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Abstract: For the first time, graphene-phosphorene structures were synthesized using the plasma-
assisted electrochemical method. The catalytic activity of the composite obtained in the electrolytic
plasma mode and its mixtures with few-layer graphene structures toward the hydrogen evolution
reaction was studied. A substantial increase in the catalytic activity of the phosphorene structures
towards the hydrogen evolution reaction was realized by mixing them with few-layer graphene
structures. The catalyst demonstrates excellent activity towards the hydrogen evolution reaction in
alkaline media with a low overpotential of 940 mV at a current density of 10 mA·cm−2 and a small
Tafel slope of 130 mV dec−1.

Keywords: phosphorene; few-layer graphene structures; electrolytic plasma; electrochemical exfoliation
of graphite; hydrogen evolution reaction

1. Introduction

Compared to other allotropes, layered black phosphorus (BP) is the most thermo-
dynamically stable and has a relatively high conductivity; see, for example, review [1].
Moreover, black phosphorus is quite easily split into monolayer “corrugated” sheets,
so-called phosphorene, consisting of two-layer six-membered rings, which, due to sp3

hybridization, resemble honeycomb graphene-like structures in a vertical projection [2]. A
unique feature of phosphorene is the presence of a lone electron pair which can serve as an
active center for chemical and electrochemical reactions.

It should be mentioned that, in the view of the “green” energy concept, hydrogen is of
great interest as the cleanest fuel, which in the future could replace fossil fuels. Hydrogen
is also used as a raw material in various chemical syntheses, for example, the synthesis of
ammonia, for the purification of metals as well as in semiconductor manufacturing [3–5].
Of note, in the latter case, high purity hydrogen is required, which can only be produced
using water electrolysis. Of particular importance, the hydrogen evolution reaction (HER),
sustainable and facile, requires economical and efficient electrocatalysts to improve energy
efficiency [6–8]. Despite the fact that Pt-based catalysts are widely used for HER due to
the minimum binding energy of Pt with hydrogen, their high cost and scarce resources
limit their widespread application in water electrolysis. Hence, the development of highly
efficient and low-cost noble metal-free hydrogen evolution reaction catalysts is an important
research direction in this field. According to modern notions [9,10], phosphorene structures
can be utilized as a promising component of the catalysts of the hydrogen evolution reaction
and the electrochemistry of organic compounds, and their electrocatalytic characteristics
can be greatly enhanced by doping or functionalization.

According to the data in the literature, three methods of phosphorene production from
bulk BP are the most widely used, namely, ultrasonic liquid exfoliation [1], electrochemical
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exfoliation [11,12], and grinding in a ball mill [13]. Electrocatalytic studies of electrodes
with a predominantly basal and edge orientation of black phosphorus demonstrated a
significantly higher catalytic activity of the edges. This can be explained by theoretical
calculations which predict the semiconductor nature of the basal plane and the metallic
behavior of the BP edges [14]. To increase catalytic activity, in addition to the orientation
of phosphorene layers on the electrode surface, a number of other methods have been
proposed: the doping of black phosphorus with nitrogen during grinding in a ball mill
with the addition of urea [15] and the combination of phosphorene with other active mate-
rials [16,17], such as MoS2 and Ni2P. In these works, a significant increase in the catalytic
activity towards the hydrogen evolution reaction after the modification of phosphorene
was explained not by an increase in the active center number but by an increase in the
density of the charge carriers by three orders of magnitude. In [18], the traditional method
of increasing the catalytic activity towards the HER was realized by embellishing phos-
phorene with nanoparticles of noble metals, such as Pt, Ag, and Au; as a result, a higher
activity of obtained catalysts was demonstrated compared to nanoparticles of these metals
on a carbon substrate.

In the present work, the plasma-assisted electrochemical synthesis of a composite of
graphene-phosphorene structures (GPS) is proposed and their catalytic activity toward the
hydrogen evolution reaction is studied.

2. Experimental Procedure

Black phosphorus was obtained from red phosphorus by the solvothermal method [19,20].
Thus, 1–2 g of red phosphorus (reagent grade, Sigma Aldrich, St. Louis, MO, USA) was
carefully ground underwater in a jade mortar, and the resulting aqueous suspension was
placed in a 30 mL autoclave and kept in a muffle furnace at 190 ◦C for 24 h to purify
phosphorus from its oxides. After cooling, the red phosphorus powder was washed
thoroughly with water and then with alcohol and dried in a vacuum oven for 12 h at 60 ◦C.
The resulting powder was dispersed in ethylenediamine (reagent grade, Sigma Aldrich, St.
Louis, MO, USA). The preliminary suspension was purged with argon and placed in an
autoclave for 12 h at 190 ◦C. After cooling, the resulting product was washed thoroughly
with water and then with alcohol and dried in a vacuum oven for 12 h at 60 ◦C.

Graphene-phosphorene structures were synthesized in a one-stage process which was
carried out using a homemade setup. The setup fed graphite electrodes immersed in an
electrolyte solution with pulses of different polarity voltage U with an amplitude up to
300 V. Pulse duration was 10 ms and the rise time was ca. 0.5 µs. The electrolytic plasma
mode was realized due to a significant difference in the size of the graphite electrodes [21].
Nuclear graphite GR-280 was utilized. The black phosphorous exfoliation induced by
electrolytic plasma was carried out in a Teflon reactor, which was a cylinder with holes in
the side wall for the electrolyte; a schematic diagram of the reactor and its configuration in
the cell is depicted in Figure 1. A total of 50 mg of BP powder was placed in the reactor
and closed with a graphite rod tightly attached to the inner walls of the cylinder with a
small taper at the tip. As a result, when the reactor was placed in a cell for exfoliation, the
graphite rod was in the solution within ca. 0.5 cm line. The process was carried out in a 1 M
Na2SO4 solution in the electrolytic plasma mode (U = 300 V). Sodium sulfate was of reagent
grade purity from ChimMed (Moscow, Russia). After several stages of decantation and
centrifugation, the resulting aqueous dispersion was transferred into a stable suspension of
the nanocomposite in water with a concentration of ca 2 mg·mL−1.
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Figure 1. Schematic diagram of the reactor and cell configuration for the high-voltage pulse 
exfoliation of black phosphorus and graphite: 1—the source of high-voltage impulses, 2—holes for 
electrolyte, 3—black phosphorus, 4—magnetic stirrer, and 5—Teflon reactor. 

Samples for scanning electron microscopy (SEM) and X-ray photoelectron 
spectroscopy (XPS) were prepared as follows. The ultrasonicated suspension of the GPS 
composite was drop-cast onto the surface of a silicon substrate and air-dried at ambient 
temperature. The SEM images were obtained using a scanning electron microscope, Zeiss 
SUPRA 25 (Carl Zeiss, Jena, Germany), equipped with an energy dispersive X-ray 
spectroscopy (EDX) analysis EDS detector. XPS spectra were acquired on a Specs 
PHOIBOS 150 MCD electron spectrometer (Specs, Berlin, Germany) equipped with an Mg 
cathode (hν = 1253.6 eV). During spectra measurements, the vacuum in the spectrometer 
chamber was less than 4 × 10−8 Pa. The constant transmission energy mode was used to 
record spectra; 40 eV for survey spectra and 10 eV for individual lines. The survey 
spectrum was taken in 1.00 eV increments, and the individual line spectra were gathered 
in 0.03 eV increments. The Shirley method [22] was used to subtract the background, and 
the CasaXPS software (version 2.3.19, Casa Software Ltd., Teignmouth, UK) was used for 
spectra deconvolution. The atomic content was quantified with respect to the sensitivity 
factors from the CasaXPS elemental library. The analyzed area was 300–700 mm2 with an 
information depth of 1–2 nm. 

The hydrogen evolution reaction was studied by linear-sweep voltammetry (LSV) 
carried out in a three-electrode cell with the usage of a VED-06 rotating disk electrode 
setup (Volta Ltd., Saint-Petersburg, Russia) and an IPC Pro-L potentiostat (A.N. Frumkin 
Institute of Physical Chemistry and Electrochemistry, RAS, Moscow, Russia). The 
working electrode was a glassy carbon (GC) disc (Ø 3 mm) pressed in Teflon and the 
counter electrode was platinum foil. The reference electrode was Ag/AgCl (sat. KCl). A 
total of 7 μL of the aqueous suspension of composite (ca. 2 mg·mL−1) with ca. 0.1 wt.% of 
Nafion polymer was drop-cast onto the glassy carbon electrode and then dried in the 
ambient environment. Therefore, the catalyst loading was ca. 200 μg·cm−2. The LSV 
measurements were carried out in an Ar-saturated 0.1 M KOH solution at a potential scan 
rate ν = 10 mV·s−1 and electrode rotation rate of 2000 rpm. 

  

Figure 1. Schematic diagram of the reactor and cell configuration for the high-voltage pulse exfoliation
of black phosphorus and graphite: 1—the source of high-voltage impulses, 2—holes for electrolyte,
3—black phosphorus, 4—magnetic stirrer, and 5—Teflon reactor.

Samples for scanning electron microscopy (SEM) and X-ray photoelectron spec-
troscopy (XPS) were prepared as follows. The ultrasonicated suspension of the GPS
composite was drop-cast onto the surface of a silicon substrate and air-dried at ambient
temperature. The SEM images were obtained using a scanning electron microscope, Zeiss
SUPRA 25 (Carl Zeiss, Jena, Germany), equipped with an energy dispersive X-ray spec-
troscopy (EDX) analysis EDS detector. XPS spectra were acquired on a Specs PHOIBOS
150 MCD electron spectrometer (Specs, Berlin, Germany) equipped with an Mg cathode
(hν = 1253.6 eV). During spectra measurements, the vacuum in the spectrometer chamber
was less than 4 × 10−8 Pa. The constant transmission energy mode was used to record
spectra; 40 eV for survey spectra and 10 eV for individual lines. The survey spectrum
was taken in 1.00 eV increments, and the individual line spectra were gathered in 0.03 eV
increments. The Shirley method [22] was used to subtract the background, and the CasaXPS
software (version 2.3.19, Casa Software Ltd., Teignmouth, UK) was used for spectra decon-
volution. The atomic content was quantified with respect to the sensitivity factors from
the CasaXPS elemental library. The analyzed area was 300–700 mm2 with an information
depth of 1–2 nm.

The hydrogen evolution reaction was studied by linear-sweep voltammetry (LSV)
carried out in a three-electrode cell with the usage of a VED-06 rotating disk electrode setup
(Volta Ltd., Saint-Petersburg, Russia) and an IPC Pro-L potentiostat (A.N. Frumkin Institute
of Physical Chemistry and Electrochemistry, RAS, Moscow, Russia). The working electrode
was a glassy carbon (GC) disc (Ø 3 mm) pressed in Teflon and the counter electrode was
platinum foil. The reference electrode was Ag/AgCl (sat. KCl). A total of 7 µL of the
aqueous suspension of composite (ca. 2 mg·mL−1) with ca. 0.1 wt.% of Nafion polymer
was drop-cast onto the glassy carbon electrode and then dried in the ambient environment.
Therefore, the catalyst loading was ca. 200 µg·cm−2. The LSV measurements were carried
out in an Ar-saturated 0.1 M KOH solution at a potential scan rate ν = 10 mV·s−1 and
electrode rotation rate of 2000 rpm.
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3. Results and Discussion

The scanning electron microscopy images of the synthesized graphene-phosphorene
nanocomposite are presented in Figure 2. As can be seen, the composite consists of partially
agglomerated few-layer graphene structures (FLGS) whose surface is fully covered with
phosphorene particles. FLGS are graphene-like particles with rough edges with character-
istic lateral sizes of 0.05–1 µm and a thickness of 2–5 nm; the phosphorene particles are
grains 100–200 nm in size. According to the EDX data, during 1 h of synthesis, composites
containing few-layer graphene structures not exceeding 25 wt.% were obtained.
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Figure 2. SEM images of the graphene-phosphorene composite at different magnifications.

The results of the XPS elemental analysis of the surface of the GPS composite are
presented in Table 1. According to [23,24], sulfur can be attributed to the C–SO2 and
C–SO3 groups. Oxygen-containing groups can be identified by means of the analysis of C
1s high-resolution XPS spectrum. The Doniach/Sunjic hybrid function [25] was used to
consider the asymmetry observed for the main C 1s peak. Figure 3 shows the C 1s spectrum
of the graphene-phosphorene composite sample and its deconvolution into individual
peaks. The peak assignment was performed mainly on basis of [26–30] and the obtained
surface concentrations of oxygen-containing groups are presented in Table 2. As is seen,
the oxygen-containing groups on the surface of the FLGS component of the GPS composite
are mainly C=O and hydroxyl/epoxy ones. The concentrations of these groups are slightly
less than those of the FLGS obtained in the electrolytic plasma mode [23]. P 2p high-
resolution spectrum of graphene-phosphorene composite (Figure 4) can be represented by
two peaks at 129.5 and 128.6 eV which correspond to the 2p1/2 and 2p3/2 states of elemental
phosphorus, respectively [20].

C 2022, 8, x FOR PEER REVIEW 5 of 8 
 

 
Figure 3. C 1s high-resolution spectrum of the graphene-phosphorene composite. 

Table 2. Content of the oxygen-containing groups on the GPS surface. 

C–O–C, at.% C=O, at.% COOH, at.% 
12.5 4.9 1.0 

 
Figure 4. P 2p high-resolution spectrum of the graphene-phosphorene composite. 

To study the catalytic activity towards the hydrogen evolution reaction, mixtures of 
the obtained composite with few-layer graphene structures synthesized in the electrolytic 
plasma mode [23] were prepared. Figure 5 shows LSVs for the GC electrodes covered with 
FLGS, a composite of graphene-phosphorene structures, and the GPS/FLGS mixture (1:1 
weight ratio) in an Ar-saturated solution of 0.1 M KOH. As can be seen, the HER 
overpotential decreases in the series FLGS, GPS, and GPS/FLGS (1:1). Obviously, the 
graphene-phosphorene composite demonstrates higher currents of hydrogen evolution 
due to the phosphorene which acts as an HER catalyst. Thus, the highest catalytic activity 
towards the hydrogen evolution reaction, exceeding that for each separate component, 
was demonstrated by the composition containing equal mass amounts of the GPS 

Figure 3. C 1s high-resolution spectrum of the graphene-phosphorene composite.



C 2022, 8, 79 5 of 8

Table 1. Elemental composition of the GPS surface.

C, at.% O, at.% P, at.% S, at.%

68.6 19.4 10.9 1.1

Table 2. Content of the oxygen-containing groups on the GPS surface.

C–O–C, at.% C=O, at.% COOH, at.%

12.5 4.9 1.0
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Figure 4. P 2p high-resolution spectrum of the graphene-phosphorene composite.

To study the catalytic activity towards the hydrogen evolution reaction, mixtures of
the obtained composite with few-layer graphene structures synthesized in the electrolytic
plasma mode [23] were prepared. Figure 5 shows LSVs for the GC electrodes covered
with FLGS, a composite of graphene-phosphorene structures, and the GPS/FLGS mixture
(1:1 weight ratio) in an Ar-saturated solution of 0.1 M KOH. As can be seen, the HER
overpotential decreases in the series FLGS, GPS, and GPS/FLGS (1:1). Obviously, the
graphene-phosphorene composite demonstrates higher currents of hydrogen evolution
due to the phosphorene which acts as an HER catalyst. Thus, the highest catalytic activity
towards the hydrogen evolution reaction, exceeding that for each separate component, was
demonstrated by the composition containing equal mass amounts of the GPS composite
and FLGS. The overpotential values at 10 mA·cm−2 for FLGS, GPS, and GPS/FLGS (1:1)
are 1150, 1080, and 940 mV, respectively. Tafel plots presented in the inset in Figure 5
show slopes at 250, 200, and 130 mV·dec−1 for FLGS, GPS, and GPS/FLGS (1:1), respec-
tively. The smallest value of the Tafel slope for the GPS/FLGS composite argues for the
best catalytic performance in the HER of this sample. This effect can be explained by
the increase in conductivity [17,31,32] of the GPS/FLGS mixture in comparison with the
initial graphene-phosphorene composite. Namely, few-layer graphene structures act as con-
ductive substrates, and phosphorene particles are more evenly distributed in the catalyst
layer. Therefore, more active centers become accessible to the electrolyte, which leads to an
increase in catalytic activity towards the HER. This interesting synergistic effect should be
studied in more detail in the future.



C 2022, 8, 79 6 of 8

C 2022, 8, x FOR PEER REVIEW 6 of 8 
 

composite and FLGS. The overpotential values at 10 mA·cm−2 for FLGS, GPS, and 
GPS/FLGS (1:1) are 1150, 1080, and 940 mV, respectively. Tafel plots presented in the inset 
in Figure 5 show slopes at 250, 200, and 130 mV·dec−1 for FLGS, GPS, and GPS/FLGS (1:1), 
respectively. The smallest value of the Tafel slope for the GPS/FLGS composite argues for 
the best catalytic performance in the HER of this sample. This effect can be explained by 
the increase in conductivity [17,31,32] of the GPS/FLGS mixture in comparison with the 
initial graphene-phosphorene composite. Namely, few-layer graphene structures act as 
conductive substrates, and phosphorene particles are more evenly distributed in the cat-
alyst layer. Therefore, more active centers become accessible to the electrolyte, which leads 
to an increase in catalytic activity towards the HER. This interesting synergistic effect 
should be studied in more detail in the future. 

 
Figure 5. The hydrogen evolution reaction with different catalysts in an Ar-saturated 0.1 M KOH 
solution, v = 10 mV·s−1, and an electrode rotation rate of 2000 rpm. The inset shows the correspond-
ing Tafel plots. 

4. Conclusions 
The plasma-assisted electrochemical synthesis of graphene-phosphorene structures 

has been carried out for the first time. In this paper, the catalytic activity towards the hy-
drogen evolution of the GPS composite and its mixtures with few-layer graphene struc-
tures was studied. A substantial increase in the catalytic activity of phosphorene struc-
tures towards the hydrogen evolution reaction was realized by mixing them with few-
layer graphene structures, due to the increase in the electrical conductivity of the resulting 
composite. The present work demonstrates that combining graphene-phosphorene and 
few-layer graphene structures is an efficient approach to designing an HER electrocata-
lyst. 

Author Contributions: Conceptualization, A.G.K.; Data curation, V.K.K., V.P.V. and R.A.M.; For-
mal analysis, N.S.K. and A.S.K.; Investigation, N.S.K., V.K.K. and R.A.M.; Methodology, R.A.M. and 
A.G.K.; Project administration, R.A.M. and A.G.K.; Resources, A.S.K.; Supervision, A.G.K.; Valida-
tion, V.K.K. and R.A.M.; Visualization, N.S.K.; Writing—original draft, V.K.K., R.A.M. and A.G.K.; 
Writing—review and editing, V.K.K., V.P.V. and A.G.K. All authors have read and agreed to the 
published version of the manuscript. 

Funding: Russian Science Foundation (grant no. 22-23-00774). 

Institutional Review Board Statement: Not applicable. 

Figure 5. The hydrogen evolution reaction with different catalysts in an Ar-saturated 0.1 M KOH
solution, v = 10 mV·s−1, and an electrode rotation rate of 2000 rpm. The inset shows the corresponding
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4. Conclusions

The plasma-assisted electrochemical synthesis of graphene-phosphorene structures
has been carried out for the first time. In this paper, the catalytic activity towards the
hydrogen evolution of the GPS composite and its mixtures with few-layer graphene struc-
tures was studied. A substantial increase in the catalytic activity of phosphorene structures
towards the hydrogen evolution reaction was realized by mixing them with few-layer
graphene structures, due to the increase in the electrical conductivity of the resulting
composite. The present work demonstrates that combining graphene-phosphorene and
few-layer graphene structures is an efficient approach to designing an HER electrocatalyst.
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