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Abstract: Nitrogen-doped carbon dots (N-doped C-dots) was synthesized by using poly(vinyl amine)
(PVAm) as a nitrogen source and citric acid (CA) as a carbon source via the hydrothermal method.
Various weight ratios of CA and PVAm (CA:PVAm) were used to synthesize N-doped C-dots. The
N-doped C-dots revealed emission at 440 nm with excitation at 360 nm and were found to increase
the fluorescence intensity with an increase in the amount of PVAm. The blood compatibility studies
revealed no significant hemolysis for N-doped C-dots that were prepared at different ratios of
CA:PVAm for up to 500 µg/mL concentration with the hemolysis ratio of 1.96% and the minimum
blood clotting index of 88.9%. N-doped C-dots were found to be more effective against Gram-positive
bacteria than Gram-negative bacteria, with the highest potency on Bacillus subtilis (B. subtilis). The
increase in the weight ratio of PVAm in feed during C-dots preparation from 1 to 3 leads to a decrease
of the minimum bactericidal concentration (MBC) value from 6.25 to 0.75 mg/mL for B. subtilis.
Antibiofilm ability of N-doped C-dots prepared by 1:3 ratio of CA:PVAm was found to reduce
%biofilm inhibition and eradication- by more than half, at 0.78 mg/mL for E. coli and B. subtilis
generated biofilms and almost destroyed at 25 mg/mL concentrations.

Keywords: poly (vinylamine); N-doped C-dots; blood compatibiity; antimicrobial/antibiofilm

1. Introduction

Carbon dots (C-dots) are zero-dimensional nanomaterials with intriguing optical
and biological properties [1]. Low toxicity, small size, good biocompatibility, water sol-
ubility/dispersibility, high quantum yield, cost efficiency, and good stability make them
attractive for many applications [2,3]. The properties of C-dots, e.g., their fluorescence,
colorimetric and electrochemical features are much more different from their source mate-
rials [1]. Due to the optical properties of C-dots, they can be used as optic devices, sensors,
and as diagnostic and multifunctional materials in many different fields. For example,
using a 3D printer, fluorescent C-dots containing structures can be used to detect chlorine
in water samples [4]. Florescent C-dots from fructose and aniline were synthesized to
detect glucose [5]. C-dots from L-arginine as a fluorescent probe were used to detect the
neurotransmitter, dopamine from human urine [6]. C-dots with antiplatelet properties,
prepared from garlic, have potential as a therapeutic agent in the treatment of arterial
thromboembolic disease [7].
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Microorganisms are small beings that exist in nature in various sizes and forms that are
responsible for many diseases for humans. Additionally, the excess and unnecessary use of
drugs may lead to the development of resistance of bacteria (such as antibiotic resistance),
and this is becoming a progressively major problem in some chronic diseases [8]. Biofilms
are generated by microorganism states, which lead to major resistance to multiple drugs [9].
More than 60% of human infectious bacteria create biofilm [10]. The biofilms are created by
bacteria as well as fungi and viruses [11,12]. C-dots derived from different sources, e.g.,
polyethyleneimine, was reported as having effective antimicrobial and biofilm inhibiting
properties [13]. Additionally, polyamine-derived C-dots were also reported with potent
antimicrobial materials [14]. Moreover, C-dots containing m-phenylenediamine were
shown antimicrobial properties against various microorganisms [15]. Therefore, C-dots
can be considered promising biomaterials to be used as antibacterial materials capable of
destroying biofilm and even preventing bacterial infections.

N-Vinyl formamide (NVF) is an isomer of acrylamide [16]. It has vinyl function-
ality for polymerization or copolymerization to render amine functionality to attain
poly(Vinylamine) (PVAm) upon acid and alkali treatments. PVAm has the highest primary
amine group-containing polymer, compared to other well-known amine-containing poly-
mers, e.g., poly(ethyleneimine) (PEI) [17]. Additionally, the synthesis of PVAm from direct
polymerization of vinyl amine (VAm) cannot be carried out because of the nonexistence
of free VAm as a monomer [18]. However, there are various techniques reported in the
literature to synthesize PVAm, such as Hoffman rearrangement of polyacrylamide and
acidic/basic hydrolysis of poly(N-Vinyl acetamide) or PNVF [19–21]. The hydrolysis in an
alkaline medium is more efficient than the acid treatment of PNVF to prepare PVAm [22].
Due to its cationic structure, PVAm has potential antibacterial properties [23]. Studies were
reported on the use of PVAm on nonleaching surfaces or in the coating of some biomedical
materials due to the antibacterial effect of PVAm [24,25].

In this study, poly(N-Vinyl formamide) (PNVF) was synthesized in accord with the
literature, and PVAm was prepared by hydrolysis of PNVF in a basic medium [26]. Here,
for the first time in the literature, the highest number of primary amine group-containing
polymer per repeating unit, PVAm, was used as a nitrogen source, along with citric acid
as the carbon source to synthesize C-dots at different weight ratios using Teflon-lined
autoclave at 250 ◦C via a hydrothermal method. The characterization was carried out
by using dynamic light scattering (DLS), zeta potential measurements, Fourier transform
infrared spectrometer (FT–IR), thermal gravimetric analyzer (TGA), X-ray diffraction, and
fluorescence spectrometer. Additionally, the blood compatibility of CA:PVAm C-dots
was investigated via hemolysis% and blood clotting index studies. Furthermore, the
antimicrobial and antibiofilm activities of CA:PVAm C-dots were also investigated against
Escherichia coli (E. coli) ATCC 8739, Pseudomonas aeruginosa (P. aeruginosa) ATCC 10145,
Bacillus subtilis (B. subtilis) ATCC 6633, and Staphylococcus aureus (S. aureus) ATCC 6538
bacteria stains.

2. Materials and Methods
2.1. Materials

N-Vinylformamide (NVF, 98%, Aldrich, St. Louis, MO, USA) as the monomer and
2,2′-Azobis(2-methylpropionamidine) dihydrochloride (AMPD, 97%, Aldrich, USA) as the
initiator and ultra-pure distilled water (DI, 18.2 MΩ cm, Millipore-Direct Q UV3) were
used to synthesize poly(N-vinyl formamide) (PNVF). Acetone (99.75%, Sigma-Aldrich)
was used for the precipitation of PNVF and its hydrolysis products. Sodium hydroxide
(NaOH, pellets ACS/Reag. Ph. Eur., VWR Chemicals) was used for the basic hydrolysis
reaction of PNVF polymers to prepare PVAm.

Citric acid monohydrate (Carlo Erba, CA, 99%) was used as the carbon source in
the synthesis of N-doped C-dots. Quinine (suitable for fluorescence, anhydrous, 98%,
Sigma-Aldrich, St. Louis, MO, USA) was used as a fluorescence standard for the calculation
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of quantum yield%. Quinine was dissolved into Sulfuric acid (H2SO4, 99%, Sigma Aldrich,
USA) solution to prepare a fluorescence standard.

Bacteria growth media as nutrient agar (NA, Fisher Scientific, Hampton, NH, USA),
nutrient broth (NB, Fisher Scientific), and RPMI-1640 medium (with 20 mM HEPES and L-
glutamine, Sigma) were purchased and used as received. E. coli ATCC 8739 (KWIK-STIK™),
P. aeruginosa ATCC 10145 (KWIK-STIK™), B. subtilis ATCC 6633 (KWIK-STIK™), and S.
aureus ATCC 6538 (KWIK-STIK™) were obtained from Microbiologics Inc., (St. Cloud,
MN, USA). Gentamicin sulfate (>590 IU/mg gentamycin) as an antibiotic was purchased
from Acros Organics. Acetic acid (100%, glacial, Riedel-de-Haen) and crystal violet (CV, for
analysis Carlo Erba) were purchased and used as received.

2.2. Synthesis of PVAm

The synthesis of poly(Vinyl amine) (PVAm) was performed via basic hydrolysis
of poly(N-Viny formamide) (PNVF) [26]. In brief, PNVF was prepared via free-radical
polymerization in accordance with the literature [27]. A total of 5 mL NVF monomer was
added into 40 mL of water in a 100 mL round bottom flask and placed into an oil bath at
70 ◦C. After that, the 1% mole ratio of AMPD solution, with respect to the used amount of
NVF monomer in 5 mL water, was added into monomer solution and stirred at 800 rpm
mixing rate at 70 ◦C for 2 h. Finally, PNVF solution was added drop by drop into the excess
amount of acetone (2 L) while stirring at 1000 rpm to precipitate PNVF. The final product
was dried in a vacuum oven at 50 ◦C for 24 h to a constant weight.

A total of 5.0 g of prepared PNVF was placed in 45 mL of 2 M of NaOH solution and
stirred at 500 rpm mixing rate at room temperature for 10 min to dissolve PNVF. Next,
PNVF solution in 45 mL 1.5 M NaOH was placed in a temperature-controlled oil bath at
70 ◦C and stirred at 800 rpm for 4 h. The prepared PVAm solution was also added drop
by drop into the excess amount of acetone while stirring at 1000 rpm to precipitate PVAm.
The final product was dried in a vacuum oven at 50 ◦C for 24 h to constant weight.

2.3. Synthesis f CA:PVAm C-Dots

The various ratios of CA and PVAm were used for the synthesis of C-dots via Teflon-
lined autoclave by the hydrothermal method as reported in the literature [28,29]. Weight
ratios of 3:1, 1:1, and 1:3 (w/w) of CA and PVAm (total weight is 2.0 g of material) were
used. In brief, 1.0 g of CA was dissolved into a Teflon-lined autoclave with 25 mL of
water, and then 1.0 g PVAm was added into CA containing the solution and stirred for
5 min at room temperature. Then, the Teflon-lined autoclave was placed into a furnace
and heated to 250 ◦C with a 10 ◦C/min heating rate. The Teflon-lined autoclave was kept
in autoclave at 250 ◦C for 4 h. The final solution was placed into 500 mL water within a
dialysis membrane (molecular weight cut off ≥12,000 Da) to wash the prepared CA:PVAm
C-dots (1:1) for 3 h by changing the washing water every 30 min.

The same procedure was also applied for the synthesis of 3:1 and 1:3 ratio of CA and
PVAm N-doped C-dots. The prepared CA:PVAm N-doped C-dots were defined as the
ratio of precursors 3:1, 1:1, and 1:3, in which the first number is the weight of CA, and the
second number denotes the weight of PVAm. After the dialysis, the N-doped C-dots were
collected in a 250 mL round bottom flask and evaporated to remove the excess amount
of water.

2.4. Characterization

Dynamic light scattering (DLS, Zetasizer Nano-ZS, Malvern, Worcestershire, UK) tech-
nique was used to determine the hydrodynamic diameter and polydispersity of CA:PVAm
C-dots and CA:PVAm CPs. Measurements were carried out at an angle of 173◦ by using a
4 mW He-Ne laser operating at 633 nm wavelength. Zeta potential (ZP) was calculated
using the Zetasizer software at 25 ◦C. For particle size and ZP measurements, samples were
freshly prepared in DI water at a concentration of 1 mg/mL and ZP values were followed
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in the pH range from 2 to 11. DLS and ZP measurements were performed in triplicates to
assess the accuracy.

The shape and size of C-Dots were examined by high contrast transmission electron
microscope (CTEM, TecnaiTM G2 Spirit Biotwin, FEI) operating at 120 kV. Before the
analysis, diluted samples were sonicated and quickly dropped on the carbon-coated grid
to overcome any agglomerations.

Fourier transform infrared (FT–IR, Spectrum, PerkinElmer, Waltham, MA, USA) spec-
tra of N-doped C-dots and CPs were recorded between 4000 and 650 cm−1 wavenumberss
with 4 cm−1 resolution using ATR technique as the average of four scans.

The thermogravimetric (TG) measurements were conducted using -thermogravimetric
analyzer (TGA, Pyris 1, PerkinElmer). Prior to measurements, samples were heated to
100 ◦C for 10 min to remove the moisture. Thermal decomposition properties of N-doped
C-dots were analyzed at a heating rate of 10 ◦C/min by ramping from 100 to 840 ◦C under
a nitrogen atmosphere with a 20 mL/min flow rate.

X-ray powder diffraction patterns of N-doped C-dots were recorded by a PANalytical
X’Pert Pro MPD diffractometer equipped with CuKα radiation and the X’Celerator detector
on diffracted beam. The XRD data were collected in a Bragg Brentano (θ/θ) vertical
geometry operating in flat reflection mode between 3◦ and 70◦ (2θ) in steps of 0.02◦ 2θ with
1 s step-counting time. The X-ray tube operating at 45 kV and 40 mA was used and a 1/2◦

divergence slit, a 0.04 rad Soller slit and a 10 mm fixed mask was placed in the incident
beam pathway. The High Score Plus (v.4.6.0) software was used for peak identification and
automated search–match to analyze diffraction patterns.

The fluorescence emission spectra of N-doped C-dots and CPs were recorded between
300 and 650 nm wavelengths by using a fluorescence spectrophotometer (Thermo Scientific,
Lumina, USA) under 360 nm excitation wavelength at 700 V PMT voltage.

Quantum yield% (QY%) values for N-doped C-dots and CPs were calculated by using
Equation (1) via Quinine sulfate solution as a standard. Quinine dissolved in 0.5 M H2SO4
was used as a standard with a known quantum yield% value of 54% at 345 nm excitation
wavelength for quinine sulfate.

QY% = QYStd% (I/IStd) (ODStd/OD) (N2/N2
Std) (1)

where “QY” is fluorescence quantum yield, “I” is the integrated fluorescence intensity,
“OD” is the UV–Vis absorbance, and “N” is the refractive index of the solvent for C-dots
suspension solution as water (N = 1.33) and 0.5 M H2SO4 in water (N = 1.76).

2.5. Blood Compatibility Analysis

Blood compatibility of N-doped C-dots was investigated by hemolysis and blood
clotting analysis according to the method proposed by Zamani et al., with some modifica-
tion [30]. For the analysis, fresh blood was taken from the healthy volunteer by approval
from the Human Research Ethics Committee of Canakkale Onsekiz Mart University (011-
KAEK-27/2020-E.2000045671) and placed into EDTA-containing tubes immediately; the
details are provided in Supplementary Materials.

2.6. Antimicrobial Susceptibility of N-Doped C-Dots

Antibacterial activity of N-doped C-dots was evaluated by disc diffusion and mi-
crotiter broth dilution assays against E. coli ATCC 8739 and P. aeruginosa ATCC 10145, as
Gram-negative bacteria, and S. aureus ATCC 6538 and B. subtilis ATCC 6633, as Gram-
positive bacteria, based on the procedure described by Sun et al., with some modifica-
tions [31]; the details are provided in Supplementary Materials.

2.7. Biofilm Assays

Biofilm biomass analysis by crystal violet (CV) staining was applied to determine the
biofilm eradication and inhibition% of N-doped C-dots prepared at 1:3 ratio of CA:PVAm on B.
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subtilis and E. coli strains. These processes were performed according to the procedure proposed
by Ran et al., with some modification [32]; the details are given in Supporting Information.

3. Results and Discussion
3.1. Synthesis and Characterization of CA:PVAm C-Dots

In this study, the synthesis of PVAm was accomplished via basic hydrolysis of PNVF.
In Figure 1, the schematic presentation of synthesis of PVAm was demonstrated, and the
related FT–IR spectra of NVF, PNVF, and PVAm were compared in Figure S1a to confirm
the synthesis of PVAm from PNVF via basic hydrolysis. The FT–IR spectrum of NVF
monomer yielded characteristic bands at 1666 cm−1 for vinyl groups, at 1638 cm−1 for C=O
stretching in formamide groups, and at 1509 cm−1 for N–H bending of amide groups. As
expected, the vinyl peaks at 1666 cm−1 disappeared after the course of polymerization in
the FT–IR spectrum of PNVF. On the other hand, it was clearly observed that the C=O peaks
at 1638 cm−1 from amide groups almost disappeared, and N–H stretching peaks from NH2
groups were observed after 4 h hydrolysis in basic conditions. These results show that
most of the amide groups have been converted to amine groups, resulting in PVAm with
an insignificant amount of PNVF units after 4 h of basic hydrolysis of PNVF. Moreover,
in recent years, there are many reports on the use of PEI as a nitrogen (N) source for the
synthesis of N-doped C-dots in the literature [33–36]. Therefore, this is the first report on
the use of PVAm as an N source in the preparation of N-doped C-dots in which CA was
used as a carbon source via a one-pot hydrothermal method in Teflon-lined autoclave at
250 ◦C. The schematic presentation of the synthesis of N-doped C-dots is given in Figure 1.
As reported in the literature, N-doped C-dots prepared from citric acid and any amine
sources were composed of graphitic structure upon the hydrothermal process [37,38]. The
possible chemical structure of N-doped C-dots based on the mentioned mechanism from
the synthesis of CA and PVAm is provided in Figure S2. The progress of the carbonization
step in the presence of PVAm chains promotes the formation of N-doped C-dots since
the presence of a large number of functional groups coming from the precursors, PVAm
and CA, and the carbonization of the polymerized network at a high temperature can
further elevate the N-doping of C-dots [20]. Amide linkages resulting from the thermal
dehydration of the ammonium carboxylate moieties were used to covalently bond large
amounts of PVAm molecules [32]. Various functional groups such as hydroxyl, epoxides,
carboxylic acids, and amine were observed on synthesized N-doped C-dots according to
reported studies [39]. Therefore, to investigate the effect of the amount PVAm, 3:1, 1:1, and
1:3 ratios of CA:PVAm were used in the preparation of N-doped C-dots. It was observed
that from the reaction of CA and PVAm in Teflon-lined autoclave at 250 ◦C, both C-dots and
carbon particles (CPs) in large sizes are formed. The formed N-doped CPs were separated
from N-doped C-dots by 10 min centrifugation at 10,000 rpm.

Dynamic light scattering technique was employed to investigate the impact of CA:PVAm
ratio in N-doped C-dots and CPs on their zeta potential, size, and polydispersity (PDI). As
summarized in Table 1, the change in the ratio of PVAm did not cause a significant change
in the zeta potential of CA:PVAm C-dots.

Table 1. Zeta potential, size, and polydispersity (PDI) values of CA:PVAm C-dots and CPs.

Sample Zeta Potential (mV)
Particle Size (d.nm) PDI

Peak 1 %Int Peak 2 %Int

N-doped C-dots
3:1 27.4 ± 0.5 168 ± 10 91.6 31.8 ± 7 8.4 0.329
1:1 27.2 ± 0.6 148 ± 10 80.1 6.6 ± 3 19.9 0.258
1:3 29.7 ± 0.1 12.6 ± 6 100 - - 0.309

CPs
3:1 26.4 ± 0.4 1422 ± 40 0.447
1:1 8.4 ± 0.1 951 ± 4 0.608
1:3 35 ± 0.5 1218 ± 72 0.714
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Figure 1. (a) The schematic presentation of the synthesis process of Ndoped C-dots and CPs and
(b) pH vs. Zeta potential measurements of N-doped C-dots.

In contrast, the zeta potential values of 26.4 ± 0.4, 8.4 ± 0.1, and 35 ± 0.5 mV were
obtained for CA:PVAm CPs at the ratio of 3:1, 1:1, and 1:3, respectively. The pH values
of CA:PVAm C-dots at the ratio of 3:1, 1:1, and 1:3 were 3.2, 3.4, and 3.55, respectively.
As expected, an increase in solution pH was observed with a decrease in citric acid ratio
used during synthesis, which corroborates the presence of carboxylic acid functionality in
C-dots that is imparted to the C-dot structure in direct relation with the amount of used
CA. Particle sizes are also presented in Table 1, for both for CA:PVAm C-dots and CPs. In
general, smaller particle sizes were obtained both for N-doped C-dots and CPs with 1:1
ratio, whereas CA:PVAm C-dots and CPs with 3:1 ratio yielded the largest particle size.

Zeta potential (ZP) measurements were conducted to evaluate the effect of pH on the
surface charge of N-doped C-dots and to determine their isoelectric points (IEP), as shown
in Figure 1b. Both carboxyl groups (e.g., –COOH/–COO−) of CA and amino groups (e.g.,
–NH3

+/–NH2) of PVAm in the CA:PVAm structure are highly affected by the solution pH.
CA is a tricarboxylic acid with three dissociable carboxylic acid protons with pKa1 = 3.13,
pKa2 = 4.76, pKa3 = 6.40 [40]. Protonated PVAm has an average dissociation constant of
8.0 [21]. As a result, both carboxyl groups of CA and amino groups of PVAm were highly
protonated and all N-doped C-dots and CPs presented net positive ZP values ranging
from 29.6 to 32.4 mV at pH ≤ 3. At pH values higher than pKa1 = 3.13 of CA, the effect
of structural differences on the ZP values and IEPs were distinctive. C-dots bearing an
equal amount of CA and PVAm (1:1) yielded an IEP value of 6.85, which is likely due to
the ionization balance of the deprotonated carboxyl groups (–COO−) in CA and partially
protonated amino groups (–NH3

+) in PVAm. For the C-dots with the highest amount of
CA (3:1), the IEP shifted to the acidic region (IEP = 4.80). In addition, the high amount of
CA resulted in a sharp decrease in ZP values from 32.4 mV to −37.4 mV between pH 2
and 11 due to the highly acidic character of CA. For C-dots with the highest amount of
PVAm (1:3), ZP values showed a more moderate change between −33.8 and −11.2 mV
with the change of pH 2 to 11, due to the dominance of partially protonated primary amino
groups providing a positive charge. Moreover, the lesser amount of CA resulted in a shift
toward more basic IEP as 10.22. Overall, it is evident that the presence of carboxylic acid
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functionality related to the initial amount of CA strongly affects the surface charge and
isoelectric point of C-dots. Hence, the stability range of C-dots may be altered by the
change in CA:PVAm ratio in a wide pH range.

Particle sizes from DLS measurements of CA:PVAm C-dots are given in Table 1 and
Figure 2a. CA:PVAm C-dots prepared at 3:1 ratio resulted in bimodal sizes of particles,
168 ± 10 nm with 91.6% intensity of the peak and 31.8 ± 7 nm with 8.4% intensity, showing
that most of the particles were present in agglomerated form, as illustrated in Figure 2a.
CA:PVAm C-dots prepared with the 1:1 ratio gave different particle size distributions
than individual CA:PVAm C-dots (6.6 ± 3 nm, 19.9% intensity) and agglomerated forms
(148 ± 10 nm, 80.1% intensity). The best results were obtained for CA:PVAm C-dots
prepared with the 1:3 ratio in which a monodisperse particle size distribution was obtained
for CA:PVAm C-dots with the sizes of 12.6 ± 6 nm.
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The size and shape of N-doped C-dots were analyzed by TEM. Figure 2b shows the
TEM images of the C-dot sample prepared from CA:PVAm at 1:3 ratio, which is both in
spherical and hexagonal shapes in the size ranges of 10–50 nm.

The FT–IR spectra of both CA:PVAm C-dots and CPs are also compared in Figure 3a
and Figure S1b, respectively. Almost similar structures were observed for both CA:PVAm
C-dots and CPs. The most striking differences in FT–IR spectra are that the C=O peak
decreases at around 1700 cm−1, and the amine peak (NH2 stretching and N–H bending)
increases at around 1650, 1540, and 1350 cm−1, as the PVAm ratio increases. Additionally,
the C–N–H peaks at 790 cm−1 increased with the increasing PVAm ratio in structure.
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Figure 3. The (a) FT-IR spectra, (b) TGA thermograms, and (c) XRD patterns of N-doped C-dots at
different ratios of CA:PVAm precursors.

Thermogravimetric analysis was administered to follow the thermal stability of
CA:PVAm C-dots. Figure 3b represents the thermogravimetric analysis (TGA) and dif-
ferential thermogravimetric (DTA) curves of CA:PVAm C-dots recorded between 100 ◦C
and 840 ◦C at the heating rate of 10 ◦C/min. Minor differences were observed in the
degradation profile of CA:PVAm C-dots at the ratio of 3:1 and 1:3 up to around 570 ◦C.
Three-step intervals were displayed in the degradation profile of both CA:PVAm (3:1) and
CA:PVAm (1:3) C-dots. The first degradation step occurred in the range of 100–439 ◦C
with weight loss of 34.2% for CA:PVAm (3:1) C-dots and 100–419 ◦C with weight loss of
31.6% for CA:PVAm (1:3) C-dots. The second degradation continued at two-step intervals:
439–509 ◦C with 4.8% weight loss and 509–840 ◦C with 34.9% weight loss for CA:PVAm
(3:1) C-dots, 419–481 ◦C with 4.6% weight loss and 482–840 ◦C with 46.9% weight loss for
CA:PVAm (1:3) C-dots. Additionally, the final weight % at 840 ◦C was 26.1% for CA:PVAm
(3:1) C-dots and 16.9% for CA:PVAm (1:3) C-dots.

The three-step degradation profile of CA:PVAm (1:1) C-dots slightly differed from
other C-dots. At the first step of degradation, there is a negligible loss of volatile material
between 100 and 168 ◦C with 1.3% weight loss. The second degradation step took place
between 168 and 542 ◦C with a weight loss of 44.3% in a distinguishable manner. The
final degradation step was observed between 544 and 840 ◦C with 21.1% weight loss. In
addition, final weight% at 840 ◦C was 26.1% for CA:PVAm (3:1), 16.9% for CA:PVAm (1:3),
and 33.0% for CA:PVAm (1:1) C-dots.

The XRD patterns for CA:PVAm C-dots in ratios are given in Figure 3c. It is obvious
that a broad diffraction peak at about 2θ = 23◦ for CA:PVAm C-dots are assigned to the
turbostratic carbon phase at (002) crystal planes [41]. The relatively decreasing intensity
at 2θ = 23◦ can be explained by the increase in nitrogen content and a relative decrease in
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carbon ratio. Amorphous phased for CA:PVAm C-dots at 3:1, 1:1, and 1:3 ratios were also
determined as 100%, 98.5%, and 97.3%, respectively.

C-dots, one of the relatively newest members of the fluorescent material family, are
promising materials with improved optical properties such as low leaching and high
stability. The fluorescent behavior of C-dots can be reconciled by their size, crystallinity
degree, and functional groups [42,43]. It has been reported in the literature that bare
C-dots show low quantum efficiency fluorescence, and their fluorescence properties can be
increased by modification and notable functionalization with organic molecules [44]. C-
dots with a nitrogen-rich surface exhibit strong fluorescence [45]. Therefore, the CA:PVAm
C-dots and CPs are promising materials due to higher primary amine groups of PVAm on
chains. The UV–Vis spectra of CA:PVAm C-dots in 3:1, 1:1, and 1:3 w/w ratios are recorded
for the determination of excitation wavelength using a fluorescence spectrometer and are
given in Figure 4a. The UV–Vis spectra between 300 and 400 nm wavelength related to the
n–π* transition of functional groups on the surface [46]. The maximum absorbance values
were observed at around 360 nm for all N-doped C-dots. To confirm correct excitation
wavelength, the fluorescence emission spectra of CA:PVAm C-dots were scanned between
310 and 400 nm excitation wavelength, and corresponding spectra are given in Figure S3a–c
for 3:1, 1:1, and 1:3 w/w ratios of CA:PVAm C-dots, respectively. According to excitation
wavelength scanning, it was confirmed that 360 nm is the highest fluorescent intensity
observed wavelength and assumed as the correct excitation wavelength.

The PVAm solution showed a fluorescent property at 372 nm wavelength with 2700 flu-
orescence intensity (302 nm excitation wavelength, 700 V PTM voltage). In Figure 4b, the
fluorescent emission spectra of N-doped C-dots at 360 nm excitation wavelength show that
fluorescent intensities of N-doped C-dots increased with the increasing amount of PVAm
in the structure. N-doped C-dots at 3:1, 1:1, and 1:3 w/w ratios revealed 15,750, 27,550, and
37,680 fluorescent intensity at 434, 439, and 442 nm, respectively. It is clearly seen that the
fluorescent intensities are increased, and the emission wavelength shifted (redshift) with
the increasing of amounts of nitrogen content, as reported in the literature [47]. The digital
camera images of water, and N-doped C-dots under the sunlight and UV light at 366 nm are
also given as insets in Figure 4b. The fluorescence emission spectra of N-doped CPs are also
given in Figure 4c, and it was observed that the fluorescence intensities of CPs are lower
than C-dots. The increase in size decreased the fluorescence intensity of materials. The
fluorescence intensities for N-doped CPs in 3:1, 1:1, and 1:3 w/w ratios were determined
as 8180, 13,140, and 15,860 at 436, 439, and 442 nm, respectively. A similar redshift with
the increase in nitrogen ratio was also observed for N-doped CPs. The comparison of
calculated QY% values for both N-doped C-dots and CPs is also summarized in Table 2.

Table 2. The effect of size and nitrogen ratio on QY of N-doped C-dots and CPs.

% Ratio
CA:PVAm

N-Doped C-Dots CPs

QY
3:1 20.1 ± 1.3 9.6 ± 0.8
1:1 33.8 ± 2.1 13.2 ± 1.1
1:3 47.5 ± 1.9 17.8 ± 1.3
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The calculated QY% values for N-doped C-dots were higher than CPs in each ratio,
as expected. On the other hand, it was also exhibited that the QY% values increased
with the increase in nitrogen ratio in N-doped C-dots, as 20.1 ± 1.3, 33.8 ± 2.1, and
47.5 ± 1.9% for 3:1, 1:1, and 1:3 w/w ratios, respectively. On the other hand, the CPs
exhibited lower QY% values due to their bigger size than C-dots. It was calculated as
9.6 ± 0.8, 13.2 ± 1.1, and 17.8 ± 1.3% CPs, respectively. Furthermore, the stability of these
N-doped C-dots in physiological conditions was investigated by measuring the change
in the fluorescence intensity via fluorescence spectroscopy by keeping N-doped C-dots in
PBS at 37 ◦C. The fluorescent measurements of C-dot-containing solutions were measured
after 24 h (at the end of the 1st day) and after 240 h (at end of the 10th day) in PBS. As seen
in Figure S4, the intensity and wavelength range of the solutions were not significantly
changed. These results clearly support the premise that N-doped C-dots are nondegradable
under physiological conditions for up to 10 days.

3.2. Blood Compatibility of N-Doped C-Dots

The safety of nanomaterials should be investigated to design materials with biomedical
potential for use in intravascular applications. The N-doped C-dots were determined as
injectable materials related to nanometer size range and should be directly penetrated
through the cells. Blood compatibility of N-doped C-dots was determined by hemolysis=
and blood compatibility tests, as illustrated in Figure 5.
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Figure 5. (a) Hemolysis and (b) blood clotting indexes of N-doped C-dots prepared at 3:1, 1:1, and 1:3 weight ratios of
CA:PVAm.

Hemolytic ratio up to 5% is considered to be hemocompatible for intravascular use [48].
As can be seen in Figure 5a, all forms of N-doped C-dots show a nonhemolytic range with
a maximum of 1.96% hemolysis ratio up to 500 µg/mL concentration. In addition, at a high
concentration such as 1000 µg/mL, N-doped C-dots at 3:1 and 1:1 ratios caused slightly
hemolytic effects with 3.88 ± 0.61% and 3.16 ± 0.40% hemolysis ratios, respectively, but
N-doped C-dots at 1:3 was still nonhemolytic even at 1000 µg/mL concentration. The
results of blood compatibility studies of N-doped C-dots revealed that although there is a
slight decrease in the hemocompatibility depending on CA ratio in CA:PVAm C-dots, it is
needless to say that these materials can be safely used for intravascular applications with
up to 500 µg/mL concentration.

The other blood compatibility test as blood clotting indexes of N-doped C-dots is
demonstrated in Figure 5b. N-doped C-dots indicate slightly clotting effects on the blood
with 91.1 ± 2.2, 84.2 ± 2.0, and 81.5 ± 2.7 blood clotting indexes at 1000 µg/mL concen-
tration of 3:1, 1:1, and 1:3 ratios of CA:PVAm, respectively. These results confirm that the
PVAm ratio in the C-dots structure triggers the clotting ability of the N-doped C-dots. Low
hemolysis ratio and high blood clotting index values of N-doped C-dots, even at 500 µg/mL
concentration, prove the safe use of these materials in blood interacted applications.
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3.3. Antimicrobial Activity of N-Doped C-Dots

Antibacterial susceptibility of CA, PVAm, and N-doped C-dots was investigated
via two different antimicrobial assays, i.e., disc diffusion and microtiter broth dilution
methods against Gram-positive S. aureus and B. subtilis and Gram-negative E. coli and P.
aeruginosa. Photographs of inhibition zones and their zone diameter values depend on the
bacteria species for CA, PVAm, gentamicin, and CA:PVAm C-dots, which are depicted in
Figure 6a,b, respectively.
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Figure 6. (a) Photographs of 50 µL, 100 mg/mL (5 mg) CA, PVAm, and N-doped C-dots at three ratios
of 3:1, 1:1, and 1:3 against B. subtilis, S. aureus, E. coli, and P. aeruginosa according to disc diffusion
assay and (b) their inhibition zone diameters (mm). Gentamicin at 20 µL, 1 mg/mL (0.02 mg) was
used as a control.

The inhibition zone diameters of CA and PVAm was found to be 16± 2 and 18 ± 1 mm
against Gram-positive B. subtilis and 18 ± 1 and 21 ± 2 mm against Gram-negative P.
aeruginosa bacteria, respectively. In the killing mechanism, organic acids, e.g., CA, cause
membrane damage on the bacteria through intercalation, chelation, or protonation, increase
reactive oxygen species (ROS), and inhibit enzymatic ROS scavenging mechanism on
aerobic microorganisms [48]. In addition, PVAm with a more cationic surface could inhibit
the adhesion and growth of bacteria through highly electrostatic interaction with bacteria
surface and membrane [49]. It was also reported that killing of bacteria could be dependent
on the destabilization of the bacterial membrane by the ion-exchange effect of divalent Ca2+

and Mg2+ cations with cationic PVAm based materials [50]. It is clear that CA and PVAm
have significant antimicrobial effects on Gram-positive and Gram-negative species and
the prepared N-doped C-dots that contain different ratios of CA and PVAm could possess
potent antibacterial activity based on these two components. Additionally, the effects of
CA and PVAm ratio on the antibacterial activity of N-doped C-dots was investigated and
given in Figure 6.
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It was determined that the 5 mg of 3:1 ratio of N-doped C-dots shows no inhibition
ability on each bacteria species because of the less positive surface charge in consequence
of low PVAm ratio into the C-dot structure. The antimicrobial ability of N-doped C-dots
was significantly increased, depending on the PVAm ratio in N-doped C-dots. As a result,
5 mg of 1:1 and 1:3 ratios of N-doped C-dots were shown to have perfect inhibition ability
on B. subtilis, S. aureus, and E. coli with a nearly 20 mm inhibition zone. Moreover, the
highest inhibition zone was determined as 22 ± 1 and 23 ± 1 mm against Gram-positive B.
subtilis for 5 mg of 1:1 and 1:3 ratios of N-doped C-dots, respectively.

In the other antibacterial method, minimum inhibition concentration (MIC) and
minimum bactericidal concentration (MBC) values of CA, PVAm, and N-doped C-dots
against Gram-positive and Gram-negative bacteria are given in Tables 3 and 4.

Table 3. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC)
of CA, PVAm, and N-doped C-dots prepared at 3:1, 1:1, and 1:3 ratios against B. subtilis and S. aureus
Gram-positive bacteria according to microtiter dilution assay. Gentamicin was used as a control.

N-Doped C-Dots
B. subtilis S. aureus

MIC (mg/mL) MBC (mg/mL) MIC (mg/mL) MBC (mg/mL)

CA 0.75 1.56 1.56 3.12
PVAm 0.31 1.56 1.56 3.12

3:1 25.0 N.D. 25.0 N.D.
1:1 3.12 6.25 1.56 6.25
1:3 0.75 0.75 1.56 3.12

Gentamicin 0.001 0.002 0.001 0.002

Table 4. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC)
of CA, PVAm, and N-doped C-dots prepared at 3:1, 1:1, and 1:3 ratios against E. coli and P. aeruginosa
Gram-negative bacteria according to microtiter dilution assay. Gentamicin was used as a control.

N-Doped C-Dots
E. coli P. aeruginosa

MIC (mg/mL) MBC (mg/mL) MIC (mg/mL) MBC (mg/mL)

CA 1.56 3.12 1.56 3.12
PVAm 3.12 12.5 1.56 3.12

3:1 25.0 N.D. 25.0 N.D.
1:1 1.56 6.25 1.56 3.12
1:3 1.56 3.12 1.56 3.12

Gentamicin 0.002 0.002 0.004 0.004

It is clear that antibacterial propensity of PVAm and CA were almost similar with 0.31,
1.56, 3.12, and 1.56 mg/mL MIC values of PVAm and 0.75, 1.56, 1.56, and 1.56 mg/mL MIC
values of CA against B. subtilis, S. aureus, E. coli, and P. aeruginosa, respectively. Similarly,
disc diffusion results for the 3:1 ratio of N-doped C-dots revealed less antimicrobial ability,
with a high MIC value of 25 mg/mL on each bacteria species and no bactericidal effect.
MBC values of 1:1 ratio N-doped C-dots were significantly decreased to 0.75 mg/mL
from 6.25 mg/mL for 1:3 ratio of N-doped C-dots against B. subtilis, as seen in Table 3.
In addition, the perfect antimicrobial ability was determined for the 1:3 ratio of N-doped
C-dots as 3.12 mg/mL of MBC values on Gram-negative E. coli and P. aeruginosa, as shown
in Table 4. It is obvious that antibacterial activity of N-doped C-dots was coming from both
components and maybe dominantly from the killing effects of cationic PVAm content.

In addition, the antimicrobial activity of 1:3 ratio of N-doped C-dots was similar for B.
subtilis, S. aureus, and P. aeruginosa, and slightly higher than PVAm against E. coli. These
results show that the C-dot structure could be tuned to enhance the antibacterial potential
of C-dots in relation to their nanometer size. Three different killing mechanisms were
reported for C-dot-based materials, i.e., (1) through leakage of the bacterial membrane
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by nanometer size, (2) disruption of the membrane by an increase in hazardous reactive
oxygen species (ROS), and (3) interaction of genetic materials of bacteria [51,52].

Furthermore, the highest antibacterial effects were observed against B. subtilis and
no significant differences in the other bacteria species were detected. Furthermore, the
antimicrobial susceptibility of N-doped C-dots was significantly increased depending
on the PVAm ratio of the C-dots structure. It is well-known that Gram-positive and
Gram-negative bacteria have a negatively charged membrane surface [53]. Gram-negative
bacteria consist of a more negatively charged lipopolysaccharide structure in the outer
membrane and polyphosphate backbone resulting from teichoic acid molecules causing
negatively surface structures on the cell wall of Gram-positive bacteria [53]. PVAm is a
well-known cationic polymer that comprises long-chain primer amine groups [21]. The
ratio of PVAm in the C-dots structure can importantly affect the surface characteristics
of the prepared C-dots. As provided in Table 1, the zeta potential value of the N-doped
C-dots was increased to higher positive values as the amount of PVAm increased. Similarly,
antimicrobial susceptibility of N-doped C-dots was significantly improved by increasing
PVAm ratio because of the highest electrostatic interaction with negatively charged bacteria
cell membrane that can readily disrupt the bacteria membrane. Zhao et al. showed that
highly positively charged cationic N-doped C-dots could directly and strongly interact with
surface of bacteria, destroying the permeability of the cell wall [54]. In addition, N-doped
C-dots exhibited a higher antibacterial susceptibility against Gram-positive species than
against Gram-negative bacteria, because of the differences in the cell wall structure of these
bacteria. The negatively charged polyphosphate backbone of Gram-positive species in the
membrane structure offers high interaction ability with cationic materials, e.g., N-doped
C-dots. Moreover, the thicker lipopolysaccharide structure of Gram-negative species acts
as a barrier against the antimicrobial agents [54,55]. These membrane structures of Gram-
positive and Gram-negative bacteria can play a significant role in the interaction between
the bacteria and antibacterial agents since N-doped CA:PVAm C-dots showed stronger
inhibition or killing ability against Gram-positive bacteria than against Gram-negative.

3.4. Antibiofilm Activity of CA:PVAm C-Dots

The resistance against antibiotics for many infections caused serious health problems
in clinical and industrial applications because of the presence of a biofilm layer protecting
these microorganisms. The minimum inhibition concentration (MIC) value of commonly
used antibiotics is generally effective in the removal of planktonic bacteria but not enough
for inhibition or eradication of the bacteria within the biofilm [56]. Novel antibacterial
systems need to be designed for providing antibacterial activity for planktonic cells and
for inhibition or eradication of biofilms generated by bacteria to fight resistant infections.
Therefore, biofilm inhibition and eradication properties of 1:3 ratio of N-doped C-dots
were evaluated on B. subtilis and E. coli species via crystal violet assay, as demonstrated in
Figure 7.

The photographs of the wells clearly show that inhibition or eradication ability of
N-doped C-dots is dependent on the concentration of the used materials and a high
concentration of N-doped C-dots such as 25 mg/mL could totally inhibit or eradicate
the biofilms of bacteria. Even a low concentration such as 0.78 mg/mL of N-doped C-
dots inhibits more than half of bacterial biofilm for each bacterium. Furthermore, biofilm
inhibition% of N-doped C-dots was significantly higher than biofilm eradication% at low
concentrations, up to 1.56 mg/mL concentration against E. coli with 30 ± 4 and 76 ± 1
of biofilm% for inhibition and eradication processes, respectively. In addition, N-doped
C-dots show more inhibition/eradication ability in Gram-positive B. subtilis than in Gram-
negative E. coli.

Li et al. reported that the cationic property of C-dots displays perfect biofilm inhibition
activity similar to our results, with charge–charge interactions of highly cationic N-doped C-
dots in the mildly acidic biofilm [57]. Another study represented that hydrophilic materials
such as N-doped C-dots have more penetration tendency against biofilm and can readily
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pass through the biofilms and interact with bacteria, taking advantage of its nanoscale
size [13]. It is believed that N-doped C-dots are promising materials in the treatment or
inhibition of resistant infections.
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4. Conclusions

The synthesis of N-doped C-dots was successfully carried out via the hydrothermal
method by using PVAm as a nitrogen source. PVAm was prepared from basic hydrolysis
of PNVF and used at various ratios of CA as precursors 3:1, 1:1, and 1:3 w/w to prepare
C-dots. It was observed that during the synthesis, C-dots and CPs were present after 4 h
reaction time in Teflon-lined autoclave at 250 ◦C. The fluorescence intensity and QY%
values of N-doped C-dots were found to be much higher than CPs, as expected, due to
their smaller sizes. On the other hand, fluorescence intensity and QY% values of N-doped
C-dots and CPs were increased with the increasing amount of nitrogen in the structure.
Moreover, N-doped C-dots were found to be blood compatible and safe, even at 500 µg/mL
concentration, for potential intravascular applications with a nonhemolytic behavior and
no significant effect on the clotting mechanism of blood. Furthermore, these positively
charged N-doped C-dots exhibited significant antibacterial activity against Gram-negative
and Gram-positive species but more effectively on Gram-positive bacteria such as B. subtilis,
as anticipated, due to the possibility of the highest electrostatic interaction. In addition, the
PVAm ratio in the CA:PVAm C-dots structure plays a significant role in the killing capacity
of the materials since N-doped C-dots at 1:3 ratio of CA:PVAm showed better antibacterial
effects against each of the studied bacteria species. Moreover, N-doped C-dots provide
a strong ability to protect against a wide range of biofilm-forming bacteria, with mighty
biofilm-destroying capabilities. Therefore, C-dots may have significant potential in in vivo
biomedical applications as multifunctional biomaterials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/c7020040/s1, Figure S1. The FT-IR spectra of (a) NVF, PNVF, and PVAm molecules, and (b)
CA:PVAm CPs in various ratios of CA and PVAm, Figure S2. The possible mechanism of synthesis
of CA:PVAm Cdots, Figure S3. The fluorescence emission spectra of N-doped C-dots in prepared
(a) 3:1, (b) 1:1, and (c) 1:3 w/w ratio of CA:PVAm at various excitation wavelengths, Figure S4.
The fluorescence emission spectra of CA-PVAm Cdots at various ratio of CA-PVAm in pH 7.4 PBS
solution at 360 nm excitation wavelengths.
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