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Abstract: Carbon adsorbents were obtained by carbonization of polyimide polymer with and without
the presence of phosphoric acid at temperatures in the range of 400–1000 ◦C. Carbons produced
in the presence of phosphoric acid have been demonstrated to contain up to 13.2% phosphorus.
The structure of phosphorus-containing compounds was investigated by XPS and 31P MAS NMR
methods. Deconvolution of the P 2p peak with variable binding energy showed the presence of
only phosphates/polyphosphates. However, a low value of the O/P ratio is an indirect indication
of the possible presence of phosphonates. A 31P MAS NMR study revealed the existence of several
kinds of phosphates as well as a minor quantity (1–9%) of phosphonates. All discovered phosphorus-
containing compounds are acidic and therefore give carbon the ability to absorb metal cations. The
study of copper ion adsorption demonstrated that phosphorus-containing carbon shows a significant
adsorption capability even in extremely acidic conditions. At pH 3–6, phosphorus-containing carbon
may completely remove copper from the aqueous solution. Phosphorus-containing carbon has a
higher adsorption capacity for copper ions than ion exchange resins with carboxyl or sulfo groups.

Keywords: phosphorus-containing carbon; XPS; 31P MAS NMR; surface groups; acid-base properties;
metal ion binding

1. Introduction

The activation of various precursors with phosphoric acid is a widely used industrial
process for the production of highly porous carbon adsorbents [1–7]. Phosphoric acid
activation has several advantages, primarily high yields and low activation temperatures
compared to physical activation [8–10]. In addition, phosphoric acid activation does not
have the disadvantages, such as corrosion problems, insufficient recovery of the activator,
and environmental problems inherent in the zinc chloride activation process [11].

Many scientists, however, are unaware of the possible inclusion of phosphorous com-
pounds into the carbon structure during activation with phosphoric acid, which can modify
the surface chemistry of the carbon adsorbent. Recently it was shown that phosphorus
compounds, which are incorporated into the structure during activation with phosphoric
acid, give an acidic character to the surface of activated carbon, which determines their
catalytic properties and adsorption capacity for metal ions [12]. The XPS technique is
most commonly used to identify the structure of phosphorus compounds in phosphorus-
containing carbon materials [13–17]. However, there are disagreements in the literature
regarding the interpretation of experimental XPS spectra, which may lead to different
conclusions regarding the structure of phosphorus-containing compounds. On the one
hand, some researchers conduct deconvolution of the P 2p peak with varying binding
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energy and assign the resulting values to specific substances with close binding energy.
New peaks are added until there is no increase in the quality of fit [15–22]. On the other
hand, other investigators perform deconvolution of the P 2p region to 3–4 peaks with a
priori fixed binding energy values corresponding to certain phosphorus compounds [23–28].
Thus, different structures of phosphorus-containing compounds in activated carbon can be
obtained from the same P 2p spectrum depending on the deconvolution scheme. The use of
an auxiliary method, such as 31P NMR, can assist in identifying the structure of phosphorus
compounds in carbon adsorbents and predicting their characteristics [22,29–37].

In this study, an analysis of the structure of phosphorus-containing compounds in ac-
tivated carbons obtained from polyimides was carried out using XPS and NMR techniques
and the relationship of the structure with acid-base characteristics and adsorption capacity
for copper ions is established.

2. Materials and Methods
2.1. Precursor Polymer

Porous polyimide copolymer, designated as BM-DVB, was chosen as the raw material
for the production of carbon adsorbents in this study. The initial BM-DVB copolymer was
obtained by suspension polymerization of 4,4′-bis(maleimidodiphenyl) methane (50 mol
percent) and divinylbenzene (50 mol percent) in the presence of a pore former (a mixture
of decyl alcohol and benzyl alcohol) [38]. The chemical structure of BM-DVB is shown in
Figure 1.
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2.2. Synthesis of Carbon Adsorbents

Carbon adsorbents were obtained by carbonization of BM-DVB porous copolymer
impregnated with phosphoric acid (acid/precursor ratio 1:1) at temperatures 400–1000 ◦C in
argon flow (H3PO4 series) [39–43]. After carbonization, carbons were thoroughly washed
with hot water in the Soxhlet extractor until the wash waters reached neutral pH. To
investigate the involvement of phosphoric acid in the polymer-to-carbon transition, the
second series of carbons were produced at the same temperature range without the addition
of phosphoric acid (Thermal series).

2.3. Porous Structure

The porous structure of carbons was characterized by nitrogen adsorption measured
at −196 ◦C using the Autosorb-6 adsorption analyzer (Quantachrome, Boynton Beach, FL,
USA). Pore size distribution was calculated by SAIEUS software version 2.0 (www.saieus.
com (accessed on 2 March 2015)) using a slit pore model incorporating surface energetical
heterogeneity and geometrical corrugation [44–46]. The specific surface area, ABET, was
calculated by the BET method using nitrogen adsorption data in the relative pressure range
chosen using consistency criteria [47]. The total, Vtot, micropore, Vmi, and mesopore, Vme,
volumes were calculated from the cumulative pore size distributions as the volume of pores
with sizes 50 nm, less than 2 nm, and between 2 and 50 nm, respectively.

www.saieus.com
www.saieus.com
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2.4. XPS

XPS spectra were obtained using a high vacuum (<8 × 10−9 mbar) multi-chamber
UHV system (Prevac, Poland) equipped with Al Kα line excitation source VG Scienta SAX
100 (12 kV, 30 mA), monochromator VG Scienta XM 780 and hemispherical analyzer Scienta
R4000 (VG Scienta AB, Uppsala, Sweden). The pass energy and energy steps were 200 eV
and 0.5 eV at the survey spectra and 50 eV and 0.1 eV at the detailed spectra. During the
measurement of carbons obtained at 400–600 ◦C without phosphoric acid, flooding the
sample with low-energy electrons was used to neutralize the surface charge. The spectra
were calibrated for a carbon C 1s excitation at a binding energy of 284.7 eV.

The spectra were analyzed and processed with the use of CasaXPS software version
2.3.15 (Casa Software LTD., Teignmouth, UK, casaxps.com, accessed on 2 March 2015).
After subtraction of the Shirley-type background, curve fitting was performed using a
mixed 30% Gaussian–Lorentzian peak shape. The P 2p curves were fitted taking into
account the spin-orbit splitting of 0.85 eV [48,49] and the intensity ratio of the 2p1/2:2p3/2
components as 1:2. The composition (in at%) was determined by considering the integrated
peak areas of C 1s, N 1s, O 1s and P 2p from the survey spectra and the respective sensitivity
factors [50].

2.5. 31P MAS NMR

Nuclear magnetic resonance (NMR) spectra were acquired in the solid state with magic
angle spinning (MAS) using a Bruker Avance III HD 400WB spectrometer (Bruker, Billerica,
MA, USA) at room temperature. 31P MAS NMR spectra were recorded in a single-pulse
sequence with a pulse width of 2 ms, a relaxation time of 5 s, and a spinning frequency
of 18 kHz. An 85% H3PO4 aqueous solution was used as an external reference for the 31P
MAS NMR chemical shift.

2.6. Acid-Base Properties

Acid-base properties of polyimide-derived carbons were investigated by potentiomet-
ric titration [51] performed in a thermostatic vessel at 25 ◦C using a 672 Titroprocessor
combined with 655 Dosimat (Metrohm, Herisau, Switzerland). To prevent contamination
with CO2, the flow of pure argon was used throughout the titration. The proton concen-
tration was monitored using an LL pH glass electrode (Metrohm, Herisau, Switzerland).
Before experiments, the electrode electromotive force was calibrated to proton concentra-
tion by blank titration. Solution equilibria and a correction for possible carbonate and
silicate contaminations were calculated using EST software [52]. Proton affinity distribu-
tions, F(pKa), were calculated from proton-binding isotherms by solving the adsorption
integral equation using the CONTIN method [53–56].

2.7. Copper Binding

The batch technique was used for the determination of copper adsorption. Weighed
amounts of adsorbent (0.1 ± 0.0001 g) were placed into Erlenmeyer flasks. A volume of
20 mL containing 0.1 M NaCl solution as background electrolyte and 0.001 M copper ion
solution was added to each flask. Then different amounts of either 0.1 M HCl or 0.1 M
NaOH were added to change the solution pH. To attain equilibrium the flasks were shaken
for 24 h. After equilibration, the pH was measured with a glass electrode and the metal
ion concentration was determined titrimetrically with EDTA. Copper binding is given
in dimensionless units, defined as the quantity of adsorbed copper divided by the total
amount of copper in the adsorption system.

3. Results and Discussion
3.1. Porous Structure

Nitrogen adsorption-desorption isotherm for parent BM-DVB copolymer belongs to
type II of IUPAC classification [57] characteristic to adsorption on nonporous or macro-
porous adsorbents (Figure 2a). On the contrary, the isotherms for carbons obtained by

casaxps.com
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carbonization of BM-DVB copolymer can be attributed to a combination of type I and IVa of
IUPAC classification. A steep rise of nitrogen uptake at very low p/p0 is due to adsorption
in narrow micropores with enhanced potential while the gradual increase in nitrogen
adsorption at medium to high relative pressures corresponds to monolayer-multilayer ad-
sorption in mesopores followed by capillary condensation accompanied by small hysteresis
of type H4. The isotherms are typical of micro-mesoporous carbons.
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Figure 2. Nitrogen adsorption-desorption isotherms: (a) and pore size distributions; and (b) for
parent BM-DVB copolymer and carbons obtained by carbonization at 600 ◦C of polyimide copolymer
in the presence of phosphoric acid (H3PO4) and without acid (Thermal).

The pore size distribution in the porous polymer BM-DVB reveals a developed meso-
porous structure in the range of pores from 12 to 44 nm, with a maximum at 34 nm and
the absence of micropores (Figure 2b). Carbonization of a porous polymer in the presence
of phosphoric acid results in a complete restructuring of the porous structure, with well-
developed porosity appearing in the range of micropores and small mesopores (0.5–5 nm)
and the polymer’s developed mesoporous structure transforming into small rudimentary
residues. Carbonization of a porous polymer without phosphoric acid, on the other hand,
produces an increase in the size of mesopores and the emergence of a microporous structure.
It should be noted that the microporous structure of carbon obtained without phosphoric
acid is represented by pores in the range of 0.5–1.2 nm, while carbon obtained in the
presence of phosphoric acid has additional pores in the range of 1.2–5 nm.

Carbons produced in the presence of phosphoric acid have a more developed porous
structure than carbons formed in the absence of acid (Table 1). Phosphoric acid enhances
the formation of a microporous structure during carbonation.

3.2. XPS

XPS is a powerful tool for studying the elemental composition and chemical state of
phosphorus in carbon materials. An XPS survey scan revealed that both H3PO4 and the
Thermal series of carbons contain C, O, and N (Table 2). The Thermal series has a greater
carbon content at all temperatures due to the higher oxygen and phosphorus content in
carbons activated with phosphoric acid (H3PO4 series), which decreases the proportion of
carbon. Phosphorus is only found in carbons that have been activated with phosphoric acid.
The phosphorus content increases to 13.2% when carbonization temperature rises to 800 ◦C
and decreases at higher temperatures. This phenomenon is explained by the acceleration
of the formation of phosphorus-carbon compounds when the activation temperature is
raised to 800 ◦C and the breakdown of these compounds at higher temperatures [12]. The
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thermodynamic study discovered that phosphorus compound volatilization is favorable at
temperatures greater than 750 ◦C [12,58]. Furthermore, the thermal gravimetric analysis
showed that mass loss in the 800–900 ◦C temperature range is proportional to phosphorus
content [12,59].

Table 1. Porous structure parameters for parent porous copolymer BM-DVB and polyimide-derived
carbons obtained with (H3PO4-series) and without (Thermal-series) phosphoric acid at different
temperatures.

Temperature ◦C ABET m2/g Vtot cm3/g Vmi cm3/g Vme cm3/g

BM-DVB

55.9 0.338 0.006 (2%) 0.332 (98%)

H3PO4 series

400 11.5 0.026 0.002 (9%) 0.023 (91%)

500 520.2 0.263 0.197 (75%) 0.066 (25%)

600 891.1 0.422 0.324 (77%) 0.098 (23%)

700 676.3 0.336 0.259 (77%) 0.078 (23%)

800 599.4 0.316 0.228 (72%) 0.088 (28%)

900 659.7 0.337 0.255 (76%) 0.082 (24%)

1000 601.9 0.320 0.231 (72%) 0.090 (28%)

Thermal series

400 36.5 0.228 0.004 (2%) 0.223 (98%)

500 37.5 0.182 0.006 (3%) 0.176 (97%)

600 491.3 0.349 0.174 (50%) 0.175 (50%)

700 522.0 0.328 0.194 (59%) 0.134 (41%)

800 356.5 0.199 0.129 (65%) 0.070 (35%)

900 223.9 0.171 0.080 (47%) 0.090 (53)

1000 20.3 0.073 0.002 (2%) 0.071 (98)

Table 2. Chemical composition (in mass%) of polyimide-derived carbons.

Temperature
◦C

H3PO4 Series Thermal Series

C O N P C O N

400 81.2 12.6 2.6 2.2 79.7 15 5.3

500 74.2 15.2 2.3 6.6 84.2 10.4 5.4

600 74.5 12.3 1.6 11.6 91.1 4.3 4.6

700 68.9 15 3.7 12.4 93.2 2.9 3.9

800 66.1 17.1 3.6 13.2 93.3 3.4 3.3

900 68.6 17.3 3.4 10.6 94.4 3 2.6

1000 75.8 14.1 1.7 8.3 92 3.9 2.6

The C 1s peak was deconvoluted into the six components: C-C sp2 bonds at 284.7 eV;
C-C sp3 at 285.2 eV; C-O at 286.3 eV; C=O at 287.4 eV; O=C-O- at 288.7 eV and shake-up
peak that corresponds to π→π* type transitions at 290.5 eV (Figure 3). The content of sp2-
hybridized carbon, which belongs to graphite-like fragments of activated carbon, may be
obtained by such deconvolution [60–63]. Carbonization in the presence of phosphoric acid
results in a significant increase in the content of sp2-hybridized carbon as the temperature
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rises from 400 to 500 ◦C, as seen in Figure 4a. On the contrary, when the BM-DVB copolymer
is carbonized without phosphoric acid, the sp2-hybridized content increases over a larger
temperature range—from 500 to 800 ◦C. This demonstrates that phosphoric acid facilitates
the formation of the polyaromatic structure of carbon at lower temperatures.
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nal (b) of polyimide-derived carbons obtained with (H3PO4-series) and without (Thermal-series)
phosphoric acid at different temperatures.

The changes in concentration of π-electrons were also measured by XPS using the
π→π* shake-up signal [64,65]. It is seen that the shake-up signal is consistently higher
for phosphoric acid-activated carbons (Figure 4b). However, it should be noted, that the
shake-up peaks are superimposed on the broad emission of inelastically scattered electrons,
which occurs starting in about the same energy region [64].

Deconvolution of the P 2p envelope revealed only one peak with P 2p 3/2 binding
energy of 133.1 ± 0.2 eV (Figure 5a). As the carbonization temperature increases, the bind-
ing energy shows some tendency to decrease from 133.4 to 132.8 eV. This peak is relatively
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narrow (FWHM 1.9 ± 0.1 eV), confirming the existence of only one type of phosphorus
species. Analysis of the NIST X-ray Photoelectron Spectroscopy Database [49] shows
that the detected range of binding energies is typical for phosphates and pyrophosphates
(Figure 6). A similar classification was made for other phosphorus-containing carbons
obtained by phosphoric acid activation of polymer and lignocellulosic materials [15,16,66].
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Figure 6. P 2p 3/2 binding energies of different types of phosphorus-containing compounds. Data
from NIST X-ray Photoelectron Spectroscopy Database [49].

However, the surface atomic O/P ratio reaches a value of 2.1 for carbon obtained at
600 ◦C, which suggests the presence of not only phosphates/pyrophosphates (oxyphospho-
rus compounds with P-O bonds) but also substituted phosphates such as carbophosphorus
(P-C bonds) and azaphosphorus (P-N bonds) compounds (Figure 5b).
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3.3. 31P MAS NMR

Figure 7a shows 31P MAS NMR spectra of polyimide-derived carbons obtained with
phosphoric acid (H3PO4 series) at different temperatures. A sharp peak at about 0 ppm
and a somewhat broad signal at 7–12 ppm are visible in the 31P NMR spectra. With con-
fidence, phosphate structures may be attributed to the sharp peak. The second signal is
rather broad and asymmetric, indicating the presence of a mixture of orthophosphates
and/or quadruply attached phosphorus in an asymmetric environment. To reveal these
components the spectra were deconvoluted into five peaks using a Lorentzian line shape
(Figure 7b). The results of deconvolution are presented in Figure 7b. The peak P1 at around
−10 ppm (Figure 8a) only shows up as a shoulder in the main peak P2. The peak P1 may
be ascribed to polyphosphate end groups belonging mainly to PO4 groups linked by one
bridging oxygen atom [16,32,35,67–71]. The content of polyphosphates is rather small but
increases to 24–26% for carbons obtained at 800–900 ◦C (Figure 8b). The peak P2 around
0 ppm is sharp and with confidence may be ascribed to orthophosphate structural units
linked to polyaromatic graphene framework [16,32,35,67–70]. The peak P2 shifts from 0
to −6.0 ppm with increasing carbonization temperature due to the increasing positive
shielding from π-electrons of enlarged graphene layers [16,22,32] (Figure 8a). The peaks
P3 and P4 could be ascribed to pyrophosphate diesters [72] and metal phosphates [73].
The formation of pyrophosphate diesters that crosslink the fragments of polymer struc-
ture at high temperature is reasonable and was proposed as activating mechanism of
phosphoric acid [74]. The highest amount of pyrophosphate diesters is produced around
500 ◦C, however, when carbonization temperature rises above this point, cross-linking
becomes less prominent until it nearly completely disappears at 800–1000 ◦C (Figure 8b).
At high temperatures, orthophosphate structural units become the dominant structure of
phosphorus compounds. The peak P5 at 25–30 ppm is ascribed to phosphonates [75]. The
content of phosphonates is small at all temperatures and amounts to 1–9%. Thus, the 31P
MAS NMR investigation revealed the existence of different types of phosphates as well as
phosphonates in the structure of polyimide-derived carbon obtained with phosphoric acid
at different temperatures (H3PO4 series).
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Figure 8. Chemical shift (a) and relative area (b) of deconvoluted components of 31P MAS NMR
spectra of polyimide-derived carbons obtained with phosphoric acid (H3PO4-series) at different
temperatures.

3.4. Acid-Base Properties

All phosphorus-containing surface compounds discovered by XPS and 31P MAS NMR
techniques, including phosphates, pyrophosphates, and phosphonates, are acidic, and their
presence in the carbon structure imparts an acidic character. Proton-binding isotherms
show that the carbon obtained without phosphoric acid is amphoteric, that is, it is capable
of both adsorption of protons in an acidic solution and dissociation of protons in an alkaline
medium (Figure 9a). The point of zero charge (PZC), where the sorption of protons is zero,
for this carbon is 8.6. On the contrary, the proton-binding isotherm for carbon obtained
with phosphoric acid is located entirely in the negative region (Figure 9a). The point of
zero charge for this carbon has not even been reached, but extrapolation gives a value of
2.3, which is close to the pKa of phosphoric acid.
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The shape of the proton-binding isotherm for phosphorus-containing carbon is char-
acteristic of multifunctional cation exchangers containing functional groups of different
acid strengths. Proton affinity distributions of acid groups calculated by the CONTIN
method show two types of acid surface groups for carbon obtained without phosphoric
acid (Figure 9b). They can be classed as enol or lactone groups (0.090 mmol/g, pKa 9.7) and
phenolic groups (0.266 mmol/g, pKa 11.7). Proton affinity distribution for carbon obtained
with phosphoric acid shows six types of surface groups that may be classed as phosphates
(0.799 mmol/g, pKa1 2.97, 0.515 mmol/g, pKa2 6.69), carboxylic (0.226 mmol/g, pKa 5.16),
and two types of enol and/or lactone (0.107 mmol/g, pKa 8.21 and 0.494 mmol/g, pKa 9.33)
and phenolic groups (1.118 mmol/g, pKa 11.16) (Figure 9b). This result shows radically
different surface chemistry of carbon obtained with phosphoric acid compared to carbon
prepared without acid.

3.5. Copper Binding

Figure 10 shows the pH dependence of copper binding by polyimide-derived carbons
obtained with (H3PO4 series) and without phosphoric acid (Thermal series). Adsorp-
tion of copper ions on all studied adsorbents increases with an increase in the pH of the
solution. The increase in copper adsorption with increasing pH occurs due to the deproto-
nation of surface functional groups and the formation of surface complexes with copper
ions [76–80]. Carbon obtained without phosphoric acid shows very small adsorption of
copper at pH < 5.3 and follows the precipitation curve at higher pHs. This behavior is
expected since carbon obtained without phosphoric acid does not have surface groups
capable of dissociation at pH less than 5–6.
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Figure 10. Copper binding by polyimide-derived carbons obtained with (H3PO4-series) and without
(Thermal-series) phosphoric acid at 800 ◦C. Copper binding by ion-exchange resins with carboxyl
(KB-4) and sulfo groups (KU-23) is provided for comparison.

On the contrary, the adsorption of copper on polyimide-derived carbon obtained with
phosphoric acid is significant even at a very low pH (Figure 10). This carbon exhibits
noticeably greater copper adsorption than the cation-exchange resin with carboxylic groups
KB-4 (an analog of Amberlite IRC 86), which has a very high cation exchange capacity
of 10 mmol/g. Adsorption of copper on the carbon is even greater than that on the very
acidic cation exchange resin KU-23 containing sulfo groups (analog to Amberlyst-15) with a
cation exchange capacity of 4.5 mmol/g. Despite having a lower cation-exchange capacity
of 2.5 mmol/g, phosphorus-containing carbon removes more copper than ion-exchange
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resins. This shows that phosphorus-containing carbon has a higher affinity for copper ions
than ion-exchange resins.

It is worth noting that polyimide-derived carbon obtained with phosphoric acid
exhibits significant copper uptake at pH values lower than PZC (pH < 2.3), i.e., when
the surface of carbon is positively charged, and therefore cation adsorption should be
hindered. This phenomenon has been reported previously for the adsorption of Cd(II),
Hg(II), and Cr(III) and has been explained as being due to an ion exchange reaction
between the delocalized protonated π-electrons of the graphene layer of carbon (-Cπ-H3O+)
and the metal cation [81–85]. The high adsorption capacity of polyimide-derived carbon
obtained with phosphoric acid in an acidic environment indicates its potential for the
extraction of heavy metal ions from acidic solutions, as well as its use as an enterosorbent
for detoxification of the body from toxic metals in the acidic environment of the stomach.

4. Conclusions

Carbonization of porous polyimide copolymer results in the formation of carbon
adsorbents with a developed porous structure (ABET is up to 891 m2/g). Carbons produced
in the presence of phosphoric acid have a more developed porous structure than carbons
formed in the absence of acid. Phosphoric acid enhances the formation of a microporous
structure during carbonation.

The chemical structure of polyimide-derived carbons obtained with and without
phosphoric acid has been investigated by XPS and 31P MAS NMR methods. Deconvo-
lution of the P 2p peak with variable binding energy showed the presence of only phos-
phates/polyphosphates. However, a low value of the O/P ratio is an indirect indication
of the possible presence of phosphonates. 31P MAS NMR study revealed the existence of
several kinds of phosphates as well as a minor quantity (1–9%) of phosphonates.

All the structures of phosphorus compounds (phosphates and phosphonates) detected
by XPS and 31P MAS NMR methods have acidic properties and therefore impart the
carbon surface an acidic character. The presence of phosphorus-containing compounds
gives carbon the ability to absorb metal cations. Polyimide-derived carbon obtained with
phosphoric acid has a large sorption capacity for copper, which exceeds adsorption by
ion-exchange resins with carboxyl or sulfo groups. Despite having a lower cation-exchange
capacity, phosphorus-containing carbon removes more copper than ion-exchange resins.
This shows that phosphorus-containing carbon has a higher affinity for copper ions than ion-
exchange resins. Phosphorus-containing polyimide-derived carbon is a potential adsorbent
for the concentration, separation, or removal of harmful metal contaminants from potable
water, wastewater, and other aqueous environments due to its high adsorption capacity for
metal cations.
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