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Abstract: DNA-wrapped single-walled carbon nanotubes (DNA-SWCNTs) in stable dispersion are
expected to be used as biosensors in the future, because they have the property of absorption of
light in the near infrared (NIR) region, which is safe for the human body. However, this practical
application requires the understanding of the DNA-SWCNTs’ detailed response characteristics.
The purpose of this study is to predict, in detail, the response characteristics of the absorption
spectra that result when the antioxidant catechin is added to oxidized DNA-SWCNTs, from a small
amount of experimental data. Therefore, in the present study, we predicted the characteristics of
the absorption spectra of DNA-SWCNTs using the Bayesian regularization backpropagation neural
network (BRBPNN) model. The BRBPNN model was trained with the catechin concentration and
initial absorption peaks as inputs and the absorption spectra after catechin addition as outputs.
The accuracy of the predicted absorption peaks and wavelengths after the addition of catechin, as
predicted by the BRBPNN model, was within 1% of the error of the experimental data. By inputting
the catechin concentrations under hundreds of conditions into this BRBPNN model, we were able to
obtain detailed prediction curves for the absorption peaks. This method has the potential to help to
reduce the experimental costs and improve the efficiency of investigating the properties of high-cost
materials such as SWCNTs.

Keywords: Bayesian regularization backpropagation neural network; near-infrared absorption;
single-walled carbon nanotubes

1. Introduction

Carbon nanotubes (CNTs), which have excellent mechanical properties, are well-
known for their use as composites for mechanical materials and as reinforcing materials
for bodies such as aircraft and automobiles, as well as concrete [1]. Single-walled carbon
nanotubes (SWCNTs) with a diameter of several nanometers, which are made by winding
a graphene sheet in a cylindrical shape, are expected to be used as the next-generation of
electronic materials, because they show the characteristics of conductors and semiconduc-
tors by a winding method called chirality. Generally, SWCNTs’ powder contains different
types of chirality during the manufacturing process. SWCNTs have the unique property
of absorbing and emitting light in the near infrared (NIR) region, the exact wavelength
that is emitted in which differs depending on the chirality. In particular, SWCNTs, which
have absorption characteristics in the NIR region that is safe for the human body, are
expected to be used for drug delivery and biosensing [2–4]. Focusing on the bio-application
of SWCNTs, it is necessary that they show stable dispersibility in water for a long time.
Zheng et al. [5] and Nakajima et al. [6] established a technology that can disperse SWCNTs
in water more stably than conventional surfactants by wrapping the SWCNTs with DNA.
Umemura’s group reported that adding catechin antioxidants to oxidized DNA-SWCNTs
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could result in a return to the NIR absorption spectrum that was present pre-oxidation and
they also found that there was the possibility of using DNA-SWCNTs as biosensors to dis-
criminate various molecules [7]. The optical spectral characteristics of SWCNTs depending
on the electronic state of the SWCNTs’ surfaces has been experimentally and theoretically
investigated [8]. Although the theoretical mechanism is still unclear, it is thought that one
of the explanations for the change in spectral characteristics when catechin is added to
DNA-SWCNTs is that the spectral characteristics change due to the change in the electronic
state of SWCNT’s surface, due to redox [9]. In this way, although research is underway
to investigate the optical properties by adding various molecules to SWCNTs [10], there
are innumerable combinations of organic molecules that are optimal for the purpose, so
many experiments are required. On the other hand, many studies using large-scale models,
such as SWCNT and DNA-SWCNT composites, have been reported using the simulation
approach [11–13]. However, it is difficult to calculate the various experimental conditions
involved, such as catechin concentration and pH. Therefore, in the future, it is expected that
a method will be devised that can accurately predict the results of different experimental
conditions from a small amount of experimental data. Machine learning may be considered
as one of the methods that may realize this possibility.

Machine learning uses various algorithms such as regression, classification, and deep
learning. Deep learning (also known as machine learning), as represented by neural net-
works (NN), has been one of the most researched technologies since the middle of the 20th
century and the rapid development of computational power [14]. Since the introduction of
big data technologies [15], NN technology has significantly widened its fields of applica-
tion in the last decade. NN technology has now become a mainstream methodology for
image recognition [16,17], speech recognition [18], reinforcement learning [19], energy en-
gineering [20], weather forecasting [21], disaster prediction [22], modelling environmental
problems [23], and medical applications [24–26]. In recent years, the amount of research
focused on applying machine learning to experiments on CNTs, a field which is on the
frontiers of material science and engineering, has been increasing. For instance, Le has
predicted the tensile strength of CNT composites using the Gaussian process regression
model [27]. T. Hajilounezhad et al. were able to generate SWCNTs’ forest morphology
images using machine learning and their characterized forest synthesis-structure [28].
Yang et al. succeeded in predicting the recognition sequence of DNA from machine learn-
ing using the absorption spectra of DNA-SWCNTs that were stably dispersed in water
using DNA [29]. These results are effective and innovative in comprehensively and quanti-
tatively understanding the data, but they require a large amount of experimental data. In
order to apply machine learning widely to the study of CNT materials, it is necessary to
first consider case studies that can be applied even with a small amount of data.

In this study, we considered the development of a deep learning model that can accu-
rately predict experimental data from a small amount of training data. The data targeted
by the NN model in the present study was from an experiment on the NIR absorption spec-
trum change of a DNA-SWCNT dispersion, reported by Matsukawa et al. [30]. It is known
that the absorption peaks of chirality (8,4)/(9,4) SWCNTs decreases when H2O2, which is
an oxidizing agent, is added to the DNA-SWCNTs’ dispersion [31]. (8,4)/(9,4) SWCNTs
indicate that the absorption wavelengths for chirality (8,4) and (9,4) are almost the same.
Matsukawa et al. have suggested the possibility of a biosensor that detects antioxidant
activity because the peak amplitude is restored before oxidation when catechin, which
has antioxidant properties, is added to oxidized DNA-SWCNTs, as shown in Figure 1. In
order to put DNA-SWCNTs to practical use in biosensor applications, it is necessary to
clarify the absorption spectra responses to detailed catechin concentration changes through
more experiments. However, preparing many of these experiments is time consuming,
costly and impractical. Thus, predictions with high accuracy, using machine learning from
a small amount of experimental data, will contribute to efficient experiment planning in
the future.
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Figure 1. Typical reaction example of experimental data targeted by the BRBPNN model. Blue line of
step 1 is NIR spectrum in the initial state of DNA-SWCNTs. Red line is NIR spectrum with H2O2

added to the initial state. Green line is NIR spectrum with catechin added in step 2.

2. Materials and Methods
2.1. Sample Data

This section shows the sample of experimental data that was used for training and
verification by the NN model. The SWCNTs were purchased from Raymor Industries Inc.
(Boisbriand, QC, Canada). The double strand DNA (deoxyribonucleic acid sodium salt
from salmon testes, D1626) was obtained from Sigma-Aldrich Co. LLC (St. Louis, MO,
USA). Hydrogen peroxide (abt. 30%, 084-07441) and catechin (553-74471) were purchased
from Wako Pure Chemical Industries, Ltd. (Osaka city, Osaka, Japan). A 1 mg/mL DNA
solution was prepared with 10 mM tris (hydroxymethyl) aminomethane-HCl (Tris-HCL)
buffer (pH 7.9). To untangle the DNA molecules, the solution was sonicated in a bath-type
ultrasonicator (80 W) for 90 min on ice. Finally, the dsDNA solutions were gently shaken
for 3 h. For preparation of the DNA-SWCNTs, 0.5 mg of SWCNT powder and 1 mL of
the DNA stock solution were mixed and sonicated for 2 h using a probe-type sonicator
(3 W, VCX-130, Sonic & Materials, Inc., Newtown, CT, USA) on ice. The supernatant of the
prepared DNA-SWCNT dispersion was stored, after centrifugation at 17,360 g for 3 h at
8 ◦C. Then, 0.5 mg of SWCNTs were suspended in 1 mL of the DNA solution. The samples
were sonicated using the probe-type sonicator (3 W) for 2 h, followed by centrifugation at
17,360 g for 3 h at 8 ◦C. The supernatants were collected as a DNA–SWNT suspension.

The absorption spectrum measurement of the DNA-SWCNTs was carried out using
the same procedure as detailed in the previous studies [30]. The absorption measurement
(700–1350 nm) was taken using a NIR spectrometer (SolidSpec-3700DUV, Shimadzu Cor-
poration, Kyoto City, Kyoto, Japan). For NIR measurements of DNA-SWCNTs, 100µL of
the DNA-SWCNT suspension and 880µL of the Tris-HCL buffer solution were mixed in
a cuvette and the initial spectra were recorded. In the second step, 10µL of H2O2 that
was diluted with sterilized water (with a final concentration of 0.03%) was added to the
samples, followed by incubation for 30 min at 21 ◦C. The spectra of the samples were
measured. Finally, 10µL of catechin solution (with final concentrations at 15, 1.5, 0.15, 0.075,
and 0.03µg/mL) was added to the samples and the spectra were measured after 10 min
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incubation at 21 ◦C. Triplicate NIR measurements for each experiment were recorded in
order to verify the reproducibility.

2.2. Bayesian Regularized Backpropagation Neural Network

Machine learning was performed using the MATLAB Neural Network toolbox. The
neural network model that was used for function approximation was a two-layer feed-
forward network that uses a sigmoid transfer function for the hidden layer and a linear
transfer function for the output layer. In addition, the number of neurons in the hidden
layer was set to 10 layers. The training function used a Bayesian regularized backprop-
agation neural network (BRBPNN) model. A typical neural network is trained for the
purpose of minimizing the squared error, ED, between the correct data and the predicted
output. The Levenberg–Marquardt method is widely applied as a method for solving the
minimum value of a nonlinear equation [32]. The BRBPNN model follows the optimization
of the Levenberg–Marquardt method to generate a network that minimizes the combined
function, F, of the squared error, ED, and weight, Ew, that are shown in the following
equation in order to generate a neural network that achieves proper fitting.

F = βED + αEw (1)

where Ew is the sum of squares of the neural network weights and β and α are objective
function parameters.

A technique for applying Bayesian regularization to neural network optimization
was proposed by David MacKay [33] and applied to practical problems by Foresee and
Hagan et al. [34]. The Bayesian framework considers network weighting factors to be
random variables. After the data is retrieved, the weight density function is expressed as
follows, according to Bayes’ theorem.

P(w|D, α, β, M) =
P(D|w, β, M)P(w|α, M)

P(D|α, β, M)
(2)

where D represents the dataset, M is the specific neural network model that was used,
and w is the vector of network weights. P(w|α, M) is the pre-density and represents
knowledge about the weights before the data was collected. P(D|w, β, M) is a likelihood
function, which is the probability that data will occur given the weight, w. P(D|α, β, M) is
a normalizing coefficient with a total probability of 1. If we assume that the noise in the
training set data is Gaussian, the probability densities can be written as follows.

P(w|α, M) =
1

Zw(α)
exp(−αEw) (3)

P(D|w, β, M) =
1

ZD(β)
exp(−βED) (4)

Zw(α) =
(π

α

) N
2 (5)

ZD(β) =

(
π

β

) n
2

(6)

By substituting Equations (3) and (4) into Equations (2), the following relationship can
be obtained:

P(w|D, α, β, M) =

1
Zw(α)ZD(β)

exp(−(βED + αEw))

P(D|α, β, M)
(7)
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When Equation (7) is expressed by Equation (1) of the objective function, it is expressed
by the following equation:

P(w|D, α, β, M) =
1

ZF(α, β)
exp(−F(w)) (8)

In this Bayesian framework, optimal weights should maximize posterior probabil-
ities; P(w|D, α, β, M). Maximizing posterior probabilities is equivalent to minimizing
regularized objective functions.

2.3. Input/Output Data and the Verification Method

The BRBPNN model learns the relationships between input and output data so that
you can identify them, as shown in Figure 2. The input data is the absorption of the
(8,4)/(9,4) peaks in the initial state spectra of DNA-SWCNTs and various catechin concen-
tration (15, 1.5, 0.15, 0.075 or 0.030 µg/mL). The output data was the NIR spectra after
catechin addition, as shown in Figure 1. From the three experimental data captured for
each catechin concentration, two data were used to train the model and the remaining one
datum was used to validate the training model. The learning accuracy of the model was
evaluated by comparing the prediction results that were obtained from the model with the
rest of the validation data.
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Figure 2. Overview of the learned BRBPNN model. Initial (8,4)/(9,4) peak absorption and catechin
concentration are used as input data I, II, and NIR spectra after catechin addition in (iii) state as
output data.

3. Results and Discussion

Figure 3 shows the results of comparing the predicted data and the verification data
of the spectra after the catechin addition when the absorption peaks of (8,4)/(9,4) DNA-
SWCNTs were in the initial state and the catechin concentration was input to the learned
BRBPNN model. It can be confirmed that the spectral waveform accurately corresponds to
a wide range of 700 to 1350 nm. The prediction results from the learning model represent
the changes to the spectrum in response to the changes in the catechin concentration over a
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wide range of 500-fold from 0.03 to 15 µg/mL. As is clear from Figure 3, there is almost no
change in the absorption spectrum, even if the catechin concentration is diluted 5 times
from 0.15 to 0.03 µg/mL. However, in order to understand the overall characteristics of
DNA-SWCNTs as biosensors, it is necessary to predict not only the region that responds
to changes in catechin concentration, but also the region that the reaction saturates. The
significance of predicting the changes of absorption spectra with catechin concentration is
that it leads to the possibility of estimating the amount of catechin molecules that affect
the electronic state of the surface of DNA-SWCNTs. Hence, this may be useful for forming
a hypothesis about the mechanism. Therefore, to validate our proposed approach, we
constructed a BRBPNN model trained with DNA-SWCNTs’ absorption spectral data for a
wide range of catechin concentrations. The Levenberg–Marquardt method is often used
as a learning algorithm that is faster than the BRBPNN model that was used in this study,
but our experimental data could not predict a smooth spectral waveform due to noise in
the waveform. Thus, the BRBPNN model, which is based on the Bayesian framework, is
considered to be suitable for accurately predicting complex spectral waveforms such as
those targeted in this study. In general, the computational speed and optimized accuracy
of the neural network model are highly dependent on the hidden layer. In our research, as
a result of creating a training model with 1 to 14 hidden layers and comparing them, we
found that there was no significant improvement in the calculation speed and accuracy
with 10 layers or more, so we decided to use 10 layers.
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Figure 3. Comparison of the results of prediction data and verification data in the spectrum waveform
after catechin addition for each catechin concentration.

The data used for training the BRBPNN contains errors because it is experimental
data. Therefore, in order to investigate the effect of the data errors used for training,
we performed cross-validation in which the training data and the verification data were
exchanged. The spectral waveform after catechin addition is predicted from the three
BRBPNN outputs created for each catechin concentration and the absorption and wave-
lengths of the (8,4)/(9,4) peaks are shown in Figure 4a,b. It was confirmed that the error of
the prediction result is about the same as that of the verification data with which it was com-
pared. This result is considered to indicate that, even if the experimental data that trains the
neural network has some variation, the prediction accuracy of the BRBPNN model is not
significantly affected and a highly robust result can be obtained. The average ± standard
deviation of the absorption and wavelength at each catechin concentration, as shown in
Figure 4, is also shown in Table 1.
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Figure 4. (a) Comparison of prediction data and verification data of absorption peak of (8,4)/(9,4)
DNA-SWCNTs. (b) Comparison of prediction data and verification data of peak wavelength of
(8,4)/(9,4) DNA-SWCNTs. Each value is expressed as mean ± standard deviation.

Table 1. Absorption and wavelength of (8,4)/(9,4) peak in prediction data and verification data.

Input Data Output Data

Catechin
Concentration

[µg/mL]

(8,4)/(9,4) Peak (8,4)/(9,4) Peak

Absorption
[a.u.] Data Type Absorption

[a.u.]
Wavelength

[nm]

15 0.513
Verification 0.502 ± 0.009 1135.0 ± 0.1
Prediction 0.499 ± 0.000 1134.8 ± 0.3

1.5 0.499
Verification 0.491 ± 0.005 1133.5 ± 0.2
Prediction 0.489 ± 0.001 1133.4 ± 0.2

0.15 0.500
Verification 0.461 ± 0.005 1133.0 ± 0.2
Prediction 0.461 ± 0.001 1132.9 ± 0.2

0.075 0.498
Verification 0.457 ± 0.001 1133.0 ± 0.0
Prediction 0.458 ± 0.001 1133.0 ± 0.0

0.030 0.500
Verification 0.457 ± 0.006 1133.0 ± 0.0
Prediction 0.453 ± 0.002 1133.0 ± 0.0

It was confirmed that the BRBPNN model learned, using the data of the five conditions
of catechin concentration, to accurately predict the NIR spectrum after catechin addition, as
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shown in Table 1. We also investigated the prediction curves for the (8,4)/(9,4) absorption
peaks for various catechin concentrations using the BRBPNN model. In order to draw
this prediction curve, the catechin concentration input to the BRBPNN model was set to
370 patterns in the range of 0.005 to 15 µg/mL. In addition, the initial (8,4)/(9,4) absorption
peaks were fixed at 0.5 because the fluctuation was small, as shown in Table 1. Figure 5
shows the results of extracting the (8,4)/(9,4) absorption peaks from the NIR spectrum
output by inputting various catechin concentrations into the BRBPNN model. The blue
circles in Figure 5 mark the results predicted by the BRBPNN model that trained with the
experimental data at the total catechin concentration. This curve was reasonable in that it
satisfied the error range of the verification data, not only for the catechin concentrations
between 0.15 and 1.5 µg/mL, which has a large change in absorption peak, but also for
the catechin concentrations between 0.03 and 0.15 µg/mL, which hardly change. It is clear
that the black dotted line (approximated to the power of the verification data) and the gray
dotted line (approximated to the polynomial) are not sufficiently fitted when compared
to the prediction results of the BRBPNN model. These results suggest the possibility of
predicting the NIR absorption spectra under hundreds of conditions from a small number
of experimental data. Furthermore, we examined similar predictions using a model that
was trained by omitting the data of specific concentration conditions from the training data
of the five catechin concentration conditions and then investigated the sensitivity of the
trained data to the prediction results. The light blue circles mark the prediction results from
the BRBPNN model that learned from a dataset that omitted the catechin concentration
of 0.075 µg/mL. Since the change in this result is small compared to the results before
and after omitting it, it was confirmed that the prediction accuracy is almost the same
even if there are four catechin concentration data to be learned from. On the other hand,
the orange circles mark the results that were predicted using the BRBPNN model when
it learned from a dataset that omitted the catechin concentration of 1.5 µg/mL from all
the data. As a result, although the verification data of 0.03 µg/mL and 0.15 µg/mL are
accurately expressed, the tendency of the experiment could not be grasped as a whole. This
result shows that it is important to determine the conditions for training in order to predict
the desired characteristics.
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Figure 5. Prediction results of (8,4)/(9/4) absorption peaks for catechin concentration input using
BRBPNN: The blue circles represent the BRBPNN model’s output from learned data. The orange
circles represent the BRBPNN model’s outputs when the learned excluding the catechin 1.5 µg/mL.
The light blue circles represent the BRBPNN model’s output when learned excluded the catechin
0.075 µg/mL. The green squares, black lines and gray dotted lines represent the validation data, the
power approximation lines and the polynomial approximation lines (quadratic) for them, respectively.

This study found that the BRBPNN model, based on the Bayes framework, can accu-
rately predict complex waveform data, such as NIR absorption spectra. We also suggest
that the input data that is given during training is very important when expressing the phe-
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nomenon to be predicted by deep learning. In this paper, we constructed a deep learning
model from experimental data in order to predict the desired spectra. Since the deep learn-
ing model is determined by the relationship between input and output, it is thought that a
similar prediction model can be created for tannic acid and caffeine [9] as they are both
a molecule with antioxidant activity that is separate from catechin, which was the focus
of this study. We have already reported experimental studies showing similar absorption
spectral changes with tannic acid as a molecule that exhibits antioxidant activity against
DNA-SWCNTs [35]. In addition, this method can be applied not only to the absorption
spectrum, but also to the waveform data of other experiments. For example, many studies
have been reported in which the force curve was measured by directly contacting the me-
chanical properties of the surfaces of biomolecules under various physiological conditions,
using a cantilever of an atomic force microscope [36,37]. It is known that it is difficult
to discriminate data under different conditions because measurement of biomolecules
in water is unstable. The deep learning model presented in this study may also help to
identify those data easily. Utilizing deep learning models for understanding and improving
the efficiency of experiments is considered to be an important initiative for promoting
research on carbon materials in the future.

4. Conclusions

We have developed a BRBPNN model based on the Bayesian framework that can
accurately predict changes in the NIR absorption spectrum when catechins with antioxidant
activity are added to a DNA-SWCNT dispersion. The BRBPNN model was trained with the
catechin concentrations and initial (8,4)/(9,4) absorption peaks as inputs and the absorption
spectra after catechin addition as outputs. The predicted values of the absorption peaks
and wavelengths in (8,4)/(9,4) chirality after the addition of catechin by the model were
within 1% of the error compared to the experimental verification data. By inputting the
catechin concentration of 300 conditions or more into the BRBPNN model developed from
a small set of five conditions, we were able to obtain a detailed prediction curve for the
(8,4)/(9,4) absorption peaks. These prediction curves were reasonable curves that satisfied
the error range of the verification data, regardless of the magnitude of the absorption peak
change, with respect to the change in catechin concentration. These results could not be
represented by typical approximation curves. Neural network models such as the BRBPNN
model may be useful for planning efficient experiments by making overall predictions
from a small amount of data in advance when clarifying the physical characteristics of
high-cost materials such as SWCNTs. In addition, this method can accurately predict the
relationship between input and output data, thus it can contribute to the prediction of
various experimental data, not limited to absorption spectra.
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