product to KOH were kept as 1:1, 2:1,
3:1, 5:1, and 7:1, respectively. The samples were dried and then carbonized at 700 ◦C for 2 h
in N2. Then, the samples were washed by 1 wt% HCl solution and distilled water until
the pH value reached 7. For comparative studies, the product carbonized at 700 ◦C for
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2 h without soaking in KOH solution was made. Figure 1b shows optical images of the
tamarisk tree and branches. Under scanning electron microscope, the tamarisk tree branch
sample demonstrated a porous microstructure, and the ligaments were relatively rough, as
shown by the SEM image in Figure 1c [4].
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much rough than that of those observed in Figure 1d–f. Under transmission electron mi-
croscope (TEM), the carbonized tamarisk tree branch sample surface is relatively smooth, 
as revealed by Figure 1g. The KOH pretreatment changed the morphology of the activated 
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Figure 1. Schematic and images showing (a) the tamarisk tree branches under pre-carbonization,
carbonization, and activation treatment procedures; (b) tamarisk tree and branches under visible
light; (c) the tamarisk tree branch under scanning electron microscope (SEM); (d–f) carbonized
sample without KOH activation under SEM; (g) carbonized sample without KOH activation under
transmission electron microscope (TEM); (h) carbonized sample with KOH activation under SEM;
(i,j) carbonized sample with KOH activation under TEM. Reproduced with permission from [4],
©2020 Elsevier Ltd.

Carbonization of the tamarisk tree branch sample caused the reduction of the surface
roughness, which can be seen from the three SEM images as shown in Figure 1d–f. Through
the comparison, it is evident that the ligament surface as shown in Figure 1c is much rough
than that of those observed in Figure 1d–f. Under transmission electron microscope (TEM),
the carbonized tamarisk tree branch sample surface is relatively smooth, as revealed by
Figure 1g. The KOH pretreatment changed the morphology of the activated carbon fiber
significantly. The KOH treated sample has a structure of few-layer carbon@bulk carbon
(FLC@BC). Such a unique structure was synthesized by controlling the diffusion depth
from the aqueous KOH liquid phase to the tamarisk tree branch carbon precursor solid
phase [4]. After the KOH treatment, the carbonized and activated tamarisk tree branch
sample, named as few-layer carbon@bulk carbon, demonstrated both macro-pores and
numerous protrusions at the pore surface, as can be seen from the SEM image in Figure 1h.
Under the TEM, it was observed that the few-layer carbon (loose carbon) attached to the
surface of the dense, bulk carbon. Figure 1i,j reveal said microstructure. Through KOH
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activation and carbonization, the few-layer carbon or loose carbon was formed in the range
of the diffusion depth. The activation process also generated micropores at the surface of
the bulky carbon. Consequently, high specific surface area was obtained, which enhanced
the specific capacitance when the activated carbon was used for energy storage [4].

The role of KOH or NaOH in the activation of carbon was reported [11]. The reaction
mechanisms were proposed as described below. After the contact with the KOH, the
grains of the raw materials were activated at a high temperature. The carbon between the
crystallites was burned out by a series of chemical reactions, resulting in the formation of
micropores. The activation time and temperature should be well controlled. Generally, the
pore size increases with the increase of activation time and processing temperature, while
the carbon yield decreases due to the loss in the reactions. If the activation time is too long
and the temperature is too high, the micropores will be destroyed.

In the activation process, the main reaction is [10]

4 KOH + C→ K2CO3 + K2O + 2 H2 (1)

Carbon was etched by KOH, and the reaction released hydrogen. Consequently,
micropores or voids formed. At temperatures lower than 500 ◦C, dehydration of KOH
happened following the reaction shown by Equation (2).

2 KOH→ K2O + 2 H2O (2)

The generated water vapor sustained the reforming reactions of Equations (3) and (4):

H2O + C→ CO + 2 H2 (3)

CO + H2O→ CO2 + 2 H2 (4)

The carbon dioxide and potassium oxide further reacted with each other to produce
potassium carbonate according to Equation (5):

K2O + CO2 → K2CO3 (5)

Therefore, the activation of carbon by KOH generated hydrogen and potassium
carbonate as the main products. Carbon monoxide and carbon dioxide formed as the
by-products [10].

2.2. Simultaneously Carbonization and Activation

To reduce the energy consumption and save the processing time, carbonization and
activation can be executed at the same time. Sun et al. [12] reported the processing and
adsorbent application of activated carbon from oak tree and apple tree wood waste, as
shown in Figure 2. In the lower part of Figure 2, the multiple reactions of the activated
carbon to the surrounding organic groups are shown. During processing, small pieces of
wood waste were crushed into particles with a size less than 125 µm. The particles were
pyrolyzed in a tube furnace at 900 ◦C for 2 h in N2 or CO2 gas flow. The obtained activated
carbon products were named as OAC (oak tree-derived activated carbon) and ABC (apple
tree-derived activated carbon). In addition, a suffix was added on each of the names,
indicating the carbonization temperature and the gas used. For example, the obtained
oak and apple tree activated carbon were denoted as OBC-900N, OBC-900C, ABC-900N,
and ABC-900C, respectively. The suffix “N” stands for N2 purging gas, while suffix “C”
refers to the CO2 gas. It was found that the pyrolysis of oak tree wood waste in CO2 flow
produced activated carbon with increased aromaticity. CO2 allowed the formation of a
hierarchical porous structure, as revealed by the SEM images in Figure 3 [12]. Enhanced
surface hydrophilicity was found for such structures. It was also possible to change the
polarity and acidity of the carbon surface, which provided higher densities of functional
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groups near the surface of the activated carbon. The two SEM images in Figure 3g,h show
the hierarchical porous structure.
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Figure 3. SEM images of activated carbon derived from oak tree and apple tree wood waste ((a–d): 5000×magnification;
(e–h): 20,000×magnification). Reproduced with permission from [12], ©2020 Elsevier B.V.

2.3. Activation

Typical activation agents include KOH, K2CO3, ZnCl2, and CaCl2. In the work
performed by Bai et al. [13], 25 wt% ammonia was used to hydrothermally treat wood
for removing the lignin. The temperature for hydrothermal processing was carried out at
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190 ◦C for 6 to 8 h before carbonization in vacuum. After the ammonia treatment, the wood
was heat treated at 900 ◦C for 8 to 10 h in vacuum. The carbon was soaked in saturated
KOH solution for two to three days. Finally, the carbon was heat treated at 750 ◦C for 8
to 10 h. After rinsing by HCl solution and cleaning by water, the activated carbon with a
three-dimensional (3D) structure was obtained. The ordered alignment of channels and
multi-pores was observed using scanning electron microscopy (SEM). The SEM images in
Figure 4 show the morphology of the activated carbon material. The multiple sized pores
can be found in Figure 4A, the top view of the sample. The cross section view in Figure 4B
reveals the through thickness channels within the carbon material. The morphology of
the channel wall is shown in Figure 4C. These channels are aligned regularly along the
longitudinal direction of the tree trunk. In addition, there are many micropores on the inner
wall of the carbon material activated by KOH. Under higher magnification, the micropores
can be seen more clearly. In Figure 4D,E, the multi-level pores are demonstrated. Such a
unique structure allows the activated carbon material to have both high pore volume and
large specific surface area. A lithium–sulfur (Li/S) battery was built using the activated
carbon as the cathode material. The electrochemical testing results showed that the first
discharge capacity of the activated carbon electrode reached 1595 mA·h/g. This value is
very closed to the theoretical specific capacity of the sulfur electrode material, which is
1670 mA·h/g [13].

C 2021, 7, x FOR PEER REVIEW 6 of 33 
 

KOH solution for two to three days. Finally, the carbon was heat treated at 750 °C for 8 to 
10 h. After rinsing by HCl solution and cleaning by water, the activated carbon with a 
three-dimensional (3D) structure was obtained. The ordered alignment of channels and 
multi-pores was observed using scanning electron microscopy (SEM). The SEM images in 
Figure 4 show the morphology of the activated carbon material. The multiple sized pores 
can be found in Figure 4A, the top view of the sample. The cross section view in Figure 
4B reveals the through thickness channels within the carbon material. The morphology of 
the channel wall is shown in Figure 4C. These channels are aligned regularly along the 
longitudinal direction of the tree trunk. In addition, there are many micropores on the 
inner wall of the carbon material activated by KOH. Under higher magnification, the mi-
cropores can be seen more clearly. In Figure 4D,E, the multi-level pores are demonstrated. 
Such a unique structure allows the activated carbon material to have both high pore vol-
ume and large specific surface area. A lithium–sulfur (Li/S) battery was built using the 
activated carbon as the cathode material. The electrochemical testing results showed that 
the first discharge capacity of the activated carbon electrode reached 1595 mA‧h/g. This 
value is very closed to the theoretical specific capacity of the sulfur electrode material, 
which is 1670 mA‧h/g [13]. 

 
Figure 4. SEM images of activated carbon derived from wood showing (A) the top surface, (B) the 
side surface, (C) the wall of pores, (D) the magnified region in (C), (E) the further magnified re-
gion in (D). Reproduced from [13]. 

K2CO3 is not a deleterious compound because it can be used for food. Hayashi et al. 
[14] reported that K2CO3 can be used as an effective activation reagent for activated carbon 
generation. At the selected temperatures for activation, the following reaction occurs: 

K2CO3 + 2 C → 2K +3 CO (6)

Carbon in the chars was removed to form pores by the CO gas. Nutshells including 
almond shell (AM), coconut shell (CN), oil palm shell (OP), pistachio shell (PT) and wal-
nut shell (WN) were used as the raw materials for preparing high specific area activated 
carbons. The nutshell particles, K2CO3, and water were mixed together and dried. The 
nutshells impregnated with K2CO3 were loaded on a ceramic boat and placed into a stain-
less-steel reactor. The activation temperature range was set from 773 to 1173 K. Nitrogen 
was used as the protective gas. When prepared at 1073 K, all the activated carbons reached 
the maximum specific area. 

Zinc chloride, as the activating agent, can lower the carbonization temperature. The 
selected activation temperature for the production of activated carbon using walnut shell 
as the raw material is approximately 375 °C, as shown in the work performed by Kim et 

Figure 4. SEM images of activated carbon derived from wood showing (A) the top surface, (B) the
side surface, (C) the wall of pores, (D) the magnified region in (C), (E) the further magnified region
in (D). Reproduced from [13].

K2CO3 is not a deleterious compound because it can be used for food. Hayashi et al. [14]
reported that K2CO3 can be used as an effective activation reagent for activated carbon
generation. At the selected temperatures for activation, the following reaction occurs:

K2CO3 + 2 C→ 2K +3 CO (6)

Carbon in the chars was removed to form pores by the CO gas. Nutshells including
almond shell (AM), coconut shell (CN), oil palm shell (OP), pistachio shell (PT) and walnut
shell (WN) were used as the raw materials for preparing high specific area activated carbons.
The nutshell particles, K2CO3, and water were mixed together and dried. The nutshells
impregnated with K2CO3 were loaded on a ceramic boat and placed into a stainless-steel
reactor. The activation temperature range was set from 773 to 1173 K. Nitrogen was used
as the protective gas. When prepared at 1073 K, all the activated carbons reached the
maximum specific area.

Zinc chloride, as the activating agent, can lower the carbonization temperature. The
selected activation temperature for the production of activated carbon using walnut shell as
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the raw material is approximately 375 ◦C, as shown in the work performed by Kim et al. [15].
Comparative studies of using ZnCl2 and CaCl2 to activate the carbon material derived
from walnut shells were also made. The degree of activation by ZnCl2 was compared with
that by CaCl2. It was found that a higher degree of activation was achieved by using the
ZnCl2. However, CaCl2 is less expensive than ZnCl2. Both the efficiency of activation and
the cost should be considered in approaches to a practical activation process. During the
experiment of ZnCl2 activation, black walnut shells were crushed and ground into sizes in
the range from 250 to 1410 µm. The prepared walnut shells were dried and mixed with
the activation agent ZnCl2. The weight ratios of walnut shell raw material to the ZnCl2
solution were 1:1, 1:3, 1:5, and 1:7. The apparatus consisted of three parts, namely the
gas inlet, tube furnace, and gas condenser, as schematically shown in Figure 5a. High
purity N2 gas flew into the furnace at a flow rate of 150 mL/min during the activation
process. A porcelain boat was used to hold specimens. A Pt/Pt-Rh thermocouple was
used to measure the temperature. To locate the boat at the center of tube, a molybdenum
(Mo) wire was used as the pusher. Figure 5b illustrates the sample holder [15]. The flow
chart for processing the porous carbon using ZnCl2 as the activating agent is presented in
Figure 6 [15]. The general procedures for the activation process can be described as follows:
A mixture of walnut shell and ZnCl2 solution with the representative concentration of 1.0,
3.0, 5.0, or 7.0 M was loaded into the sample holder, the boat in Figure 5b, and heated in
the furnace to a controlled temperature between 250 to 550 ◦C. The activation time was
controlled as 0.5, 1, 2, 3, and 4 h, respectively. The heat-treated product was boiled in
5% HCl solution to leach out the Zn-rich activating agent. Then the product was rinsed
with hot distilled water several times. Then, it was neutralized in a dilute NaOH solution.
The final product was stored in a desiccator filled with N2 gas to prevent oxidation. For
comparison, an activation experiment using CaCl2 as the activating agent was conducted.
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from [15], ©2001 Elsevier Science B.V.

ZnCl2 is considered as a strong dehydrator. It can subtract hydrogen and oxygen
from the raw material in inert atmosphere during the activation process. As a result,
the carbonaceous microporous structure as shown in Figure 7 can develop [15]. The
concentration of ZnCl2 strongly affects the pore formation and determines the specific
surface area (SSA). It was found that the porous microstructures were better developed
with 3.0 M ZnCl2 than with 1.0 M ZnCl2, as revealed by the two SEM images in Figure 7.
With even higher concentrations, for example, 7.0 M, the specific area of the activated
carbon decreases due to the collapse of the pore walls caused by the overetching in the
concentrated ZnCl2.
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In addition to the above-mentioned activated carbon processing techniques, other
methods using different chemical activating reagents such as H3PO4 and H2SO4 have been
studied and used for a considerably long period of time [16]. Conceptually, chemicals with
dehydration and oxidation characteristics are suitable for making activated carbon [15].
In the following section, the activated carbon generating raw materials from biomass
resources will be discussed.
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3. Biomass Resources for Activated Carbon

Various raw materials including nutshells, fruit pits, paper mill waste (lignin), wood,
charcoal, brown and bituminous coals, lignite, bone, and peat are the some of the starting
materials for the production of activated carbon. It is not the intent to list every category of
material here. Instead, the discussion will be on certain representative sustainable biomass
sources. Nut shells, tree leaves, tree woods, willow catkins, and vegetable wastes will be
discussed in the following subsections.

3.1. Walnut Shell

First, walnut shell for carbon generation is presented because it contains a relatively
high percentage of carbon. The weight percent of carbon in walnut shell is about 47% [15].
As is known, walnut is a generally accepted nutrient food, but its shell as one of the waste
products from the meat processing, as shown in Figure 8 [17], has little commercial value.
From Figure 8, it can be seen that the walnut fruit contains four main parts: the kernel, the
skin, the shell, and the husk. The importance of walnuts is mostly related to the valuable
kernels. The walnut fruit processing industry generates a considerable large amount of
shells as an agricultural by-product and are discarded or burned as fuel. Walnut shell has
caught much interest as a naturally inert plant-based biosorbent [17]. Recently, turning
the produced walnut shell biomass into another valuable product, activated carbon, has
been considered [15]. The preparation of activated carbon from walnut shell through both
physical activation and chemical activation were described in [15] and reviewed in [17].
For example, using potassium carbonate (K2CO3) as a chemical activator, walnut shells
were converted into activated carbon at 800 ◦C. The walnut shell-derived activated carbon
as an effective adsorbent for the removal of various hazardous materials including heavy
metals (HMs), synthetic industrial dyes, and harmful chemicals was discussed in more
detail in [17].
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Figure 8. Different parts of walnut fruit and the corresponding by-products. The walnut fruit mainly
consists of the husk, shell, skin, and kernel. The husk, shell and skin are the main agricultural waste
products of walnut fruit. Reprinted from [17].

3.2. Citrus-Limon Tree Leaves

Nemati, Jafari, and Esmaeili [18] converted citrus-limon tree leaves into activated
carbon with the purpose of removing lead and arsenic ions from aqueous solutions. The
tree leaves were collected and dedusted by washing. Then, the tree leaves were dried
completely at 100 ◦C for 2 h in an oven. The dried leaves were placed in a furnace at
700 ◦C for 4 h with an inert gas protection. Adsorption tests showed that the highest
adsorption efficiencies were 98% and 96% for Pb (II) and As (III), respectively. Additionally,
the adsorbent was successfully regenerated four times and therefore it was able to perform
the adsorption and desorption processes well. Moreover, the results of adsorption kinetics



C 2021, 7, 39 10 of 33

showed that the pseudo second-order kinetic model was more effective for the description
of adsorption mechanism of both metallic ions. Furthermore, the equilibrium studies
indicated that Langmuir and Freundlich isotherm models were desirable for lead and
arsenic ions, respectively.

3.3. Guava Tree Wood

Guava tree wood grown in Egypt was processed into activated carbon (AC) [19]. The
removal of brilliant green (BG) dye from aqueous solutions with different concentrations
using the processed activated carbon was performed. Figure 9a is an SEM image showing
the morphology of the activated carbon adsorbed with the green dye. Figure 9b shows
the time dependent adsorption behavior of the carbon in solutions with different initial
dye concentrations. From Figure 9b, it was found that the dye adsorption reached the
equilibrium within 15 min. The effects of other factors such as contact time, pH, adsorbent
dosage, and temperature on the adsorption of BG onto the AC were investigated. The
isotherm results were analyzed using different isothermal kinetic models proposed by
Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich. Linear regression shows that
the equilibrium data can be best represented by the Freundlich isotherm. Each gram of AC
can remove 90 mg BG dye.
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3.4. Willow Catkin

Zhang et al. [20] showed willow catkin as a raw material to produce activated carbon.
The activated carbon was used to make a hydrophilic composite membrane for efficient
solar steam generation, as shown in Figure 10. The activated carbon membrane was placed
in a tree-like evaporation configuration to simulate a natural transpiration process. They
tested the light harvesting performance of the solar steam generator and found that a very
strong light absorption (up to 96%) was achieved [20]. The solar energy was converted into
thermal energy to heat the surrounding water flowing in a porous water channel under the
capillary action.
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Figure 10. Photo and drawing showing the willow catkin, activated carbon membrane, and the solar
steam generator. Reprinted from [20], ©2020 The Authors.

The preparation of activated carbon membrane includes several key steps, as schemat-
ically shown in Figure 11 and described in more detail in [20]. First, the catkins were
collected. The seeds and dust in the catkins were removed. Then the raw materials were
air-dried at 80 ◦C for 6 h. The cleaned catkins were immersed into 2 M KOH solution and
then dried at 80 ◦C for 12 h. After that, carbonization was performed by heating the catkins
(held in a nickel crucible) to 750 ◦C at a rate of 5 ◦C/min under nitrogen gas protection. The
time for carbonization process was 1 h. The carbon product was washed with 1 M HCl and
deionized water until the pH value of the filtrate reached about 7. The generated product
was porous and polyhedral in shape. Therefore, the samples were named as porous carbon
polyhedrals (PCPs).
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The PCPs were further processed using a mixed acid consisting of H2SO4 and HNO3
with a molar ratio of 3:1 for 1 h. Deionized (DI) water was used to wash the acid treated
PCPs until the pH value of the filtrate reached about 7. Surface modification on the
acidified PCPs, as shown in Figure 11, was conducted by adding them into dopamine
tris-hydrochloride buffer solution (pH = 8.5, 50 mM) and under vigorous stirring for 8 h at
25 ◦C. More details about this surface modification process are described in references [21]
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and [22]. The modified samples were washed by deionized water several times, and they
were called modified PCPs [20].

The as-prepared product was filtered in a cellulose filter with a thickness of 200 µm
under a pressure of 0.1 MPa and dried at 60 ◦C for 4 h. A hydrophilic light-absorber layer
remarkably increased the attachment sites of water molecules, thereby maximizing the
use of thermal energy. At the same time, hierarchically porous structure and large specific
surface area (as high as 1380 m2/g) supplied more available channels for rapid water vapor
diffusion. The as-prepared composite membrane with a low-cost advantage realized a high
evaporation rate (1.65 kg/(m2·h) only under 1 sun illumination (1 kW/m2), which was
improved by roughly 27% in comparison with the unmodified hydrophobic composite
membrane. The tree-like evaporation configuration with excellent heat localization resulted
in the evaporator achieving a high solar-to-vapor conversion efficiency of 90.5%. Moreover,
the composite membrane could remove 99.9% sodium ions from seawater and 99.5% heavy
metal ions from simulated wastewater, and the long-term stable evaporation performance
proved its potential in actual solar desalination. This work not only fabricated an efficient
evaporator but also provided a strategy for reusing willow catkin natural wastes for water
purification [20].

The morphology and structure of the samples were observed under a scanning electron
microscope. The porous structure and inner morphologies of the catkin-derived carbon and
composite membrane are shown in Figure 12. In Figure 12a, the porous carbon polyhedrals
(PCPs) were revealed. Such a microstructural feature provides the transpiration channels
for water vapor. The photo as an inset in Figure 12b shows that the composite membrane
had a black color due to biochar formation during carbonization. The SEM images in
Figure 12b,c show the surface and enlarged morphological features of the surface modified
PCPs, respectively, illustrating the interconnected microporous structure of the biochar
layer. In comparison with the PCPs, many polydopamine (PDA) particles were deposited
on the surface of the modified PCPs, and their porous structures were maintained after
the PDA modification. The TEM image in Figure 12d shows that even a thin slice of the
activated carbon consisted of a large number of mesopores [20].
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3.5. Onion Peel

Other biomass resources for activated carbon production include but are not limited
to vegetable wastes. For example, onion peel has been considered for this purpose in the
research reported by Musyoka, Mutuma, and Manyala [23]. Briefly, red-onion skin waste
(peel) was collected, washed, and air-dried at 60 ◦C for 12 h. The cleaned onion peel was
put into an autoclave filled with deionized water and converted into hydrochar through
the hydrothermal carbonization treatment at 200 ◦C for 4 h. The resulting hydrochar
was gathered by filtration, water-cleaned, and air-dried at 90 ◦C for 12 h. Then, high
specific surface area activated carbon was prepared from the hydrochar in two steps. First,
pre-carbonization of the onion hydrochar was carried out at 500 ◦C for 1 h under argon
atmosphere with a ramp rate of 5 ◦C/min. The pre-carbonized hydrochar was then mixed
with KOH. The mass ratio of hydrochar to KOH was 1 to 4. A few drops of water were
added into the mixture to form a slurry. After being dried at 70 ◦C for 12 h, the mixture was
heated up to a pre-activation temperature of 400 ◦C for 30 min and then to an activation
temperature of 600 ◦C for 1 h. The product was immersed in 10 wt% HCl for 24 h followed
by washing with deionized water to a neutral pH = 7. This onion peel-derived activated
carbon (OP AC) was named as OP AC-600 ◦C. Activation at higher temperatures of 700 ◦C
and 800 ◦C was also performed. The generated products were named as OP AC-700 ◦C
and OP AC-800 ◦C, respectively [23]. As shown in Figure 13, the resulting ACs had a
unique thin graphitic-like nanosheet morphology. The small amount of N remaining in the
activated carbon was believed to be from the inherent nitrogen groups in the onion peel.
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Figure 13. Images of onion peel-derived activated carbon: (a) SEM image of OP AC-600 ◦C, (b) SEM
image of OP AC-700 ◦C, (c) SEM image of OP AC-800 ◦C, (d) TEM image of OP AC-600 ◦C, (e) TEM
image of OP AC-700 ◦C, and (f) TEM image of OP AC-800 ◦C. The insets in (a–c) are the SEM images
taken at higher magnifications. Reprinted from [23], ©2020 The Authors.

Figure 14 shows the N2 sorption isotherms of the three carbon materials activated
at the three temperature conditions. The sample generated at 600 ◦C exhibited a type I
isotherm, whereas the other two products obtained from the activation at 700 ◦C and 800 ◦C
displayed both type I and IV isotherms. A type I isotherm is indicative of a microporous
material having pores that are less than 2 nm, while a type IV isotherm depicts the presence
of both micropores and mesopores [23,24]. As shown in Figure 14a, the sharp gas uptake in
all the samples at low partial pressure region was a confirmation that most of the exposed
surface resides mostly inside the micropores. This observation was further confirmed by the
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pore size distribution curves presented in Figure 14b (as an inset). In this case, the samples
produced at 600 ◦C and 700 ◦C portrayed a bimodal pore size distribution with the main
pores having dimensions less than 2 nm (i.e., 1.05 and 1.08 nm, respectively). However, the
OP AC 800 ◦C sample exhibited a trimodal pore size distribution having pores positioned
at 1.08, 1.48, and 2.31 nm. The presence of pores above 2 nm is an indication of the presence
of small pores, which is further corroborated by the occurrence of the slight hysteresis loop
in the isotherm, as shown in Figure 14a [23].
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The specific surface area, pore volume, and hydrogen uptake of the onion peel-derived
activated carbons produced at 600, 700, and 800 ◦C are listed in Table 1 [23]. The one with
the best performance is the OP AC-800 ◦C sample. The specific area achieved 3150 m2/g.
The pore volume is as high as cm3/g. It can take hydrogen up to 3.67 wt% at 77 K and 1
bar. The specific capacitance of this sample reached 169 F/g. Its specific current was found
to be 0.5 A/g. A symmetric supercapacitor based on the OPAC-800 ◦C sample was made.
It showed a capacitance of 158 F/g at 0.5 A/g. Such results suggested that the high surface
area graphene-like carbon nanostructures are potential candidate materials for hydrogen
storage and supercapacitor applications [23].

Table 1. Textural properties of the onion peel-derived activated carbons produced at 600, 700, and
800 ◦C. Adopted with permission from [23], ©2020 The Authors.

Sample
Name

BET Surface
Area (m2/g)

Micropore
Area (m2/g)

Total Pore
vol. (cm3/g)

Micropore
vol. (cm3/g)

H2 Uptake
(wt%)

OP
AC-600 ◦C 2241 2220 0.94 0.89 3.08

OP
AC-700 ◦C 2706 2651 1.28 1.10 3.29

OP
AC-800 ◦C 3150 3080 1.64 1.39 3.67
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4. Functionalization of Activated Carbon

In this section, the functionalization of activated carbon by adding some elements or
compounds will be discussed. These added elements or molecules have special properties
to enhance the functions of porous carbons. As an example, incorporating iron into acti-
vated carbon was studied to promote the adsorption of As (V) from aqueous solutions [25].
As is well known, arsenic compounds in aqueous environment are highly poisonous and
they are harmful to human health. More details on the iron decorated carbon will be
discussed below. In addition, titanium oxide and manganese oxide modified activated
carbon will also be discussed because they take significant roles in photocatalysis and
desalination.

4.1. Iron Decorated Activated Carbon

Sawood and Gupta [25] made two functional activated carbons for removing As (V)
from water. One was an iron-impregnated activated carbon synthesized from the powder
of Azadirachta indica tree bark named as Fe-AIB, and the other was iron containing activated
carbon derived from Azadirachta indica tree leaf named as Fe-AIL.

The activated carbon derived from the bark and leaf of Azadirachta indica tree was made
following the physical activation method. The pre-treated bark and leaf were grounded
into powders. The powders were carbonized at 750 ◦C under nitrogen protection. The
generated carbon was immersed in 0.5 M FeCl2 solution and stirred at 70 ◦C for 24 h. Then
NaOH was used to adjust the pH of the suspension to 8. This can increase the negative
charge sites in the activated carbon. The filtered product was washed several times to get
rid of the colloidal precipitates. Sufficient iron salt attached to the surface of Fe-AIB or
Fe-AIL [26]. It was also found that the iron impregnation led to the rearrangement of the
pore structure of activated carbon. Consequently, better affinity towards adsorbate was
achieved as reported in [27].

In terms of the surface morphology of the two iron-impregnated activated carbon
materials, Fe-AIB and Fe-AIL were observed by SEM. The images revealed porous mi-
crostructures. As shown in Figure 15, micropores and grooves could be clearly seen. Such
features contribute to the large specific surface area of the activated carbon. The impreg-
nated iron particles are observed as marked by the yellow arrows. The micrographs of
Fe-AIL in Figure 16 illustrate fewer pores and less uniformity as compared with the images
of Fe-AIB. In some of the pores, the aggregates of Fe can be seen as well.
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ample, the safe removal of diclofenac (DCF) and its by-products from water [30]. Acti-
vated carbon was obtained from Argania spinosa tree nutshells. Functionalization was 
achieved by incorporating Degussa P25 titanium dioxide into the porous carbon. Three 
different techniques were described by El-Sheikh et al. [31] for deposition of titanium di-
oxide on activated carbon. These methods are chemical vapor deposition (CVD), direct 
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Figure 16. SEM images of Fe-AIL showing (a) Fe particles in pores, and (b) irregular microgrooves.
Reprinted from [25], ©2020 The Authors.

The experiments on removal of As (V) by Fe-AIB and Fe-AIL from aqueous solutions
were carried out under different conditions. As shown in Figure 17, the Fe-AIB adsorbent
showed up to 96% As (V) removal. The Fe-AIL adsorbent demonstrated up to 90% removal.
The kinetic data fit best in the pseudo-second-order model. Intraparticle diffusion, pore
diffusion and film diffusion also contributed to the overall adsorption rate. Mechanistic
frameworks related to the adsorption process were analyzed using various isotherm
models. Both Langmuir and Freundlich models can explain the As (V) adsorption by
Fe-AIB and Fe-AIL. Thermodynamic analysis reveals the spontaneous adsorption on Fe-
AIB. The endothermic nature of the adsorption process for both the adsorbents was found.
Consistently greater than 90% As (V) removal up to few cycles for both the adsorbents
was observed in regeneration studies. Both adsorbents showed good reusability. It was
concluded that the two functionalized carbon have the potential to be used as efficient
adsorbents for practical As(V) removal application.
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Figure 17. Effect of adsorbent dose on adsorption of As (V) by Fe-AIB and Fe-AIL. Reprinted
from [25], ©2020 The Authors.

4.2. TiO2 Decorated Activated Carbon

Titanium dioxide decorated activated carbons have been studied for their enhanced
photocatalytic performance [28,29]. Such functionalized carbon materials have found
applications in degradation of certain pharmaceutical products in the environment, for ex-
ample, the safe removal of diclofenac (DCF) and its by-products from water [30]. Activated
carbon was obtained from Argania spinosa tree nutshells. Functionalization was achieved
by incorporating Degussa P25 titanium dioxide into the porous carbon. Three different
techniques were described by El-Sheikh et al. [31] for deposition of titanium dioxide on ac-
tivated carbon. These methods are chemical vapor deposition (CVD), direct air-hydrolysis
(DAH), and high-temperature impregnation (HTI) techniques. In [29], immobilizing TiO2
in the pores of activated carbon was performed using the high temperature impregnation
method. A slurry was made by mixing TiO2 nanoparticles, activated carbon, and distilled
water at a temperature of 70 ◦C. The carbon to TiO2 mass ratio was 1:2. The mixture was
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continuously stirred for 2 h until the mixture changed color into gray. The mixture’s color
change indicated that the interaction between the activated carbon and the TiO2 certainly
occurred. The mixture was settled for 15 min, and then the supernatant was decanted and
the precipitate dried in the oven at a temperature of 200 ◦C for 12 h [29].

The scanning electron microscopic (SEM) images of activated carbon and the surface
modified composite of TiO2/AC are shown in Figure 18a,b, respectively. From Figure 18a,
it can be seen that the activated carbon particulates are in irregular shapes with sharp edges.
The activated carbon’s rough surface and heterogeneous pores provide sites for trapping
the TiO2 nanoparticles. In the SEM image of TiO2/AC shown in Figure 18b, the TiO2
particulates are found uniformly dispersed on the surface of the activated carbon. Not only
the surface of activated carbon can be covered, but also the mesopores and macrospores
of activated carbon can be covered by TiO2, as reported earlier in [32]. The efficiency of
photocatalysis is dependent highly on the light absorption capability. Since the deposition
of TiO2 on the external surface of activated carbon can provide more sites to trap light
energy, the photocatalytic degradation property should be enhanced due to the existence of
the titanium dioxide nanoparticles. The higher the content of TiO2 on the external surface
of activated carbon, the more active the photocatalyst in degradation of pollutants such as
trichloroethylene [33].

C 2021, 7, x FOR PEER REVIEW 18 of 33 
 

  
(a) (b) 

 
(c) 

Figure 18. Morphology of TiO2 and TiO2/AC, and the pharmaceutical degradation property of TiO2/AC: (a) SEM image of 
TiO2, (b) SEM image of TiO2/AC, and (c) time-dependent concentration of pharmaceutical products in the photocatalytic 
degradation process by the TiO2/AC catalyst. The initial concentration of all pharmaceuticals (co) was 50 mg/L. The 
TiO2/AC dosage was 1.2 g/L. Reprinted with permission from [29], ©2016 Elsevier Ltd. 

4.3. MnO2 Decorated Activated Carbon 
Removing ions from saline water using 3D hierarchical carbon architectures via ca-

pacitive deionization has caught increasing attention [39]. Specifically, manganese oxide 
has been used as an active functional component to modify activated carbons for making 
the capacitive deionization anode [40]. MnO2 showed the pseudocapacitive behavior that 
involves a reversible redox-mediated intercalation process [41]. As an anode intercalating 
material in an asymmetric or hybrid capacitive deionization cell, MnO2 in nanosheet form 
led to the selective removal of H+ and Na+ following the reactions shown in Equations (7) 
and (8) [42]: 

MnO2 + H+ + e− ↔ MnOOH (7)

MnO2 + Na+ + e− ↔ MnOONa (8) 

Therefore, the decoration of the activated carbon surface with MnO2 nanostructures 
could significantly improve the ion-storage behavior of the cell by catalyzing the selective 
and reversible H+ and Na+ insertion [42].  
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degradation process by the TiO2/AC catalyst. The initial concentration of all pharmaceuticals (co) was 50 mg/L. The TiO2/AC
dosage was 1.2 g/L. Reprinted with permission from [29], ©2016 Elsevier Ltd.
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The performance on degradation of pharmaceuticals by TiO2/AC is shown in
Figure 18c [29]. The elimination of pharmaceuticals in the dark process by TiO2/AC was
faster than pure TiO2. The removal efficiencies of 17% for amoxicillin, 9% for ampicillin,
10% for diclofenac, and 11% for paracetamol were achieved for the TiO2/AC. This is be-
cause the adsorption capacity of TiO2/AC is substantially higher than that of the pure
TiO2 [34]. During the first 90 min of irradiation, high degradation rates of pharmaceuticals
were observed [29]. This phenomenon is due to the large free surface of activated carbon
at the early stage, which led to higher adsorption capability of the catalyst. In addition,
in the early stage of the photocatalytic degradation process, there are plenty of hydroxyl
radicals near the surface of the catalyst. Nevertheless, the produced hydroxyl radicals are
completely consumed at the late stages of the reaction, which reduced the photocatalytic
degradation rates, as shown in Figure 18c [29]. The complete degradation of amoxicillin
by TiO2/AC was achieved after 120 min of irradiation. The TiO2/AC is better than the
pristine TiO2, as only 89% of amoxicillin was removed after a longer time (150 min) of
illumination. This indicates that the TiO2/AC has not only a higher tendency to degrade
the amoxicillin but also generates faster photocatalytic reaction. Similar trends were found
for the removal of ampicillin, diclofenac, and paracetamol [29]. It was observed that the
deposition of titanium oxide on carbon enhanced the reaction between the produced hy-
droxyl radicals and the amoxicillin molecules at the surface of the TiO2/AC. The reason is
the increase in the attraction between the pharmaceutical molecule and the catalyst, leading
to the formation of more active sites for photocatalytic reaction. Therefore, the change
in degradation efficiency of pharmaceuticals comes from the difference in the number
of active sites and the affinity to the binding sites on the catalyst. The enhancement of
photocatalytic degradation of pharmaceuticals by using TiO2/AC agrees with the findings
of other investigators who studied the behavior of the immobilized TiO2 on activated
carbon for removing various organic compounds such as phenol [35], 2-propanol VOC
pollutant [36], 4-chlorophenol [37], and methyl orange dye [38].

4.3. MnO2 Decorated Activated Carbon

Removing ions from saline water using 3D hierarchical carbon architectures via
capacitive deionization has caught increasing attention [39]. Specifically, manganese oxide
has been used as an active functional component to modify activated carbons for making
the capacitive deionization anode [40]. MnO2 showed the pseudocapacitive behavior that
involves a reversible redox-mediated intercalation process [41]. As an anode intercalating
material in an asymmetric or hybrid capacitive deionization cell, MnO2 in nanosheet form
led to the selective removal of H+ and Na+ following the reactions shown in Equations (7)
and (8) [42]:

MnO2 + H+ + e− ↔MnOOH (7)

MnO2 + Na+ + e− ↔MnOONa (8)

Therefore, the decoration of the activated carbon surface with MnO2 nanostructures
could significantly improve the ion-storage behavior of the cell by catalyzing the selective
and reversible H+ and Na+ insertion [42].

Govindan et al. [43] used a biomass source, the Phoenix dactylifera (palm tree) leaf, for
making activated carbon. The activated carbon via classical thermo-chemical conversion
and activation was functionalized by incorporating MnO2. The following part will briefly
introduce the processes and the functionalization procedures of MnO2-loaded activated
carbon, as shown in Figure 19 [43]. Porous activated carbon prepared from the leaf base
wastes of the date palm tree was functionalized by α-MnO2 to form a composite. The
composite was named as MnO2/f-AC. The hydrothermal synthesis method [44] was used
to deposit the α-MnO2 nanoparticles on the activated carbon. The conditions include
temperature at 180 ◦C and time period for 12 h [43].
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Figure 19. Procedures for immobilizing MnO2 nanostructure on sustainable source-derived activated
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The microstructures of the activated carbons with and without the α-MnO2 func-
tionalization were examined using field emission scanning electron microscopy (FESEM).
The X-ray diffraction energy dispersive spectrum (EDS) for the functionalized carbon
was captured by FESEM as well. Figure 20 presents both the FESEM images and the
elemental analysis result. The well-developed tube-like pores can be seen from the images
in Figure 20a,b for the as-prepared AC samples. It is believed that such tubular pores
increase the specific surface area, thus providing an abundance of active sites for salt ions
intercalation and de-intercalation during the capacitive deionization (CDI) process [43].
Figure 20c–e shows the FESEM images of the α-MnO2/f-AC composite specimen at dif-
ferent magnifications. From the three images, we can see that the octahedral α-MnO2
nanostructures were dispersed uniformly on the surface of the f-AC. The EDS in Figure 20f
reveals the signals from C, Mn, and O, the three major elements existing in the MnO2/f-AC
specimen.

The characterization studies as presented in [43] include the selectivity and capacitance
performance as well as the kinetics of ion-storage and removal of the prepared electrodes
installed in a hybrid CDI cell. The cell consists of an f-AC cathode and α-MnO2/f-AC
anode. Figure 21a shows the relation of solution conductivity vs. time. A steep drop in
the conductivity can be seen in the α-MnO2/f-AC//f-AC-based electrodes at 1.2 V. This
indicates that the salt ions are quickly captured by the charged electrodes. The conductivity
of the salt solution decreased significantly in the first 10 min and declined slowly until
reaching equilibrium at 40 min. As shown in the inset of Figure 21a, the concentration
dropped rapidly within 10 min and gradually entered the flat zone around 40 min as well.

In Figure 21b is shown the electrosorption rate and electrosorption capacity of the
prepared electrodes. The desalination capacity was found to be 17.8 mg/g in NaCl solution
with a concentration of 600 mg/L. The electrosorption rate is typically evaluated by the
salt removal capacity. It can be seen that the maximum electrochemical adsorption rate
was about 1.7 mg NaCl per electrode mass per second. Figure 21c reveals the current
response of the prepared electrodes during the desalination process. The results indicate
that the electrode has low charge consumption. The α-MnO2/f-AC electrode exhibited
ideal electrical double layer and pseudocapacitive behavior with low charge transfer
resistance. Therefore, the CDI is a relatively low energy consuming process, and the ion
adsorption is fast. The Figure 21d schematic illustrates the CDI hybrid system with the
α-MnO2/f-AC and f-AC two electrodes. Both electrodes are porous carbon based with
high surface areas.
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Figure 20. FESEM images of AC samples (a,b) and α-MnO2/f-AC nanocomposites prepared through
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Table 2 lists eleven different CDI systems with the specific capacitance and electrosorp-
tion capacity data taken from references [43,45–54]. It can be seen that the CDI performance
of the MnO2/f-AC//f-AC-based electrode takes the lead among various carbon-based and
metal–oxide–carbon electrodes. Since this functionalized activated carbon-based CDI is
derived from a palm tree biomass sustainable resource, it should be more cost-effective
than other CDI systems.
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Table 2. Comparison of the specific capacitance and electrosorption capacity of different CDI elec-
trodes. Adopted with permission from [43], ©2020 The Authors. 

Electrodes and 
Materials 

Specific Capacitance 
(F/g) 

Applied 
Voltage (V) 

NaCl Concentration 
(ppm) 
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Electrodes and
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Specific
Capacitance

(F/g)

Applied
Voltage (V)

NaCl Con-
centration

(ppm)

Desalination
Capacity
(mg/g)

Source

Anode:
α-MnO2/f-AC
Cathode: f-AC

388 1.2 600 17.8 [43]

ZnO/activated
carbon 66 1.2 500 9.4 [45]

N-doped cluster-like
porous C 199 1.2 100 11.98 [46]

Graphene–chitosan–
Mn3O4

190 1.6 300 12.7 [47]

MnO2-
nanorods@graphene 292 1.2 — 5.01 [48]

Sulfonated
carbon/TiO2

238 1.2 500 10.0 [49]

N-doped porous C 292 1.4 500 16.63 [50]

rGO–SnO2
nanocomposite 142 1.2 400 17.62 [51]
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Table 2. Cont.

Electrodes and
Materials

Specific
Capacitance

(F/g)

Applied
Voltage (V)

NaCl Con-
centration

(ppm)

Desalination
Capacity
(mg/g)

Source

TiO2-nanotube array
with carbon

embedded electrode
238 1.2 500 13.11 [52]

Nanoporous 3D
Graphene 200 1.6 500 17.1 [53]

GO/ZrO210% 452 1.2 50 4.76 [54]

4.4. Noble Metal Particles-Decorated Activated Carbon

Noble metal-decorated activated carbons have found applications in catalysis, electro-
chemical assay, and sensing. In [55], a biomass porous carbon (BPC) was prepared using
fresh oyster mushroom as the raw material. Au–Pt nanoparticles were deposited onto
the mushroom-derived activated carbon for baicalin detection. The gold and platinum
bimetal decorated biomass porous carbon (Au–Pt@BPC) composite was synthesized by
carbonization of oyster mushroom at 700 ◦C in N2 followed by solvothermal deposition of
Au–Pt. The composite was made into an electrode for electrochemical detection of baicalein.
Figure 22 shows the procedure for synthesis and baicalein detection [55].
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Figure 22. Photo and schematic illustrations showing the synthesis of the Au–Pt@BPC composite
and the preparation of carbon ionic liquid electrode (CILE) for detecting baicalein. Reprinted with
permission from [55], ©2020 Elsevier B.V.

During Au–Pt particle deposition, 5.0 mL 0.0243 M HAuCl4 solution and 5.0 mL
0.0193 M HPtCl4 solution were mixed with 10 mL ethylene glycol solution. Then, 1.0 g BPC
was added in 20 mL mixture solution containing 6.0 mM [AuCl4]− and 4.8 mM [PtCl4]−

with 50% ethylene glycol. The mixture was transferred into a 50 mL Teflon lined stainless
autoclave. The solvothermal synthesis was performed at 120 ◦C for 1 h to generate the
Au–Pt@BPC composite. The final product was washed with water and dried at 120 ◦C for
6 h [55].

The structures of BPC and Au–Pt@BPC were analyzed by field emission scanning
electron microscopy and transmission electron microscopy. From the SEM images shown
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in Figure 23A,B, a multi-layered 3D porous structure of BPC can be seen with pore sizes
ranging from 0.5 to 1.0 µm. Such a porous structure provided the space for the adsorption
of molecules. Figure 23C,D reveals the Au–Pt microparticles on the surface of the BPC.
The average size of the Au–Pt microparticles was found to be 4 µm. The TEM images of
the BPC, as shown in Figure 23E,F, show frameworks consisting of thin carbon sheets and
pores. These pores were formed due to the etching effect of the KOH activating agent on
the carbon substrate, as shown by Song et al. in [56]. In Figure 23G,H, the TEM images
show that the entrapped smaller Au–Pt nanoparticles are uniformly distributed within the
pores of the BPC [55]. The reactions are expressed by Equations (9) and (10) as presented
in [57,58]:

CH2OH − CH2OH→ CH3CHO + H2O (9)

6CH3CHO + 2[AuCl4]− → 2Au0 + 3CH3CO − COCH3 + 6H+ + 8Cl− (10)
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The Au–Pt@BPC modified carbon ionic liquid electrode (CILE) was prepared as a
working electrode for the detection of baicalein, and the redox reaction mechanism was
proposed and shown in Figure 24 [55]. The modified electrode was successfully used for
detecting baicalein in drug and human urine samples.
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Silver nanoparticles have the function of disinfection and cleaning. Chang et al. [59]
studied the adsorption of formaldehyde on silver nanoparticle modified activated carbon.
The activated carbon was washed with deionized water followed by pre-oxidization
treatment in 1.0 M nitric acid solution. In the functionalization process, aqueous silver
nitrate solutions with three different concentrations of 0.1 M, 0.01 M, and 0.001 M were
used for silver deposition. In each case, the activated carbon and 5 g chitosan were added
into one of the silver nitrate solutions. The mixture was put into an autoclave and kept at
120 ◦C for 1 h. Then, the hydrothermally treated sample was cleaned and dried in an oven
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at 150 ◦C for 12 h. The modified activated carbon was tested as the filter media for indoor
formaldehyde removal [59].

The function of Ru functionalized activated carbon as a catalyst for sorbitol produc-
tion from biomass was demonstrated [60]. The activated carbon was oxidized in HNO3,
chlorinated in thionyl chloride, and doped with nitrogen at high temperatures of 700 ◦C
or 900 ◦C in N2 atmosphere. To deposit Ru nanoparticles, 250 mg activated carbon and
150 mg of urea were added into 100 mL water. In order to obtain 3 wt% Ru loading on the
support, 18.4 mg of RuCl3 was then added. After mixing, the reaction temperature was set
to 120 ◦C. It is noted that urea should start decomposing at 90 ◦C. After cooled down to
room temperature, 2 g of sodium formate were added. Then, the solution was heated up to
130 ◦C to degrade the formate. The solution was left at room temperature overnight under
agitation. After that, the product was filtrated out, washed, and oven dried overnight. The
solid was heat-treated at 400 ◦C or 600 ◦C for two hours in a reductive atmosphere (5% H2 +
95% Ar) to obtain the desired particles size [60]. Azar, Angeles Lillo-Rodenas, and Carmen
Roman-Martinez [61] prepared a catalyst consisting of Ru nanoparticles (1 wt%), supported
on mesoporous activated carbons (ACs). The catalyst was used in the one-pot hydrolytic
hydrogenation of cellulose to obtain sorbitol. The electronic state and particle size of Ru
were determined. It was found that the amount and type of surface functional groups
in the carbon materials were modified as a result of the Ru incorporation. The activated
carbon kept a high mesopore volume after functionalization and Ru incorporation. The
catalyst was found to be very active, resulting in a high cellulose conversion rate of 50%
and selectivity to sorbitol above 75% [61].

In [62], 2 wt.% Pd–Pt catalyst was loaded onto activated carbon by the impregnating
approach. The metal acetylacetonates or metal chlorides were used as the precursors
to generate metallic nanoparticles. The Pd–Pt nanoparticles with sizes ranging from 2
to 3 nm were well-dispersed on the carbon. The catalyst was tested for the gas phase
hydrodechlorination of chlorodifluoromethane (HCFC-22). Zhang et al. [63] studied the
Pd-functionalized activated carbon for selective phenol hydrogenation. Direct calcination
of activated carbon (AC) at high temperature in argon was performed to modify the
structure and surface conditions. The AC without high temperature treatment was marked
as C-raw. The calcination temperature of 600 ◦C resulted in an AC called C600. The
modified AC materials were decorated with Pd nanoparticles (NPs) to make the Pd/C
catalyst. The Pd/C600 catalyst exhibited higher catalytic activity than the Pd/C-raw.
This is because the Pd/C600 catalyst possesses higher hydrophobicity and contains more
structural defects than the Pd/C-raw, as shown in Figure 25. The hydrophobicity and
the surface defect improved the dispersibility in the phenol-cyclohexane reaction solution.
The better Pd dispersion and smaller Pd size for the Pd/C600 promoted the catalytic
performance. The Pd/C600 catalyst also shows better recyclability than the unmodified
Pd/C-raw catalyst [63].
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Rare-earth elements such as lanthanum (La) and cerium (Ce) have been reported
to functionalize activated carbons (ACs) and chars derived from a lignocellulosic-based
precursor [64]. The La- and Ce-based ACs were used for controlling the water pollution
caused by fluoride and arsenic (V) ions. It was found that the incorporation of these
rare-earth elements on the activated carbon or char adsorbents increased the adsorption
capacities 25 times, especially for arsenic (V). Chars and activated carbons functionalized
with lanthanum and cerium demonstrated the adsorption capacities of 1.3–9.2 mg/g and
0.1–9.2 mg/g for fluoride and arsenic (V) ions, respectively. A ligand exchange of [OH]−

from the adsorbent surface and the presence of electrostatic forces could be the reasons for
enhanced adsorption of fluoride and arsenic (V) ions [64].

5. Applications

Activated carbons have found wide applications for catalysis [65,66], adsorption [67–79],
templating [80], desalination [81], and electromagnetic interference shielding [82]. In addition,
they have been extensively used for making supercapacitors [83–87], battery electrodes [88,89],
and solar photothermal energy converters [90]. Activated carbons are accepted adsorbents
for the purification of gaseous and aqueous solution systems at a large scale. In addition to
purification application, energy conversion and energy storage are some of the most important
applications. Some of these applications will be briefly discussed in the following section.

Although in the previous section, the catalysis applications were presented, it is worth
mentioning that biochars and activated carbons derived from different woods are efficient
catalysts for toluene conversion [65]. In [66], new bio-composite materials consisting
of TiO2 (Degussa P25) and activated carbon (AC) of Argania spinosa tree nutshells by
calcination and H3PO4 activation were made. The composites were used as photocatalysts
for the elimination of pharmaceuticals, including diclofenac (DCF), carbamazepine (CBZ),
and sulfamethoxazole (SMX), from aqueous solution. The TiO2 was attached to the AC to
form the composite materials by high temperature impregnation. The drug elimination
efficiency was evaluated.

The adsorption applications of biomass-derived activated carbons may be divided into
several sub-categories. One of the categories is on heavy metal adsorption [67–72]. There
is also a report on vitamin B adsorption [73]. Another category is about dye adsorption
and decomposition [74–77]. Recently, carbon dioxide adsorption using activated carbon
has become an increasingly important branch of research [78,79]. In [78], the porous
carbon materials prepared from camellia leaves at the hydrothermal carbonization (HTC)
temperature of 240 ◦C followed by KOH activation showed the microporous structure.
From the HTC, the tree leaves were converted to hydrochars or biochars in solid form. The
biochars were used as the raw materials for activated carbon preparation. The specific
surface area was as high as 1824 m2/g. A maximum CO2 adsorption capacity of 8.30
mmol/g at 25 ◦C under 0.4 MPa was achieved. Xu et al. [79] prepared nitrogen doped
carbons from camphor tree leaves. The tree leaves were carbonized at 500 ◦C for 2 h to
generate chars. The chars were then activated with KOH at 600 ◦C in nitrogen gas flow.
The nitrogen contained in the tree leaves also served as the nitrogen source for doping. The
carbon showed a relatively high surface area of 1736 m2/g. A fairly high CO2 uptake of
5.86 mmol/g at 1 bar and 273 K was attained.

Porous carbon can be used as the template for fabricating nanostructures with different
compositions. Activated carbon from biomass through physical activation in an inert
atmosphere was chemically treated using tetraethyl orthosilicate (TEOS) [80]. Porous
carbons were obtained from carbonization of the Platanus orientalis L. plane tree fruit (PTF)
precursor and activated at 850 ◦C. The activated carbon as a template allowed the creation
of highly porous and spatially ordered bio-SiC ceramics. The SiC nanostructures were
generated at several processing temperatures. The carbothermal reduction occurred at
1400 ◦C. The increase in the temperature and the duration of processing promoted the
generation of the SiC particles inside the porous structure. β-SiC with the cubic structure
was the major portion, and the remainder was α-SiC with a hexagonal structure [80].
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Activated carbon plays an important role in capacitive deionization and helps in the
making of biologically-inspired desalination systems. As described in [81], the growth of
mangrove trees in brackish swamps represents an amazing biologic adaptation to saltwater.
Through water desalination, the mangrove maintains a near freshwater flow from roots to
leaves to maintain growth. One-step carbonization of a plant with developed aerenchyma
tissue to enable highly-permeable, freestanding flow-through capacitive deionization
electrodes was performed [81]. The resistance to water flow through the electrode made
by carbonized aerenchyma from red mangrove roots was more than 60 times lower than
that through the electrode from carbonized common woody biomass. The practical use
of the intact carbonized red mangrove roots as electrodes in a flow-through capacitive
deionization system was illustrated [81].

Farhan, Wang, and Li [82] made a green carbon foam from the fibrous fruits of
Platanus orientalis L. (plane) along with the tar oil as binder via the powder molding
route. The porous carbon derived from biomaterials showed a considerably high strength.
Various physical, thermal, and electromagnetic shielding properties were investigated. The
application for electromagnetic interference shielding was proposed because the carbon
foam exhibited shielding effectiveness of more than 20 dB over the X-band frequency. A fast
carbonization approach was performed at 1000 ◦C under the cover of the pyrolyzed tree
seeds without using extra protective gas. In some samples, 5 wt.% iron chloride was added
during the molding process. Iron chloride is a graphitization catalyst and activating agent,
which helped increasing the specific surface area from 88 to 294 m2/g, but the flexural
strength of the carbon foam was decreased by 25%. Thermal stability was improved due to
the incorporation of more graphitic phases in the sample. The thermal conductivity was
increased slightly from 0.22 to 0.67 W/(m·K) due to the graphitization catalyzed by the iron
chloride. In an electromagnetic (EM) field, the EM wave absorption by the carbon foam
was dominant with only 8–10% reflection. This indicates that the EM wave absorption is
the dominant shielding mechanism. The new carbon foam material preserved the light
weight and was highly porous with interconnected pore morphology from the original
biomaterial. It is suggested for high temperature thermal insulation as well [82].

Activated carbons have long been studied for energy storage and conversions [83–90].
A lot of researchers investigated the supercapacitors made from activated carbons [83–87].
In [83], a symmetric ionic liquid-based supercapacitor was fabricated with porous carbon
derived from capsicum (bell pepper) seeds. The porous carbon with the nickname of
“peppered”-activated carbon (ppAC) was obtained through the carbonization at 850 ◦C
using KHCO3 as the activating agent. The ppAC-based supercapacitor operated at a
maximum cell voltage of 3.20 V and was filled with an ionic liquid electrolyte, 1-ethyl-3-
methylimidazolium bistrifluorosulfonylimide (EMIM-TFSI). The highest specific energy
was 37 Wh/kg with a power density of 0.6 kW/kg at 0.5 A/g. A specific energy of 26
Wh/kg was obtained when the applied current was increased to 1.0 A/g. After being tested
for 25,000 cycles, the capacitor was proven to have a high cyclic stability. The coulombic
efficiency was kept at 99% after the cycling. He, Huang, and Wang [84] introduced
porous nitrogen and oxygen co-doped carbon microtubes (PCMTs) generated from the
carbonization and activation of plane tree fruit fluffs (PTFFs). The PCMTs were proposed
as high-performance supercapacitor electrode materials. The pore structures, surface
chemistry, and degree of graphitization of the porous carbon tubes can be tailored by
varying the activation temperature in a range from 650 to 900 ◦C. The PCMT obtained from
the 850 ◦C activation, named as PCMT-850, showed a specific surface area of 1533 m2/g),
with the highest mesopore ratio of 9.13%. It contains 2.2 at% nitrogen, which is the highest
N content achieved among all the PCMTs. It also has the highest degree of graphitization,
leading to excellent electrical conductivity. In 6 M KOH, the PCMT-850 electrode attained
the lowest internal resistance and highest charge storage capacity. The specific capacitance
was 257.6 F/g at a current of 1A/g.

Kumar et al. [85] used a new activating agent (NaCl: KCl = 1: 1) for making a
nanoporous carbon from Java Kapok tree shell. The nanoporous carbon showed a spe-
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cific surface area of 1260 m2/g, pore volume of 0.439 cm3/g, pore size of 1.241 nm, and
microspore volume of 0.314 cm3/g. The capacitor electrode using the nanoporous carbon
demonstrated a specific capacitance of 169 F/g with 97% capacity retention after 10,000
cycles at 1 A/g. Barzegar et al. [86] prepared low-cost carbons from expanded graphite
(EG) and pinecone (PC) biomass using KOH as the activation agent. The final carbonization
was carried out in argon and hydrogen atmosphere. A specific surface area of 808 and
457 m2/g were obtained for the activated pinecone carbon (APC) and the activated ex-
panded graphite (AEG), respectively. The activated carbon was used to make the electrode
for asymmetric supercapacitors. A specific capacitance of 69 F/g was reported.

Nitrogen-doped porous carbon nanosheets prepared from eucalyptus tree leaves by
simply mixing the leaf powders with KHCO3 and subsequent carbonization were used
for electrodes in supercapacitors and lithium batteries [87]. The specific surface area of the
porous carbon nanosheets was as high as 2133 m2/g. For supercapacitor application, the
porous carbon nanosheet electrode exhibited a supercapacitance of 372 F/g at a current
density of 500 mA/g in 1 M H2SO4 aqueous electrolyte and excellent cycling stability over
15,000 cycles. In an organic electrolyte, the nanosheet electrode demonstrated stable cycling
behavior with a specific capacitance of 71 F/g at a current density of 2A/g. When applied
as the anode material for lithium ion batteries, the carbon nanosheets showed good rate
capability and stable cycling performance with a high specific capacity of 819 mAh/g at a
current density of 100 mA/g [87].

Another area of energy storage research is in utilizing activated carbon for battery
electrodes, because the biomass-derived carbon electrodes have low cost [87–89]. There
are various carbon-based electrodes for lithium–sulfur batteries [88,89]. Zhang et al. [88]
carbonized and activated palm tree fibers with KOH to obtain novel highly ordered carbon
tube (OCT) arrays. The OCT was taken as the host in lithium–sulfur batteries. The
electrode made from OCT was found effective on sulfur storage. The large specific area
and pore volume were also found. The S@OCT composite with 65% (w/w) sulfur exhibited
satisfactory electrochemical performance. It delivered an initial discharge capacity of
1255.2 mAh/g or 1.8 mAh/cm2 and retained 756.9 mAh/g after 100 cycles with a high
coulomb efficiency [88].

Selva et al. [89] also showed that biomass-derived porous carbon could be a promising
sulfur host material for lithium sulfur batteries because it is highly conductive and has large
porosity. Two different carbons were prepared from oak tree fruit shells by carbonization
with and without KOH activation. It was found that the KOH activated carbon (AC)
revealed a much higher surface area of 796 m2/g than the pyrolyzed carbon (PC) (334 m2/g)
without KOH activation. The activated-carbon contains more single-layer sheets with a
lower degree of graphitization. The biomass-derived porous carbon was coated onto a
separator, which led to an improved electrochemical performance in Li–S cells. The Li–S cell
assembled with porous carbon modified separator demonstrated an initial capacity of 1324
mAh/g. This value for the cell with the uncoated separator was 875 mAh/g. The charge
transfer resistance measurement confirmed the high ionic conductivity nature of porous
carbon modified separator. The biomass-derived activated carbon can be considered as an
alternative material for the polysulfide inhibition in Li–S batteries [89].

Activated carbons have been studied for energy converters, for example, solar thermal
convertors or solar steam generators [20,90]. In [90], a photothermal generator inspired
from banyan tree using the synthetic material, polyester, was prepared. However, sustain-
able resources, for example, willow catkin-derived porous carbon membrane demonstrated
the potential for efficient solar steam generation [20]. Activated carbon possesses hy-
drophilic properties, allowing solar energy to be converted into thermal energy to heat the
surrounding water flowing in a porous water channel under capillary action.

6. Perspectives and Conclusions

Activated carbon from sustainable resources have the advantages of low cost and eco-
friendliness. This is meaningful because the prices for high end AC products have increased
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over time. There are two types of activation methods: physical activation and chemical
activation. The physical activation process is much more time consuming than the chemical
process. Moreover, the pore size and porosity are very difficult to control in the physical
activation process. Therefore, chemical activation becomes the prevailing technique for
making activated carbons. Various activating agents have been investigated. KOH, KHCO3,
K2CO3, H2SO4, H3PO4, ZnCl2, NaCl/KCl, and CO2 are some of the commonly used agents.

In view of the kinds of biomass for carbonization, tree woods, shell, nuts, leaves,
and roots are extensively used. There are various other carbon sources under explo-
ration [91–100]. Beech tree wood [91], plant barks [92], eucalyptus wastes [93], spruce
tree sawdust [94], olive tree pruning residues [95], fruit of Brazil nut tree [96], apple tree
small branches [97], wood of cherry tree [98], coconut shells of tall and dwarf tree vari-
eties [99], and tree bark waste [100] are some of the good examples of newly used biomass
for activated carbon formation.

The applications of the biomass-derived carbon span different fields. Traditionally,
the porous carbon from coal gasification was used for nitrate removal [101]. However,
biomass-derived activated carbon has found extensive application in various fields for
adsorption, energy storage, and conversion. Inspired by the design of the electrochemical
flow reactor [102], various activated carbons simulating the flow reactors were built for
water purification and desalination.

Characterization of the activated carbon materials derived from renewable resources is
not just limited to morphology observation and porosity measurement. The electrochemical
properties for capacitors and batteries have been emphasized in recent studies. Moreover,
some uncommon properties such as ice nucleation behavior on the surface of activated
carbon [103], and thermal tension responses [104] are also dealt with.

In addition to the processing technologies, several questions related to the activated
carbon remain to be answered. The first question is about the CO2 footprint of producing
activated carbon. Gu et al. [105] conducted a life cycle assessment of woody source-derived
activated carbon. It was found that the greenhouse gas emissions for activated carbon
production from biochar are less than half of those for AC production from coal. Another
question is about the energy demand for activated carbon production. Studies show that
using woody biomass for both feedstock and processing can significantly lower the energy
consumption [105].

High performance activated carbon processing and new application are still under
exploration. Dependence of the microporosity of activated carbons on the lignocellulosic
composition of the precursor such as almond tree pruning and walnut shell was inves-
tigated [106]. The lignocellulosic and porosity properties of the raw materials can affect
the activation processes. Olive oil waste-derived activated carbon for absorbing various
organic contaminants including triclosan (TCS), ibuprofen (IBP), and diclofenac (DCF)
was also developed [107]. Such fundamental research could guide us to further improve
the quality of activated carbons. It is also essential to explore new methods for activated
carbon production using nonconventional and low-cost processing and manufacturing
technologies.
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