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Abstract: Methanol, also known as wood alcohol, is a common hazardous by-product of alcoholic
beverage fermentation and serves as a crucial indicator for assessing the safety of alcoholic beverages.
However, the metabolic mechanisms of methanol production during the solid-state fermentation of
Chinese Baijiu remain unclear. In this study, we sought to determine the primary stage of methanol
production in Chinese Baijiu by measuring the methanol content at different stages of fermentation.
High-throughput multi-omics sequencing techniques were employed to elucidate methanol metabolic
pathways and associated microorganisms. In addition, a comprehensive analysis incorporating
environmental factors and microbial interactions was conducted to explore their combined effects
on methanol production. Methanol was predominantly produced during pit fermentation, with
the most significant increase observed within the first seven days. Microorganisms such as Pichia
kudriavzevii, Byssochlamys spectabilis, Penicillium, and Aspergillus played a regulatory role in methanol
content during the first seven days through their involvement in butyrate and methane metabolic
pathways and pectin degradation modules. During Baijiu production, various types of molds and
yeasts participate in methanol production. Differences in their abundance within fermentation
cycles may contribute to variations in methanol content between stages. Lactobacillus accumulated
abundantly in the first seven days in each stage, suppressing methanol-metabolizing microorganisms.
In addition, the increased acidity resulting from Lactobacillus metabolism may indirectly promote
methanol generation.

Keywords: methanol; Baijiu; pit fermentation; multi-omics; high-throughput sequencing; environ-
mental factors

1. Introduction

Methanol, also known as wood alcohol, is a harmful substance that is generated during
the fermentation of alcoholic beverages. Its consumption can lead to neurodegeneration and
exert a paralytic effect on the blood vessels. The inadvertent consumption of methanol or
beverages containing excessive amounts of methanol can result in blindness, liver disease,
and even death [1,2]. Countries worldwide have strict regulations on the methanol content
in alcoholic beverages [3]. Therefore, a clear understanding of the mechanisms and factors
influencing methanol production during Baijiu fermentation is essential for controlling its
methanol content and ensuring the safety of Baijiu consumption.

Previous studies indicated that methanol production in alcoholic beverages primarily
stems from the breakdown of pectin [4]. Pectin, which consists mainly of methyl-esterified
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polygalacturonic acid, is a heterogeneous and acidic polysaccharide with high molecular
weight [5]. It is a major component of grains, vegetables, fruits, and fiber [6]. Pectin breaks
down into methanol under high-temperature treatment, or its production is catalyzed by
pectinesterase [7]. Previous studies on fruit wine production explored various aspects of
the process, including the types of yeast used for brewing, possible contaminants that may
be present [8], pectinase types and activity [9,10], and environmental factors [11] related
to methanol production through the pectin pathway. Contrary to the commonly used
single-strain liquid fermentation for fruit wine production, Chinese Baijiu production em-
ploys a multicycle solid-state fermentation process [12] (Figure 1) involving more complex
substances, biological interactions, and variations [13,14]. The mechanisms of methanol
production may differ in this context; however, research related to this topic is currently
unavailable.
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High-throughput sequencing technologies have been widely applied in microbial
studies of the Baijiu fermentation processes. Amplicon sequencing can analyze microbial
community structure and succession [15], whereas metagenomic sequencing can delve
deeper into the distribution and expression of microbial functional genes in the community,
determining the role of each microorganism in the community [16]. By detecting various
physicochemical indicators such as flavor substances and environmental factors, correlation
analysis can establish connections between environmental factors, microbial communities,
and the substances under study [17,18].

In this study, we first determined the methanol content in fermented grains during the
two major fermentation processes leading to Baijiu production, heap and pit fermentation,
to identify the main stage at which methanol production occurs. Subsequently, metage-
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nomic and metatranscriptomic sequencing was performed on the fermented grains at differ-
ent time points during pit fermentation in the first stage, followed by species and functional
annotation to construct the methanol metabolic pathway and identify the microorganisms
involved in methanol metabolism. Finally, the detection of six environmental factors,16S
rRNA amplicon sequencing, and Internal Transcribed Spacer (ITS) amplicon sequencing
were performed on the fermented grains at different time points during pit fermentation in
all stages. A redundancy analysis was used to observe the effects of environmental factors
on the microbial community. Various statistical methods have been employed to inves-
tigate the microbial communities that may affect methanol content. Partial least squares
path modeling (PLS-PM) was used to explore the influence of environmental factors and
microorganisms on the methanol content in the main production cycle.

This study elucidated the methanol accumulation patterns during Baijiu fermentation.
Additionally, it we explored the pathways of methanol accumulation, the microorganisms
involved, and the environmental factors influencing methanol accumulation based on multi-
omics analysis. This study provides a partial theoretical basis for guiding the regulation
of methanol metabolism and controlling the methanol content during Baijiu fermentation,
thereby contributing to the safety of Baijiu consumption.

2. Materials and Methods
2.1. Sample Collection and Preprocessing

Several steps are involved in the fermentation process of Baijiu using steamed gluti-
nous sorghum as the chief raw material, such as the representative variety “Hongyingzi”.
The fermentation process consisted of eight stages, including Xiasha, Zhaosha, and ad-
ditional six stages, each lasting approximately 40 d, with the entire fermentation cycle
lasting approximately 10 months. In the Xiaosha stage, sorghum was crushed, steamed,
and washed before being mixed with the fermentation starter, Daqu. After approximately
4 d of heap fermentation and 30 d of pit fermentation, the pit was opened, and the liquor
was distilled. In the Zhaosha stage, after distillation, a portion of the distilled grain mash
was mixed with additional sorghum, and the process was repeated in a manner similar to
that of the Xiaosha cycle. No additional sorghum was added during the six final stages.
After distillation, the distilled grain mash was mixed with Daqu and subjected to heap
and pit fermentation. During distillation, chaff was added to evenly heat the grain mash
and increase the alcohol yield (Figure 1). Samples were collected during the heap and
pit fermentation processes from a Baijiu distillery in Guizhou province, China, (28.14◦ N,
106.18◦ E) in the years 2020 and 2021. Sampling was conducted at different times during
all stages, i.e., the Xiasha, Zaosha as well as the last six stages. Heap surface samples
were collected from a height of 0.6 m, 0.2 m away from the outer edge of the heap, and
heap core samples were collected from a height of 0.6 m, 1.5 m away from the outer edge
of the heap. Pit fermentation samples were collected 0.2 m from the pit wall and 1 m
from the pit surface (Figure 2A) on days 0, 3, 7, 14, 21, and 28. Each sample, weighing
500 g, was placed in a sterile sealed bag and temporarily stored at −20 ◦C. The methanol
content was determined for all samples. Environmental factors, such as ethanol, were
measured for all pit fermentation samples, and 16S rRNA and ITS amplicon sequencing
were performed. Metagenomic and metatranscriptomic sequencing was performed on the
of pit fermentation samples from the first stage.



Fermentation 2024, 10, 175 4 of 18
Fermentation 2024, 10, x FOR PEER REVIEW 4 of 19 
 

 

                             

 
Figure 2. Changes in indicators during pit fermentation. (A): Changes in methanol content in each 
fermentation stage. (B): Changes in pectin content during pit fermentation. (C): The ratio of metha-
nol content after complete pectin conversion to the actual methanol content during pit fermentation. 
(D): Changes in acetic acid content and acidity during pit fermentation. (E): Changes in starch and 
reducing sugar content during pit fermentation. (F): Changes in moisture content during pit fer-
mentation. (G): Changes in ethanol content during pit fermentation. 

2.2. Chemical Indicator Detection 
The methanol content of the fermented grain samples was determined by headspace 

gas chromatography. Specifically, 1 g of fermented grain was weighed into an extraction 
bottle, and 4 mL of distilled water was added along with 2-methyl-2-butanol as an internal 
standard. The analysis was conducted on a DB-23 capillary column under the following 
chromatographic conditions: temperature starting at 40 °C, held for 6 min, followed by an 
increase to 180 °C at 10 °C·min−1, with the final temperature held for 4 min. The detection 
was performed using a hydrogen flame ionization detector set to 250 °C. Nitrogen served 
as the carrier gas, with a 3:1 split ratio. The headspace injection volume was 1.0 µL, and 
the methanol retention time was 6.950 min (Figure S1A). 

For pectin detection, 5 g of a fermented grain sample was homogenized with 50 mg 
of pectinase and 200 mL of hydrochloric acid solution (pH 4). After the homogenization 
and an ultrasound treatment, the supernatant was subjected to liquid chromatography–
mass spectrometry (LC-MS) to determine the galacturonic acid content. A Waters Xbridge 
Amide liquid chromatography column, with an injection volume of 10 µL and acetoni-
trile–water (containing 5 mmol/L of acetic acid) as the mobile phase at a flow rate of 1 
mL/min, was used, and detection was performed at a wavelength of 210 nm. The entire 
analysis took 20 min, with the galacturonic acid m/z ratio being 193.03 (Figure S1B). 

Figure 2. Changes in indicators during pit fermentation. (A): Changes in methanol content in each
fermentation stage. (B): Changes in pectin content during pit fermentation. (C): The ratio of methanol
content after complete pectin conversion to the actual methanol content during pit fermentation.
(D): Changes in acetic acid content and acidity during pit fermentation. (E): Changes in starch
and reducing sugar content during pit fermentation. (F): Changes in moisture content during pit
fermentation. (G): Changes in ethanol content during pit fermentation.

2.2. Chemical Indicator Detection

The methanol content of the fermented grain samples was determined by headspace
gas chromatography. Specifically, 1 g of fermented grain was weighed into an extraction
bottle, and 4 mL of distilled water was added along with 2-methyl-2-butanol as an internal
standard. The analysis was conducted on a DB-23 capillary column under the following
chromatographic conditions: temperature starting at 40 ◦C, held for 6 min, followed by an
increase to 180 ◦C at 10 ◦C·min−1, with the final temperature held for 4 min. The detection
was performed using a hydrogen flame ionization detector set to 250 ◦C. Nitrogen served
as the carrier gas, with a 3:1 split ratio. The headspace injection volume was 1.0 µL, and the
methanol retention time was 6.950 min (Figure S1A).

For pectin detection, 5 g of a fermented grain sample was homogenized with 50 mg of
pectinase and 200 mL of hydrochloric acid solution (pH 4). After the homogenization and
an ultrasound treatment, the supernatant was subjected to liquid chromatography–mass
spectrometry (LC-MS) to determine the galacturonic acid content. A Waters Xbridge Amide
liquid chromatography column, with an injection volume of 10 µL and acetonitrile–water
(containing 5 mmol/L of acetic acid) as the mobile phase at a flow rate of 1 mL/min, was
used, and detection was performed at a wavelength of 210 nm. The entire analysis took
20 min, with the galacturonic acid m/z ratio being 193.03 (Figure S1B).

Environmental factors, including moisture, acidity, and starch, reducing sugar, alcohol,
and acetic acid contents, were measured in the fermented grain samples. The moisture
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content was determined by drying the samples at 125 ◦C until a constant weight was
achieved. Acidity and the alcohol, starch, reducing sugar, and organic acid contents were
determined using previously established protocols [16,19,20]. Six replicates were examined
for each sample for the methanol content analysis, and three replicates for each sample for
the other analyses.

2.3. Total DNA and Total RNA Extraction and Sequencing

Total DNA was extracted from the microbial samples using the DNeasy PowerSoil
kit (Qiagen, Hilden, Germany). The DNA samples meeting the quality standards were
subjected to random fragmentation using a sonicator after adding the fragmentation buffer.
The resulting short DNA fragments were used for library construction. Total RNA was
extracted from the microbial samples using the RNeasy PowerSoil kit (Qiagen, Hilden,
Germany). Ribo-ZeroTM rRNA Removal kit (Illumina, San Diego, USA) and the Ribo-
ZeroTM Magnetic Gold kit (Illumina, San Diego, USA) were used to remove rRNA from
total RNA. Fragmented RNA was used for library construction. The libraries that passed
the quality control were subjected to paired-end (PE) sequencing on an Illumina HiSeq 2500
high-throughput sequencing platform. Metagenomic and metatranscriptomic sequencing
were conducted by Guangdong Magigene Technology Co., Ltd. (Guangdong, China).

2.4. DNA Extraction, Amplification, and Sequencing

After grinding the samples in liquid nitrogen, total DNA was extracted from the
microbial samples using the DNeasy PowerSoil kit (Qiagen, Hilden, Germany). The
concentration of the total microbial DNA was determined using a NanoDrop 2000 spec-
trophotometer, and the quality and integrity of the DNA were assessed using 1% agarose
gel electrophoresis. For bacterial full-length 16S rDNA amplification, the primers used were
27F (5′-AGRGTTYGATYMTGGCTCAG-3′) and 1492R (5′-RGYTACCTTGTTACGACTT-3′).
For fungal rDNA ITS1 region amplification, the primers were ITS1 (5′-CTTGGTCATTTAG
AGGAAGTAA-3′) and ITS2 (5′-GCTGCGTTCTTCATCGATGC-3′). The PCR amplification
conditions were as follows: initial denaturation at 94 ◦C for 3 min, denaturation at 94 ◦C
for 30 s, annealing at 55 ◦C for 45 s, extension at 72 ◦C for 45 s, and, after 30 cycles, a final
extension at 72 ◦C for 10 min. The full-length 16S rRNA amplification sequences were
obtained using the PacBio sequencing platform, whereas the ITS amplification sequences
were obtained using the Hiseq2500 sequencing platform. The amplification products were
sequenced by Suzhou Genewiz Technology Co., Ltd. (Suzhou, China).

2.5. Data Analysis

For both metagenomic and metatranscriptomic data, low-quality sequences were
removed using the Trimmomatic software (v0.39) [21]. De novo assembly was performed
using Trinity (v2.4.0) [22]. Diamond (v2.0) [23] was used for sequence alignment, and
the results were input into MEGAN (v6.0) to obtain microbial taxonomic information.
High-quality reads were compared to sequences in non-redundant protein databases
and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database to obtain functional
annotation information. Differential analysis was conducted using the DESeq2 package in R,
and correlation heatmap analysis was performed using the pheatmap package. Spearman’s
correlations among microorganisms were analyzed using SPSS (v27) with a significance
level at p < 0.05. Significant relationships with |r| > 0.7 and p < 0.05 were visualized using
the igraph package in R.

For the amplicon sequencing data, multiple sequencing results from the same molecule
were processed to obtain accurate consensus sequences. Amplicons from different samples
were then split using barcode information, and low-quality sequences were filtered out,
obtaining raw reads. FLASH software (v1.2.11) was used to pair dual-end sequencing reads
based on overlapping relationships, and chimeras were removed to obtain clean reads.
Operational Taxonomic Units (OTUs) were clustered at 97% similarity using UPARSE
software (v7.0.1090). Representative OTU sequences were matched against databases
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using UCHIME software (v3). The RDP classifier (v2.2) was used for species annotation.
The bacterial OTUs were aligned with the Silva database, and the fungal OTUs were
matched with the UNITE database. The community compositions of the samples were
calculated at different taxonomic levels. Redundancy analysis was conducted using the
vegan package in the R software (v4.2.1). Random forest analysis was performed using the
rfPermute and randomForest packages. Partial least squares regression (PLSR) analysis was
performed using the pls package, and PLS-PM was conducted using the plspm package.
Possible Spearman’s rank correlations between microorganisms and methanol content were
computed using SPSS (p < 0.05); the ggplot2 package was used for correlation visualization.

3. Results
3.1. Trends in Methanol Content and Environmental Factors Variation during Fermentation across
the Baijiu Production Cycles

The methanol content in the fermented grains during heap and pit fermentation was
measured (Figure 2A). The changes in methanol content were relatively small during
heap fermentation. However, upon starting pit fermentation, the methanol content in the
fermented grains rapidly increased, especially during the first seven days. Therefore, pit
fermentation is crucial for methanol metabolism. Throughout the production cycle, the
methanol content initially increased and then decreased across different stages, reaching its
peak in the fourth stage.

Furthermore, the pectin content in the fermented grains was measured during pit
fermentation (Figure 2B). The pectin content increased in the Xiasha and Zaosha stages and
then fluctuated during the last six stages. Overall, the pectin content showed a decreasing
trend throughout the production cycle. To verify whether other pathways were involved in
methanol production during pit fermentation, according to the chemical reaction in which
one methyl ester molecule of galacturonic acid decomposes into one methanol molecule
and one galacturonic acid residue, the proportion of methanol that could be provided by
the complete conversion of pectin during pit fermentation to the actual detected methanol
content was calculated (Figure 2C). To calculate the maximum amount of methanol that
could be produced through the pectin degradation pathway, pectin was assumed to be
completely composed of the methyl ester of galacturonic acid. For most samples in the last
six stages, even though all pectin in the samples was converted to methanol, the measured
methanol values were not reached. Therefore, it is speculated that other pathways may be
involved in methanol metabolism during pit fermentation.

Finally, changes in environmental factors during pit fermentation were investigated.
Regarding the variation in acid content (Figure 2D), acetic acid and acidity gradually accu-
mulated in each stage. The acetic acid content first increased and then stabilized, whereas
acidity showed a continuous upward trend over the production cycle. Regarding the
changes in sugar content (Figure 2E), the starch content changed slightly, and the reducing
sugar content gradually decreased in each stage, exhibiting fluctuations throughout the
production cycle. The moisture content gradually increased during the production cycle
(Figure 2F). Ethanol gradually accumulated in each stage (Figure 2G); its content initially
increased, then decreased, similar to what in observed for methanol accumulation.

3.2. Analysis of the Changes in Dominant Species and Functions during Pit Fermentation

Through species annotation of the metagenome (Figure 3A) and metatranscriptome
(Figure 3B), insights into the changes in microbial composition during pit fermentation were
obtained. Lactobacillus sp. HSLZ-75 rapidly became the dominant species after starting pit
fermentation, whereas the transcriptional activity of Pichia kudriavzevii was relatively high.
Using Venn diagrams, changes in the number of annotated species (Figure 3C) and KEGG
Orthology (KO) terms (Figure 3D) during pit fermentation are presented separately. The fer-
mented grains on day 0 exhibited the highest number of unique species and functions. As
pit fermentation progressed, the number of newly added species and functions decreased,
eventually tending toward stability. The expression trends of the KEGG second (Figure 3E)
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and third-level classification pathways (Figure 3F) during pit fermentation are illustrated
in a heatmap. The KEGG second-level classification pathways showed significant changes
three days after starting pit fermentation. During pit fermentation, the pathways related to
glycan biosynthesis and metabolism and carbohydrate and amino acid metabolism were
generally upregulated, whereas those related to transcription were generally downregu-
lated. Most of the KEGG third-level classification pathways showed significant changes
seven days after starting pit fermentation, with overall upregulation observed in pathways
such as pyruvate metabolism, carbon metabolism, and starch and sucrose metabolism.
Further analysis of KO functional differences between samples on days zero and seven,
where significant downregulation and upregulation of Unigenes were observed, revealed
that the majority of upregulated KOs showed high fold changes, with the highest fold
changes associated with lysine metabolism (K11733) and ATP metabolism (K03697).
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Figure 3. Changes in species and functions during pit fermentation. (A): Relative abundances of
the dominant microorganisms at the species level (top 10) during pit fermentation of Baijiu (by
metagenomic sequencing results). (B): Relative abundances of the dominant microorganisms at the
species level (top 10) during pit fermentation of Baijiu (by metatranscriptomic sequencing results).
(C): Venn diagram of the numbers of species at each time point during pit fermentation. (D): Venn
diagram of the numbers of KEGG Orthologs (KOs) at each time point during pit fermentation.
(E): Heatmap showing the expression trends of the top 35 KEGG secondary pathways during pit
fermentation. (F): Heatmap showing the expression trends of the top 35 KEGG tertiary pathways
during pit fermentation. (G): Volcano plot of differentially expressed genes during pit fermentation
from day zero to day seven.

3.3. Analysis of Methanol Metabolism Pathways and Participating Microorganisms during
Pit Fermentation

By annotating the metagenomic and metatranscriptomic sequencing data with the
KEGG pathway database, a metabolic network for methanol was constructed. Environmen-
tal factors were selected during pit fermentation (Figure 4A). Additionally, all related KOs
and their corresponding enzymes were compared (Table S2). The methanol metabolism net-
work primarily included six pathways, with three pathways directly involved in methanol
metabolism: the butanoate, and methane metabolism pathways and the pathway underly-
ing the interconversion between pentose and glucuronate.
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Figure 4. Methanol metabolism pathways and interactions among dominant microorganisms during
pit fermentation. (A): Metabolic network of methanol and environmental factors during pit fermenta-
tion of Baijiu. (B): Heatmap of corresponding KOs annotated from metagenomic sequencing results
for methanol and environmental factors during pit fermentation. (C): Heatmap of corresponding
KOs annotated from metatranscriptomic sequencing results for methanol and environmental factors
during pit fermentation.

Major reactions of methanol metabolism within the pentose and glucuronate inter-
conversion pathway occur in the pectin degradation module. In this module, the pectin,
composed of poly(1,4-α-D-galacturonide), is converted into poly(1,4-α-D-galacturonate)
by pectinesterase, simultaneously releasing methanol. Subsequently, galacturonic acid
is transformed into digalacturonate by polygalacturonase and further converted into d-
galacturonate by galacturan 1,4-alpha-galacturonidase. Simultaneously, the unesterified
galacturonic acid residues can be directly converted into galacturonic acid by polygalac-
turonase. Another pathway for methanol production pathway is the butanoate metabolic
pathway. Initially, in the starch and sucrose metabolism pathway, starch is converted into
α-D-glucose-1p by glycogen debranching enzyme and glycogen phosphorylase, entering
the glycolysis pathway to generate pyruvic acid. Subsequently, pyruvic acid is converted
to acetyl-CoA through the pyruvate pathway, which then enters the butanoate metabolic
pathway. In this pathway, acetyl-CoA is initially transformed into acetoacetyl-CoA by
acetyl-CoA C-acetyltransferase. Through a series of reactions, it is further converted into
methyl acetate, and methanol is generated through the action of methyl acetate hydro-
lase. In the methane metabolism pathway, formaldehyde is generated from methanol by
methanol dehydrogenase. This pathway also involves methanol utilization. Methanol is
converted to formaldehyde by alcohol oxidase and is further oxidized to formic acid by
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glutathione-independent formaldehyde dehydrogenase. Formic acid is then converted to
carbon dioxide by formate dehydrogenase.

The corresponding changes in KO abundance for the annotated networks related to
methanol and selected environmental factors were normalized (Figure 4B). The metage-
nomic results revealed that, in addition to the upregulation of the glycolysis pathway, the
relative abundance of most KOs in the other five pathways, including those related to
methanol metabolism, decreased after seven days and remained at a low level. Moreover,
according to the metatranscriptomic results, the expression of genes corresponding to these
KOs began to decline within the first three days. This also explains why the fastest methanol
content increase occurred in the first seven days, after which it slowed down. Although the
expression of enzymes related to methanol metabolism decreased, the enzymes that had
already been expressed and the pectinases present in raw sorghum continued to function
in the fermented grains, promoting the accumulation of methanol. For example, in a study
on apple wine, pectin was still be broken down into methanol by pectinase during a 30 d
aging process [24].

The Unigenes of KO related to methanol metabolism were annotated using species
information (Figure 5). In the pectin degradation module, microorganisms such as Bacillus
subtilis group, Aspergillus species, and Penicillium species catalyze the production of methanol
through pectinesterase metabolism. Subsequently, Byssochlamys spectabilis and Saccha-
romyces cerevisiae break down large pectates into small d-galacturonates. In the butanoate
pathway, lactic acid bacteria, such as Lactobacillus plantarum and Lactobacillus pentosus, trans-
form acetoacetyl-CoA to acetone. Pseudonocardia species and Methyloversatilis discipulorum
transform acetone into methyl acetate, and finally, Pichia kudriavzevii hydrolyzes methyl
acetate into methanol. In the methane metabolism pathway, microorganisms such as Sac-
charopolyspora species convert formaldehyde to methanol, whereas Byssochlamys spectabilis
transforms methanol into formaldehyde. Additionally, a certain amount of archaea, such as
Methanobacterium, in the pit mud, possess methyl metabolism capabilities [25]. Therefore,
they may be involved in methanol metabolism via this pathway.

Fermentation 2024, 10, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 5. Microorganisms annotated from the metagenomic and metatranscriptomic sequencing re-
sults during pit fermentation corresponding to different methanol metabolic pathways. (A): Pectin 
degradation module. (B): Butyrate pathway. (C): Methane metabolism. 

Microorganisms interact with each other and potentially influence methanol metab-
olism. Previous studies indicated mutual inhibition between lactic acid bacteria and yeast 
populations [26,27]. This interaction has a significant impact on metabolic changes in a 
fermentation system. For example, the co-fermentation of multiple lactic acid bacteria 
with Pichia kudriavzevii can reduce the levels of organic acids, as shown for lactic acid 
[28,29]. We selected the 20 most abundant microorganisms as the dominant species and 
conducted a correlation analysis on these dominant during pit fermentation (Figure 6) 
with the aim of observing the main microbial interactions in the fermented grains. Among 
the dominant microorganisms, Bacillus subtilis and Pichia kudriavzevii can degrade pectin 
to generate methanol, whereas Byssochlamys spectabilis can utilize methanol. In terms of 
centrality, Saccharomyces cerevisiae was the most important microorganism during pit fer-
mentation and was positively correlated with most microorganisms except Lactobacillus 
sp. HSLZ-75, suggesting a mutualistic relationship. Lactobacillus sp. HSLZ-75, the dominant 
microorganism in the later stages of pit fermentation, showed a negative correlation with 
the microorganisms involved in methanol production and utilization, indicating a poten-
tial inhibitory effect. 

Figure 5. Microorganisms annotated from the metagenomic and metatranscriptomic sequencing
results during pit fermentation corresponding to different methanol metabolic pathways. (A): Pectin
degradation module. (B): Butyrate pathway. (C): Methane metabolism.



Fermentation 2024, 10, 175 10 of 18

Microorganisms interact with each other and potentially influence methanol metabolism.
Previous studies indicated mutual inhibition between lactic acid bacteria and yeast pop-
ulations [26,27]. This interaction has a significant impact on metabolic changes in a fer-
mentation system. For example, the co-fermentation of multiple lactic acid bacteria with
Pichia kudriavzevii can reduce the levels of organic acids, as shown for lactic acid [28,29].
We selected the 20 most abundant microorganisms as the dominant species and conducted
a correlation analysis on these dominant during pit fermentation (Figure 6) with the aim of
observing the main microbial interactions in the fermented grains. Among the dominant
microorganisms, Bacillus subtilis and Pichia kudriavzevii can degrade pectin to generate
methanol, whereas Byssochlamys spectabilis can utilize methanol. In terms of centrality,
Saccharomyces cerevisiae was the most important microorganism during pit fermentation
and was positively correlated with most microorganisms except Lactobacillus sp. HSLZ-75,
suggesting a mutualistic relationship. Lactobacillus sp. HSLZ-75, the dominant microor-
ganism in the later stages of pit fermentation, showed a negative correlation with the
microorganisms involved in methanol production and utilization, indicating a potential
inhibitory effect.
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3.4. Microbial Succession and Driving Environmental Factors during Pit Fermentation across the
Baijiu Production Cycles

After analyzing the metabolic mechanisms of methanol production in an individual
stage, to comprehensively understand the impact of microorganisms during pit fermen-
tation on the changes in methanol content throughout the production cycle, amplicon
sequencing was conducted on fermented grains from all stages during the production
cycle. The bar charts in Figure 7 illustrate the patterns of the microbial communities in
the different stages. In terms of bacterial community composition (Figure 7A), Weissella
was predominant in the Xiasha stage, whereas Kroppenstedtia and Bacillus were relatively
abundant in the final second to sixth stages. Lactobacillus, a genus of lactic acid bacteria,
rapidly increased in amount and became predominant in the fermented grains during pit
fermentation in each stage, which is consistent with previous research [30]. Regarding the
fungal community composition (Figure 7B), Saccharomyces, Pichia, and Byssochlamys were
the dominant species in the Xiasha and Zaosha stages, whereas Schizosaccharomyces and
Zygosaccharomyces were present in relatively large proportions in the second to sixth stages.
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Using redundancy analysis to analyze the driving factors of microbial community
succession during pit fermentation (Figure 7C,D), Lactobacillus, in the bacterial community,
was observed to be positively correlated with the content of methanol and ethanol, whereas
other dominant bacteria showed a negative correlation with the methanol content. In
the fungal community, Pichia and Byssochlamys were negatively correlated with methanol
exposure, whereas Aspergillus and Schizosaccharomyces were positively correlated with it.
Acetic acid and acidity had significant effects on the succession of the fungal communities.
Notably, the accumulation of acid and methanol in both bacterial and fungal communities
showed a positive correlation. Additionally, there was a significant difference in the
composition of bacteria between day zero and the other days of fermentation, whereas the
difference in fungal composition was more significant between the Xiasha and the Zaosha
stages and from the first to the sixth stage. An ANOSIM test was performed for bacterial
and fungal grouping (Figure S2A,B), calculating the distances between all pairs of samples
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using the Bray–Curtis algorithm and sorting all distances from small to large. The results
showed significant inter-group differences in both the bacterial and the fungal communities.

3.5. Microorganisms Having a Significant Impact on Methanol Accumulation during Pit
Fermentation across the Baijiu Production Cycles

We analyzed the microorganisms involved in methanol metabolism within an indi-
vidual stage through metagenomic and metatranscriptomic sequencing, but differences
in microbial composition between different stages may introduce other microorganisms
that could influence the methanol content. In this study, three statistical methods were
employed to analyze the microorganisms associated with the changes in methanol content
during pit fermentation in the production cycle.

Random forest is a supervised nonlinear predictive model commonly used to predict
the correlation between microbial composition and environmental factors [31]. Using this
model, bacteria, such as Lactobacillus and Bacillus, which may significantly influence the
methanol content, were identified (Figure 8A). Bacillus, which utilizes pectin for methanol
production, and Lactobacillus, along with Weissella, are associated with acid metabolism,
potentially affecting methanol accumulation indirectly by influencing the accumulation
of acids. In the fungal community, certain yeast and mold species such as Cladosporium
and Monilia were found to have a potential impact on the methanol content. Aspergillus
and Saccharomyces are known for their ability to produce methanol through pectin degrada-
tion modules.

Spearman’s correlation analysis was performed on the abundance of microbial genera
and methanol content in the production cycle (Figure 8B). Among the bacterial communi-
ties, only Lactobacillus significantly promoted methanol production. For the fungi, some
microorganisms, including yeasts such as Monilia and molds such as Cladosporium, over-
lapped with the random forest model predictions, confirming their potential influence on
methanol content. Notably, Pichia showed a negative correlation with methanol content,
possibly due to its utilization of methanol by alcohol oxidase [32]. A correlation between
microorganisms in both the bacterial community (Figure S3) and the fungal community
(Figure S4) was also observed. In the bacterial community, Lactobacillus and most other
bacteria were negatively correlated, whereas Bacillus was mostly positively correlated with
most other bacteria. In the fungal community, Pichia was significantly positively correlated
with Byssochlamys, which is consistent with the metatranscriptomic results.

PLSR is a multivariate statistical method that addresses collinearity issues, simultane-
ously analyzes multiple dependent variables, and is useful for studying relationships with
small sample sizes. Orthogonal partial least squares with discriminant analysis (O2PLS-
DA) based on PLSR is often applied for dimensionality reduction and correlation analysis
of microbial communities or flavor substances [33]. Using PLSR, we analyzed the mi-
croorganisms that significantly influenced the changes in methanol content during the
production cycle (Figure 8C). In the bacterial community, Lactobacillus and Kroppenstedtia
had a considerable impact on the methanol content, both with a promoting effect. However,
when modeling fungal abundance and methanol content, the maximum R2 value remained
small, indicating a poor fit (Figure S5C). Therefore, this method is unsuitable for predicting
the relationship between fungal communities and methanol production.

By Combining the results of the three statistical methods, we found that the accumu-
lation of Lactobacillus significantly promoted methanol production. Additionally, Bacillus
positively affected methanol accumulation. Certain yeast and mold species may have an
influence on methanol content, such as Cladosporium and Monilia.

The initial microbial community structure during pit fermentation significantly affects
the fermentation process [34]. Spearman’s correlation analysis was conducted between
the initial abundance of the methanol-producing microorganisms, Pichia, Saccharomyces,
Aspergillus, and Penicillium, and the corresponding methanol production within the first
7 d. The analysis revealed a significant positive correlation, indicating that different initial
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concentrations of methanol-producing microorganisms may lead to differences in methanol
content between stages.
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3.6. Integrated Impact of Environmental Factors and Microorganisms on Methanol Content
Changes during Pit Fermentation across the Baijiu Production Cycles

PLS-PM is an extension of PLSR, which is commonly used in microbial research to
study the impact of environmental factors on a community structure and downstream
effects on other factors [35]. To explore the comprehensive effects of environmental factors
and methanol-metabolizing microorganisms on the changes in methanol content during
the production cycle of pit fermentation, we validated PLS-PM for the first to the sixth
stages, considering the relative abundances of methanol-metabolizing microorganisms,
environmental factors, and methanol content (Figure 9). The R2 of the methanol module
reached 0.88, indicating that environmental factors and microorganisms related to methanol
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metabolism had a relatively high explanatory power for the observed changes in methanol
content.
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value represents the significance level, with p < 0.05 indicating a significant correlation).

Regarding the influence of environmental factors on microorganisms, the polysaccha-
ride decomposition module had a significant inhibitory effect on microorganisms when
methanol was used. The accumulation of ethanol and moisture promotes the produc-
tion of Lactobacillus. In terms of the interaction between acid-producing microorganisms
and methanol-metabolizing microorganisms, acid-producing microorganisms exhibited
inhibitory effects on methanol-metabolizing microorganisms, and a significant negative
correlation was observed between methanol-consuming microorganisms and methanol-
producing microorganisms, overall. Regarding the impact of environmental factors and
microorganisms on the methanol content, various environmental factors and microorgan-
isms had a significant promoting effect on methanol production. The overall contribution
of methanol-consuming microorganisms, including Pichia and Byssochlamys, to methanol
production was 0.36, possibly because of the stronger ability of Pichia to generate methanol
via the butyrate metabolic pathway. Pichia also produces methanol by breaking down pectin
using pectinesterase [36]. The overall contribution of methanol-producing microorganisms,
including Pichia with the highest contribution (0.72), was 0.5, indicating a substantial
impact on methanol production.

4. Discussion

As the major component of fermented grains, the chemical components in of sorghum
have an impact on the flavor and quality of Baijiu [37,38], and chaff as an adjunct has
an impact on the formation of the furfural flavor of Baijiu [39]. In this study, we noticed
that there was a correlation between pectin degradation and methanol production in
sorghum and chaff. From the perspective of Baijiu production, the main component of the
fermented grains in the Xiasha stage was sorghum. In this stage, there may have been a
gradual dissociation process of pectin from the sorghum cell walls, resulting in a gradually
increasing trend. Simultaneously, as pectin did not completely dissociate from the cell
walls, the amount of decomposed pectin was relatively low, leading to a significantly lower
methanol production in the Xiasha stage than in the other stages. Additionally, both the
sorghum added to the Xiasha stage and the chaff added to the final six stages contained
pectin, which may have caused fluctuations in the pectin content across stages.
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In this study, we found that the accumulation of methanol during pit fermentation was
mainly through the degradation of pectin and the hydrolysis of methyl acetate. Previous
studies showed that Bacillus is an important component of the bacterial community of
fermented grains, with the ability to utilize polysaccharides and metabolic flavor sub-
stances [40,41] and to degrade pectin [42]. In addition, during brewing and in the presence
of the starter culture of fermented grains Daqu, there were many strains of Penicillium and
Aspergillus with strong pectinase activity [43,44]. The methyl acetate hydrolysis pathway,
which involves metabolite transfer between lactic acid bacteria, methyl-metabolizing mi-
croorganisms, and Pichia kudriavzevii, was not reported in previous studies and still needs
to be verified by solid-state simulated fermentation. In addition, we identified a methanol
consumption pathway with Byssochlamys spectabilis as the main player, which was found
to have the ability to produce amylhydrolase enzymes in previous studies [45], while its
ability to utilize methanol has not been described and still needs to be verified.

By analyzing environmental factors in pit fermentation across the Baijiu production
cycles, we observed a gradual utilization of polysaccharides such as starch and pectin in the
fermented grains during the production cycle, accompanied by an increase in moisture con-
tent and acidity. Acid plays a crucial regulatory role in the Baijiu fermentation process [46].
Through redundancy analysis and PLS-PM analysis, we found a strong correlation between
acid accumulation and methanol accumulation. Additionally, the abundance of Lactobacil-
lus, which significantly increased, leading to the predominance of this species in the first
seven days, was identified as highly correlated with changes in methanol content in various
analyses. In fact, the activity of pectinase was detected in each stage of pit fermentation
by Dai et al. [47], revealing an increasing trend during heap and pit fermentation, while
pectin methylesterase often exhibits better activity in acidic environments [9]. We speculate
that acid accumulation may be one of the factors through which acidity affects methanol
accumulation.

Furthermore, many fungi, represented by Cladosporium and Monilia, were correlated
with changes in methanol content during Baijiu fermentation. Previous studies showed that
many yeasts and molds can metabolize pectinase [6]. Considering that the microorganisms
involved in the three methanol metabolism pathways were mostly fungi, it was inferred
that the predominant microorganisms regulating the methanol content during fermentation
are fungi, with species such as Pichia kudriavzevii and Byssochlamys spectabilis playing
crucial roles.

5. Conclusions

Methanol is a common harmful substance produced during the fermentation process
of alcoholic beverages. Clearly, understanding its mechanisms of production and influ-
encing factors in Baijiu fermentation is of crucial importance to ensure the safety of Baijiu
consumption. In this study, we first compared the changes in methanol content during
heap and pit fermentation and observed that methanol production occurred mostly during
pit fermentation, with the highest increase occurring in the first 7 days of each stage. The
methanol content in each stage initially increased and subsequently decreased over the pro-
duction cycle, reaching its highest overall level in the fourth stage. Subsequently, through
metagenomic and metatranscriptomic sequencing and analysis, we also discovered that
methanol metabolism within the first stage was mainly concentrated during the first 7 days.
The major methanol metabolic pathways included butyrate and methane metabolism and
pectin degradation. The microorganisms involved included Pichia kudriavzevii, Byssochlamys
spectabilis, Penicillium, and Aspergillus. Finally, through amplicon sequencing and analysis,
Lactobacillus was observed to accumulate significantly during the first 7 days of each stage,
inhibiting methanol-metabolizing microorganisms. However, the increase in acidity caused
by its metabolic activity might provide a more favorable environment for the microbial
metabolism of pectinesterase, thereby promoting methanol production. As for the fungal
communities, certain types of molds and yeasts were found to be involved in methanol
production, and differences in their abundance in the fermented grains in different stages
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led to variations in methanol content between stages. This study contributes to the under-
standing of the mechanism of methanol accumulation in Baijiu and provides a basis for
regulating the methanol content in Baijiu.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fermentation10040175/s1, Figure S1: A: Characteristic peak of
the methanol retention time. B: Characteristic peak of the galacturonic acid m/z ratio. Figure S2:
A: ANOSIM test for 16S grouping. B: ANOSIM test for ITS grouping (the “R” value was used to
validate whether there were differences between different groups; the larger the R, the greater the
differences between groups. The “p” value indicates the significance of the differences, with p < 0.05
indicating a significant correlation). Figure S3: Spearman’s correlation analysis of methanol and
bacteria (with the sum of all samples’ relative abundance greater than 0.5%). Correlation matrix
(Spearman test, p ≤ 0.05) showing the correlation coefficients between methanol content and bacteria
genera. Positive correlations are displayed in blue, and negative correlations in red. The color
intensity and size of the squares are proportional to the correlation coefficients. On the right side
of the correlogram, the legend shows the correlation coefficients and the corresponding colors.
Figure S4: Spearman’s correlation analysis of methanol and fungi (with the sum of all samples’
relative abundance greater than 0.5%). Correlation matrix (Spearman test, p ≤ 0.05) showing the
correlation coefficients between the methanol content and fungal genera. Positive correlations are
displayed in blue, and negative correlations in red. The color intensity and the size of the squares
are proportional to the correlation coefficients. On the right side of the correlogram, the legend
shows the correlation coefficients and the corresponding colors. Figure S5: The major parameters
for model establishment. A: The use of random forest to model the changes in microbial abundance
and methanol content (% Var explained represents the degree of explanation of the changes in the
abundance of microbial communities in relation to the changes in methanol content). B: The analysis
of bacterial abundance and methanol content changes by PLS regression (the number of components
represents the number of selected principal components, MSEP is the predicted mean square error
of the regression model—the larger the MSEP value, the greater the regression error—R2 is used to
evaluate the degree of regression fit—the larger the R2 value, the better the regression fit). Table S1:
Compound identification for methanol content detection. Table S2: The corresponding enzyme names
for KOs related to methanol metabolism.
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