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Abstract: The use of machine learning and deep learning has become prominent within various fields
of bioprocessing for countless modeling and prediction tasks. Previous reviews have emphasized
machine learning applications in various fields of bioprocessing, including biomanufacturing. This
comprehensive review highlights many of the different machine learning and multivariate analysis
techniques that have been utilized within Chinese hamster ovary cell biomanufacturing, specifically
due to their rising significance in the industry. Applications of machine and deep learning within
other bioprocessing industries are also briefly discussed.
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1. Introduction

Bioprocessing, as with many other manufacturing industries, is at the cusp of an
industry-wide shift toward the integration of data-driven approaches for the development
of new techniques and the optimization of state-of-the-art approaches. These changes
are commonly referred to as Industry 4.0. Industry 4.0 is defined as “the integration
of intelligent digital technologies into manufacturing and industrial processes”. This
includes the integration of cloud computing, the Internet of Things (IoT), data analytics,
machine learning, and deep learning technologies with production facilities to optimize
manufacturing processes. This paper focuses on how data-driven approaches, including
machine learning (ML) and deep learning (DL), are integrated within the biopharmaceutical
industry and how different approaches are used to create safe, effective, and efficient
biopharmaceutical products. Specifically, this paper focuses on the use and potential use
of ML and DL strategies for the bioprocess optimization of Chinese hamster ovary (CHO)
cell cultures. This review provides a novel synopsis of the state-of-the-art concerning
data-driven approaches and ML/DL for CHO cell bioprocesses, whereas other reviews
have documented a more general overview, focusing on multiple cell types and bioprocess
applications or more narrowly focusing on specific types of ML/DL [1]. Currently, CHO cell
cultures are used for recombinant protein expression, which is one of the main components
of drug manufacturing [2]. CHO cells are the industry gold standard due to their capability
for post-translational modifications, as well as established standards of good manufacturing
practices, compared with other mammalian cells. However, relatively low cell densities,
slow growth rate, and low productivity create obstacles for manufacturers due to high
demand. These issues affect the entire supply chain and contribute to high manufacturing
costs and pricing for these drugs. ML approaches can improve these issues through
the implementation of predictive models, data-driven control, and generative artificial
intelligence approaches [3].
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Within manufacturing processes utilizing CHO cells, fed-batch bioprocesses are the
most widely accepted method for feeding and process control due to industrial familiarity
and the advantage of incrementally adding in nutrients, buffers, amino acids, and vita-
mins [4]. These processes have enabled the scalable production of recombinant proteins,
monoclonal antibodies, vaccines, and cell-based therapies for various biomedical appli-
cations, especially recombinant protein-based pharmaceutical processes of which CHO
cell-based products comprise 70% of revenue-generating products [5,6]. The advancement
of ML and DL techniques in CHO cell biomanufacturing processes is poised to provide
immediate impact within the biopharmaceutical industry, including the improvement of
productivity and efficiency and enabling promising new techniques such as continuous
biomanufacturing through perfusion cultures.

2. Summary of Common Machine Learning and Deep Learning Approaches

While often used in similar contexts, there exists a difference between machine learning
and deep learning. Machine learning (ML) is the capability of a trained machine or model to
imitate human behavior and intelligence. Within ML exists the concept of artificial neural
networks (ANNs). Data flow through network nodes from the input layer, where the
data are fed into the output layer. Deep learning (DL) is a more specific subset of machine
learning that involves the use of neural networks with multiple (two or more) hidden layers
that derive often unclear connections between inputs and outputs, whereas architectures
that consist of a single hidden layer are defined as shallow multi-layer neural networks.
These are inspired by the human brain’s neural structure. These neural structures comprise
multiple layers, which can allow for learning and training based on specific tasks, such as
image or speech recognition [2]. DL models are often referred to as “black-box” models
because relationships between inputs and outputs made within the hidden layers are either
unknown or unintelligible to end users. However, there is significant research focused on
implementing explainable AI (XAI) in which ante-hoc or post hoc algorithmic additions
are made for black-box models to provide intuitive connections between inputs, model
decisions, and outputs [7].

The application of ML and DL within bioprocesses serves as an augmentation to
the traditional design of experiments (DoEs) approaches. These approaches have been
crucial for optimizing various parameters and improving protein yields. While traditional
DoE methods involve systematically changing variables and observing outcomes, ML and
DL can complement this by analyzing large amounts of data more comprehensively and
identifying patterns or relationships that might not be immediately apparent. Rodriguez-
Granrose et al. and colleagues have discussed the integration of DoE with artificial neural
network architecture [8].

A DoE approach was used with an artificial neural network for optimizing a bioprocess
for cell growth. The system used the design of an experimental approach to find optimal
bioprocess set points or, in this case, variables and ANNs were used to model and improve
the accuracy of the bioprocess model beyond the capabilities of traditional regression
models. The process involved the identification of key variables (cell line, seeding density,
media supplement percentage, and media exchange percentage) that have a significant
impact on the bioprocess (cell growth). These variables are systematically explored using
DoE to determine the most optimal condition for the cell growth process. Since ANNs are
trained on experimental data to create a predictive model that has the ability to identify
the process more accurately, they are preferred over regression models. This hybrid
model outperformed both a standard linear regression model as well as an unoptimized
neural network.

Figure 1 represents the optimal ANN that is comprised of 91 functions in a single layer
for cell growth modeling. Equal weightage to all four model output functions was provided.
As a result, the maximum desirable ANN was determined to be a 1-layer Gaussian ANN.
This was also tested in vitro, and the ANN-derived optimal process conditions resulted in
11.2% higher cell doublings as opposed to the linear regression model and 42.2% higher
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cell doublings compared to the original “one-factor-at-a-time” experimental condition.
This hybrid method of ANN-DOE efficiently leverages the artificial neural network to
improve bioprocess outcomes that were previously not possible with linear regression
itself [8]. Although this demonstration was not specifically performed on CHO cells,
primary cells from the nucleus pulposus tissue of human cadavers, implications for the
way that ANN can be leveraged to advance mammalian cell culture productivity are still
relevant for CHO-derived recombinant protein bioprocesses. For example, the work of
Pinto and coworkers evaluated shallow versus deep neural networks, varying the number
of layers between 3 and 5 in a feed-forward neural network (FFNN) using the CHO K-
1 cell line [9]. Overall, this work showed that errors were reduced by 14% and 23.6%,
respectively, as the number of hidden layers increased, revealing an overall improvement
in model accuracy in deep models versus shallow models. However, computational time
increased by more than 30%, indicating an important consideration for leveraging ANNs
in real-world industrial processes.
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Figure 1. Optimal ANNs comprised of 91 Gaussian activation functions (denoted by the green dots)
in a single layer for cell growth modeling [8]. Reprinted with permission from the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). Accessed on 1
April 2024.

2.1. Machine Learning in Biopharmaceutical Manufacturing

Within ML, two major paradigms exist for model-based approaches and supervised
and unsupervised learning. Supervised learning (SL) is a class wherein the models are
trained on labeled datasets, where the algorithm learns to map input features to known
output labels [10]. In the context of Chinese hamster ovary cells, various models relating
to neural networks have been deployed for predictive modeling. For instance, Hisada
et al. utilized the LASSO (Least Absolute Shrinkage and Shrinkage Operator) model, which
specialized in predictive score metrics and anomaly detection to predict monoclonal anti-
body (mAb) productivity changes in CHO cells based on morphological profiles [11]. They
constructed the LASSO model using 368 morphological parameters as explanatory vari-
ables to achieve high accuracy in predicting mAb productivity simply from morphological
profiles [11]. This work developed a methodology to predict changes in antibody produc-
tion in CHO cells using morphological profiling techniques. The researchers optimized an
image acquisition pipeline to capture stable morphological profiles of suspension cells and
utilized specific morphological parameters for anomaly prediction calculations. By combin-
ing morphological profiling with machine learning, the researchers successfully predicted
mAb productivity changes solely from early morphological profiles, demonstrating the
potential for the non-invasive and quantitative evaluation of subtle quality changes in host
cells [11].

In the context of bioprocess engineering relating to specific cell culture types, various
forms of machine learning have been used for predicting outcomes based on historical data,
such as optimizing nutrient concentrations for maximum cell growth, cell density, and pro-
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tein yield [12]. Unsupervised learning (UL) involves exploring various data patterns with-
out labeled information. These techniques are often applied to clustering similar batches or
samples for the identification of process variable anomalies or the self-organization of data,
thus assisting qualitative control mechanisms [12].

From a more fundamental standpoint, most ML algorithms can be broken down
into two categories: deterministic or probabilistic. Deterministic models are usually well-
defined, rule-based algorithms that provide the same model output each time for a par-
ticular set of inputs. One example of a Boolean-based deterministic model is the decision
tree [13–15], which has been successfully applied in the optimization of the fermentation
process and the identification of fermentation parameters. However, the downside of
deterministic models is that they do not account for the inherent variability that may be in
a system. In Kumar et al.’s work, regression models have been employed to analyze and
optimize bioprocessing unit operations [16].

2.2. Deep Neural Networks in Biopharmaceutical Manufacturing

Neural networks consist of interconnected nodes which process information in differ-
ent layers. Neural networks are inspired by the human brain, which consists of more than
several billion neurons that segregate into three parts: dendrites, soma, and axons [17]. The
primary function of these three components is to receive, transmit, and connect information
from one neuron to another.

In the context of biopharmaceutical manufacturing, deep neural networks are used
for optimal glycosylation analysis in CHO cells. For instance, Kotidis et al. and colleagues
utilized deep neural networks to predict the glycosylation outcomes of monoclonal anti-
bodies produced in CHO cells. By training the ANN model with experimental data on
intracellular nucleotide sugar dynamics and extracellular metabolite concentrations, they
accurately predicted site-specific glycoform distributions. The ANN model successfully
captured the effects of metabolic perturbations, manganese supplementation, and glycosyl-
transferase knockouts on glycosylation outcomes, showcasing its potential for optimizing
glycosylation processes in CHO cell production. Neural networks were crucial in this study
for accurately predicting site-specific glycoform distributions of recombinant glycoproteins
in CHO cells, offering a data-driven approach that requires minimal biological background
knowledge and enables rapid model development for optimizing glycosylation processes,
thus enhancing manufacturing efficiency [18].

Similarly, Antonakoudis et al. developed a hybrid modeling framework that combines
mechanistic information in the form of a stoichiometric model with a deep artificial neural
network to predict antibody glycosylation patterns in Chinese hamster ovary cells [19].
By training the neural network with data on bioprocess variables such as metabolite
fluxes, cell culture parameters, antibody quality parameters, and glycosylation pathways,
the researchers leveraged deep neural network principles to enhance the prediction of
product quality (glycan distribution) in bioprocesses involving CHO cells. Within the
biopharmaceutical context, these networks can be used for various tasks, such as process
optimization based on feed data, quality prediction based on previous attributes, and
overall process efficiency due to their predictive and qualitative nature [20].

2.2.1. Recurrent Neural Networks

Recurrent neural networks (RNNs) are used to model temporal dependencies, such as
biomass concentration, pH, and temperature in bioprocess data, which capture sequential
patterns such as fermentation dynamics. They have the ability to play a significant role
in optimizing biopharmaceutical upstream processes by providing reliable estimates for
key process parameters and enabling the study of growth and metabolite-related outcomes
over time. RNNs are also used for the prediction of process outcomes and the control
of upstream processes. By leveraging historical data and learning patterns from past
observations, RNNs can forecast future processing behavior and help make informed
decisions for process optimization.
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For instance, Smiatek et al. and colleagues harnessed the power of recurrent neural
networks (RNNs) to effectively model and predict the behavior of CHO cells in biophar-
maceutical upstream processes. Through the development of specific and generic RNN
models, they have been able to analyze complex temporal data patterns associated with
CHO cell growth, metabolite concentrations, and product titers. By leveraging the ca-
pabilities of RNNs, the researchers gained valuable insights into how different process
conditions impact CHO cell performance, enabling informed decision-making for process
optimization in biopharmaceutical manufacturing. Recurrent neural networks are crucial
in this study for their ability to effectively model and predict the dynamic temporal se-
quences of key process parameters in biopharmaceutical upstream processes involving
CHO cells [21]. The high predictive accuracy and flexibility of RNN models have proven
instrumental in capturing the dynamic nature of CHO cell-based bioprocesses and facili-
tating advancements in biopharmaceutical development. As these variables are classified
as temporal dependencies, RNNs are suitable for capturing the sequential nature of these
variables and can be trained to predict future anomalies. This is pivotal for the prediction
and optimization of time-dependent variables in bioprocessing [22].

2.2.2. Convolutional Neural Networks

A convolutional neural network (CNN) is a type of neural network that is designed
specifically for processing structured grid-like data, such as images or sequences. It has
multiple layers, including convolutional layers. Convolutional neural networks excel in
extracting spatial features, making them valuable for image-based bioprocess monitoring,
and can be applied to analyze the microscopic images of cell cultures, which assists in
identifying irregularities and optimizing growth conditions [23].

For example, Wang et al. utilized the concept of in situ microscopic imaging and
deep learning-based image analysis to monitor and analyze the culture process of Chinese
hamster ovary (CHO) cells [24]. They employed a deep learning-based Mask R-CNN algo-
rithm for the segmentation and analysis of online pre-collected images from the suspension
culture of CHO cells. The researchers used three different methods of data augmentation
and transfer learning technology to improve the performance of the model.

As depicted in Figure 2, CHO cells have been cultured inside a bioreactor along
with a vision probe. The monitor displays the collected images together with the image
analysis result. The in situ microscope, equipped with an imaging system and connected
to a computer, captures cell images in real-time during the cell culture process. These
images are then subjected to deep learning-based image analysis using the Mask R-CNN
algorithm, allowing for the accurate segmentation and analysis of the cells. The deep
learning method, trained by 183,040 labeled cells of 184 images, effectively-recognized
cells within clusters. This approach outperforms traditional methods in terms of common
image-based evaluation methods. The researchers analyzed the temporal variations in cell
dimensions and shapes, indicating that the majority of cells are approximately spherical,
with their average diameter increasing throughout the culture process [24].

Convolutional neural networks (CNNs) have been specifically used in the context of
CHO cells to train the Mask R-CNN algorithm for cell segmentation and analysis. This
deep learning-based approach has demonstrated promising performance in accurately
identifying and quantifying cell characteristics, providing valuable insights into the culture
process of CHO cells. Apart from cell culture image analysis, CNNs can be trained to
analyze these microscopic images to assess the viability and metabolic activity of microbial
cells during fermentation processes, contamination detection, yield prediction, and image-
based scale-up optimization [25].
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2.2.3. Generative Artificial Intelligence

Generative models are a subset of machine learning models that are specifically de-
signed to generate new, synthetic data that resemble a given set of training examples.
Unlike discriminative models, which focus on classifying or predicting labels, generative
models learn the underlying distribution of the training data and can generate new samples
from that distribution [6]. One such type is the generative adversarial networks (GANs)
comprised of a generator and a discriminator neural network. While the discriminator
attempts to distinguish between real and generated samples. The generator attempts to
create realistic data. With the help of adversarial training, GANs improve over time, thus
generating increasingly convincing synthetic data. cGANs, otherwise known as condi-
tional generative adversarial networks, are one step ahead by introducing a conditioning
variable [26]. By associating the conditioning variable with factors like loading or the envi-
ronment, cGANs are valuable for modeling different structural behaviors. The cGANs learn
and replicate the data’s underlying distribution, enabling applications in data augmenta-
tion and uncovering complex relationships within structures. In bioprocessing, generative
neural networks have been employed for generating synthetic data that can mimic the
characteristics of real bioprocess data, which helps in augmenting limited datasets and
facilitates model training in diverse situations [27].

3. Bioprocess Data and ML/DL Targets

Bioprocess data are typically collected within a time series, where the targeted data
are collected at predetermined time increments, with the intention of using these collected
values to inform process control, predict future values, or detect anomalies within the
process. The parameters that are typically monitored during bioprocesses include several
online and offline parameters. Online parameters include controlled variables, such as pH,
dissolved oxygen (DO), and the media and feed rates in fed-batch and continuous pro-
cesses. These online variables can be manipulated by cellular processes (waste generation,
apoptosis, growth, replication, etc.) but also by control variables such as base addition
(controls pH), stir speed (controls DO), and gas flow (which controls/balances off-gas
measurements). Offline variables are taken from samples throughout the culture process
and include parameters such as viable cell density (VCD), metabolite concentrations, and
protein titer. Several commercial instruments are available to measure these parameters,
such as the Cedex BioAnalyzer (Roche; Basel, Switzerland), Octet (ForteBio; Fremont, CA,
USA), or BioProfile® FLEX2 (NOVA Medical; Waltham, MA, USA).

Within biomanufacturing, there are three approaches that are utilized to produce
biopharmaceuticals and other products as follows: batch, fed-batch, and continuous ap-
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proaches. The mode of the process is chosen based on factors such as the needs of the host
organism, efficiency concerns, and product demand. In a batch bioprocess, the process
is conducted in a single batch; thus, all the feed and other substances that are necessary
for product production are added at the beginning of the batch, and then the product is
harvested once the process is complete. These processes are simple in comparison to the
other modes; however, they are not as commonly performed due to the extensive time
needed to complete a batch, as well as the frequent need to repeat batches to acquire the
desired product yield. Fed-batch bioprocessing is a derivation of batch processes in that
raw materials and other substances are added to the bioreactor at the beginning of the
process, but additional nutrients (including feeds and supplements) are also added during
the process. This method is an improvement from batch processes because it allows greater
control of cell growth and product yield. The continuous method of biomanufacturing is
denoted by the lack of distinct batches within a process. The raw materials and needed
supplements are systematically added until the process is manually ended. This method is
typically chosen when there is high demand for the product due to its high throughput
nature. One of the major benefits of continuous processes that have led many researchers to
push for it to become the standard of biomanufacturing is that it can reduce manufacturing
costs due to its capability of using more compact laboratories and other facilities [28,29].
Another advantage of continuous biomanufacturing is that it provides improved quality
control. For example, Bayer has developed continuous bioreactor technology that mini-
mizes the product residence time such that it does not remain in non-ideal conditions (such
as temperatures where degrading enzymes are more active) for long periods of time [30].
Although this methodology shows promise, there are still certain drawbacks that have
prevented it from becoming more mainstream in the biopharmaceutical industry. One of
the most glaring issues is the need for cell retention devices; these can add operational
complexity [31]. Cell densities are significantly higher within continuous processes; thus,
the cells require particular attention to prevent the culture from depleting resources [31],
and there is a risk of CO2 and other byproduct accumulation [28]. Without proper attention
to process controls, the system can become overwhelmed and lead to failed cultures.

Online process control parameters are typically set at the beginning of an experiment
but can be adjusted throughout the process according to necessities that may arise due to
cultural behavior. The typical process setting ranges for CHO cell bioreactors for tempera-
ture, DO, and pH at 34–37 ◦C, 30–50%, and 6.7–7.3, respectively [32]. These process settings
are widely used due to their similarity to human and Chinese hamster body conditions.
To control these parameters to the setpoints, bioreactors typically use proportion-integral-
derivative (PID) control loops. It has been shown that PID settings can also affect culture
outcomes [33].

Due to the stirring and gas sparging within bioreactors during a process to control DO,
antifoam is commonly added to control foaming. Yet, it is important to note that antifoam
additions are used sparingly as these chemicals can reduce production and cell growth [34].
Another critical online parameter for fed-batch and continuous bioprocesses is the feed
profile. Feeds are added to cultures to prevent nutrient depletion and increase product titers
by extending the culture durations. These feeds are usually more concentrated than the
basal media and contain nutrients such as glucose, vitamins, and amino acids to increase
the productivity of a culture [35].

Several offline parameters are commonly measured to gauge the culture’s health.
Additionally, product titers are often obtained offline. As the product of CHO cell cultures
are normally large biomolecules such as monoclonal antibodies, the glycosylation and
charge variant state of the molecules may also be obtained. These properties of the protein
are known as critical quality attributes (CQAs). Protein titer refers to the concentration
of a particular protein of interest. Monoclonal antibodies (mAbs) are immunoglobulins
that are of particular interest as drugs due to the high specificity of these molecules toward
receptors in the human body. There are currently 92 mAbs approved by the Food and
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Drug Administration (FDA) and European Medicine Agency (EMA) for the treatment of
autoimmune diseases and cancers in 2022 [36].

Glycosylation represents a wide range of carbohydrate moieties added to a protein at
specific amino acids, also known as post-translational modification. These glycan additions
affect the protein function in a human patient [37] and long-term efficacy [38]. As of 2018,
62 of the 71 new biopharmaceutical active ingredients that were introduced to the market
were recombinant proteins, and 52 of those were derived from mammalian cell lines due
to high post-translational modification capability [39]. Due to the high potential of these
mAbs for therapeutics, there have been many advances made in ML to increase mAb
protein production.

Another key process parameter is viable cell density (VCD, cells per mL of the cul-
ture broth), which has become yet another prime target for optimization in ML and DL
applications due to it being a key parameter in determining the success of a culture.

Table 1 summarizes typical online and offline parameters that are monitored during
cell culture processes.

Table 1. Common online and offline parameters in biomanufacturing.

Online Parameters Offline Parameters

Temperature Protein titer
pH

Base additions VCD

Dissolved oxygen (DO) Metabolite concentrations
(Glc, Lac, Gln, Glu, NH3)

Feed rates Glycosylation
Vessel Pressure Amino acid concentrations

Off-gas concentrations
Stir speed

Antifoam additions

Osmolarity
Charge variants

Abbreviations: viable cell density (VCD), glucose (Glc), lactate (Lac), glutamine (Gln), glutamate (Glu), and
ammonia (NH3).

The online data obtained from bioreactor cultures can be expansive, with upwards of
15,000 data points for each input parameter/feature. While this may lead one to believe
that there is no lack of data available for training ML and DL models, this is one of the
current bottlenecks that researchers are working to eliminate. While the quantity of data
is expansive, they lack in quality. A very large fraction of the data available from CHO
cell cultures is largely homogeneous due to similar media and feed formulations being
used, as well as other process controls. This creates an issue of overfitting when training
predictive models for optimizing cultures. When the models are trained on data that do
not capture the entirety of cell behavior within a culture with varying conditions, this can
cause the model to become highly accurate when predicting the values, such as VCD and
titer, as long as the input variables are similar to those in the dataset used for training. If the
features are outside the scope of these data, then the model’s predictive accuracy greatly
decreases. Thus, there is a need to have a diversity of model input data for improved model
robustness across all possible culture conditions.

With large amounts of bioprocess data comes the need for pre-processing prior to
their use for modeling. This pre-processing includes data curating, feature selection,
transformation, and reduction. Curating typically entails imputation for missing values,
outlier detection, and treatment or removal, and noise reduction using methods such as
signal processing or smoothing. Feature selection entails selecting process variables based
on their relevance to the modeling or prediction task, and irrelevant or redundant features
are removed from the data [40]. After the features are selected, they are then transformed
to improve ease of implementation. This can include but is not limited to aggregating
the data over time intervals, normalizing and standardizing the data using methods such
as k-nearest neighbors and support vector machines, and categorizing variables [41,42].
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The treated data can then be split into training, validation, and testing sets. Once this is
complete, steps can be taken to reduce the dimensionality of the data using methods such
as principal component analysis (PCA) and t-distributed stochastic neighbor embedding
(t-SNE) [43]. The parameters can then be encoded into numerical representations using
methods available through libraries such as Scikit-Learn so that they may be easily fed into
ML models [44].

4. Machine Learning Approaches for Critical Quality Attribute Optimization

The primary goal for using ML in biomanufacturing is to improve product yield
(titer) and quality. VCD is a secondary goal, as the product titer is highly correlated with
VCD. While statistical models may be used to correlate the relationship between CQAs
and critical process variables (CPPs), mechanistic hybrid ML models have increased in
prevalence due to their ability to describe the causation in cultural behavior [45]. One
such demonstration of this method in predicting VCD is the development of a hybrid
agent-based approach where the CHO cells were treated as individual agents with a flux
balance model that predicts changes in metabolite and nutrient concentrations [46]. The
initial cell culture conditions and measured DO and sodium levels were used as the model
inputs, and consequently, the model was able to predict VCD, among other CQAs. When
the initial VCD was low, the root mean squared error (RMSE) was 2.48; however, when
the initial VCD was high, the RMSE was 4.44. Despite this, the hybrid agent-based model
was increasingly accurate in predicting glucose and lactate, which is a byproduct that
can inhibit cell growth levels [46]. Another previous work utilizing a hybrid model for
VCD prediction combined a multilayer perceptron (MLP) regressor, or feed-forward neural
network, random forest (RF), and extreme gradient boosting (XGBoost) algorithm (all
developed using Python 3.9.12 default libraries) with mechanistic equations to predict
next-day VCD and other CQAs [47]. Inputs for the ML algorithms were first separated by
which specific calculated rate they applied to (specific growth rate, specific productivity,
or specific cumulative glucose consumption rate). The correlation analysis and multi-
collinearity assessment were then conducted to determine the optimal combination of
inputs based on process knowledge and statistical analyses. Hyperparameters for the ML
algorithms were determined based on prior knowledge from previous works. Among the
selected hyperparameters for the RF regressor were the number of estimators, maximum
depth, and minimum split, while the number of estimators, learning rate, maximum depth,
and subsample ratio were optimized for the XGBoost regressor. The number of neurons,
activation function, and solver were all adjusted to optimize the MLP regressor. Once the
VCD was normalized after considering all time points in all the experiments that were
conducted, the MLP had the highest RMSE but the lowest mean absolute error (MAE);
meanwhile, the XGBoost had the lowest RMSE but the highest MAE. It was also discovered
that all three models were capable of accurately predicting VCD for a second CHO cell line.
Advances in VCD prediction, such as those previously discussed, have provided a means
to enhance therapeutic protein production.

Glycosylation has become a target CQA for process modeling and optimization be-
cause of its ability to decrease therapeutic protein immunogenicity through increased
protein solubility and stability [48]. Kinetic models have previously been used due to their
means of efficiently demonstrating the cellular mechanisms that comprise glycosylation.
However, they are not capable of accurately predicting the specific sites that the glycan
moieties take on without large quantities of kinetic variables and an understanding of the
enzyme and protein levels within the cells, as well as extensive time for training [18,49].
Therefore, machine learning approaches have been developed to address these pitfalls.
Kotidis and Kontoravdi developed an ANN to predict the site-specific glycoform distri-
butions of four recombinant proteins that are expressed in three CHO cell lines (GS-CHO,
CHO-K1, and CHO-S), two IgG monoclonal antibodies, and two fusion proteins [18]. They
observed that the ANN, both on its own and as part of a hybrid model that paired CHO
metabolism kinetics with the data-driven model, outperformed the standalone kinetic
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model and was successful in modeling and predicting the glycoform distributions with
average absolute errors as low as 0.98%. Another approach that has been taken in many
previous studies is utilizing data-driven models such as PCA and partial least squares
regression (PLSR) to understand the variables that, in turn, affect the glycosylation levels
of a culture and how they correlate with one another [50]. For example, Powers et al. were
able to determine how different types of media resulted in different terminal galactosylation
rates, how high mannose levels were not correlated with aglycosylation, and how initial
glucose concentrations were positively correlated with galactosylation rates using PCA
and other multivariate data analysis (MVDA) methods [51]. The use of PLSR also enables
the ease of feature selection. Variable importance in projection (VIP) is a method of feature
selection that effectively quantifies the effect that process variables have on CQAs. VIP
is also useful in preventing overfitting, as demonstrated when compared to a previously
developed genetic method in the context of glycan value predictions using PLSR [52]. The
utilization of the aforementioned methods in the prediction of glycosylation patterns also
has the potential to increase understanding of other post-translational modifications that
influence potency and immunogenicity.

As previously stated, the demand for therapeutic proteins is ever-increasing, thus
creating the need for high protein yields in cultures. There have been various approaches
taken to achieve this, including predictive modeling, pattern recognition, and real-time
monitoring. For example, Le et al. utilized support vector regression (SVR) and PLSR to
predict final protein titer and lactate concentration [53]. They observed that the models had
similar high accuracies when the bioreactor production data they were trained on utilized
either the final titer or final lactate concentration as the objective function. When the data
that were collected during the inoculum train were solely used to train the models, the
predictive accuracies for the final titer decreased. However, the seed train data proved to be
useful in predicting which bioreactor run would be highly or lowly productive. They found
that the critical variables in both the inoculum train stage and during production were
associated with lactate metabolism and cell growth and determined that low specific glucose
consumption was correlated with low lactate production and consumption. From these
findings, it was concluded that corrective measures to exploit the CHO cell metabolism
to increase productivity while limiting lactate production would need to occur within the
first 70 h of the run. An example of employing real-time monitoring to optimize titers
is the use of ML to predict the final protein concentrations in bioreactors. Tulsyan et al.
developed strategies that comprised switching ML algorithms in real-time for non-linear
state estimation [54] and adaptive state simulation [55]. Bayrak et al. capitalized on these
previous works and developed a methodology in which SVM, PLSR, Gaussian process
regression (GPR), regression trees (RT), and ensemble trees (ET) are each evaluated on
their performance in learning from real-time data, and the highest performing model is
chosen in real-time for titer prediction for the proceeding day [56]. It was observed that
utilizing dynamic feature selection substantially reduced the root mean squared error of
cross-validation (RMSEcv) for the PLSR, GPR, and SVM models; thus, it was implemented
for the continuation of the study. At the conclusion of the study, it was observed that the
PLSR and GP algorithms maintained the lowest error at each time step, thus proving that
they are strong candidates for real-time process monitoring [56].

Table 2 includes a summary of the aforementioned ML and multivariate techniques
that have been utilized for CQA optimization.
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Table 2. Summary of ML and MVDA applications in CQA optimization.

Target Approach Reference

VCD prediction Hybrid agent-based, flux balance model [46]
MLP, RF, XGBoost [47]

Glycosylation prediction ANN, metabolic kinetic model [18]
PCA, PLSR [51]

PLSR [52]
Protein titer prediction SVR, PLSR [53]

SVM, PLSR, GPR, RT, ET [56]
Abbreviations: viable cell density (VCD); multilayer perceptron (MLP); random forest (RF); extreme gradient boost
(XGBoost); artificial neural network (ANN); principal component analysis (PCA); partial least squares regression
(PLSR); support vector regression (SVR); support vector machine (SVM); Gaussian process regression (GPR).

5. Machine Learning Approaches for Process Control

As previously mentioned, an important aspect of bioreactor process control is PID
control. Bioprocesses can be highly variable, non-linear, and complex, thus making it
difficult to control various variables to optimize CQAs and product production. Therefore,
it has become common practice to utilize PID control, a continuous closed-loop feedback
control. This approach uses a sensor that measures and compares various process variables
against their setpoint values and then sets the difference as the parameter error. The PID
algorithm then adjusts the control output to decrease the parameter error [57]. There are
three variables within the algorithm that determine the controller output: proportional gain
(kp), integral gain (ki), and derivative gain (kd). The proportional gain term influences the
controller output to be proportional to the system error at each timestep. ki is dependent
on the combined previous errors and how far they deviate from the variable setpoint.
Derivative gain is determined by the rate of change in the controller output based on the
parameter error it receives over time. The modification of these three variables consists of
carefully defining each term based on the nature of the process. It has been demonstrated
that utilizing this methodology for PID tuning can have a positive influence on heating the
regression rate and setpoint control during prolonged periods of liquid addition within a
bioreactor system [58], thus making it an integral optimization target in biomanufacturing.

Another design approach that has become more prominent within biomanufacturing
is iterative modeling. This process typically consists of designing an experiment based on
key variables of interest, collecting the experimental data, modeling them via computa-
tional and/or physical models, and then making design adjustments based on the results
after they have been validated. Park et al. demonstrated this by creating a systematic
media design framework that consisted of culture data collection, multivariate statistical
analysis, in silico flux analysis with a genome-scale metabolic model, and knowledge-based
targeting media components to determine the optimal media and feed combination to
increase IgG1 yield and eliminate cellular bottlenecks that impact cell growth and produc-
tion [59]. Through this methodology, they were able to determine that one media and feed
combination out of the four that were studied outperformed the others. They then analyzed
the metabolic fluxes of the CHO cells in the optimal media/feed combination and were able
to conclude that an aspartate supplement could enhance growth and productivity within
the culture. Another utilization of this method is in the development of data-driven model
predictive controls (MPCs) to understand the dynamics between glucose concentration and
CQAs such as VCD, osmolality, and byproduct production [60]. MPCs were derived based
on linear regression, Gaussian process regression (GPR), and neural networks and were
coupled with a feed–glucose mass balance relationship in order to simulate the fed-batch
process. After comparing these MPCs to a rule-based control technique, they found that
the GPR-derived MPC outperformed the other models in maximizing VCD (Figure 3a)
and the titer (Figure 3b), with the neural network-derived MPC following closely after. At
the conclusion of the experiment, it was determined that utilizing the non-linear MPCs
on volume-based datasets could increase protein production by over 10% [60]. These
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demonstrations of iterative design are a testament to the promise that this design approach
has for biomanufacturing optimization.
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6. Emerging Topics beyond CHO Cell Bioprocesses
6.1. Cell Types in Bioprocesses for Machine Learning and Deep Learning

Mammalian cells are optimal for bioprocess engineering as they excel in protein folding
and post-translational modifications. Their property of replicating human glycosylation
patterns is ideal for the creation of biopharmaceutical products and has lower chances
of causing immune reactions [61]. Bacterial cells are also commonly used in bioprocess
engineering due to their genetic makeup, rapid growth, and simple cultivation methods,
which are all qualities that allow for the production of proteins, enzymes, and other
compounds on a scale. Their ease of modification and adaptability to environments make
them versatile and cost-efficient bioprocess cell sources [62]. Along with mammalian and
bacterial cells, viruses are extensively used in bioprocessing because of their ability to
effectively transport genetic material into host cells, which is essential for gene therapy and
viral-based vaccines. Their ability to transfer genes to targets through viral attachment and
entry methods enables precise control over cellular activities [63]. Additionally, insect cells,
while being very similar to mammalian cell sources, can be cultured at higher densities,
exhibiting simpler post-translational modification patterns compared to mammalian cells,
and are less susceptible to contamination by mammalian viruses. This makes insect cells
safer for certain types of bioprocessing [64].

Bacterial cells, for example, Escherichia coli (E. coli), are prokaryotic microorganisms that
can be characterized by their lack of a membrane-bound nucleus and other organelles, with
genetic material organized in a single circular chromosome [65]. As previously mentioned,
bacterial cells’ main strength is their ease of modification and adaptability. This enables
bacterial cells to produce several biopharmaceutical products, including biofuels such as
ethanol, organic acids such as lactic, succinic acid, and polyhydroxyalkanoates (PHAs).
These cells are engineered to efficiently convert various substrates into recombinant proteins
and mAbs. The ability of bacterial cells to grow rapidly, be genetically modified, and exhibit
low contamination risks makes them an ideal candidate as a cell type source for bioprocess
engineering strategies [66]. Further advancing biomanufacturing with these bacteria cells,
researchers have sought to combine machine learning with metabolic models. One such
example is the work of Oyetunde and co-workers, who utilized support vector machines,
gradient-boosted decision trees, and neural networks in a stacked regressor model to build
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a predictive model for engineered E. Coli, producing recombinant proteins. This approach
appeared to be largely successful, with a correlation coefficient of 0.93 on the validation
dataset [67].

Viruses, for example, baculovirus, as intracellular parasites, rely on host cells for
replication. These are often used as delivery vectors to introduce mRNA molecules into
host cells. These mRNA molecules encode the proteins. Once the mRNA molecules are
inside of the host cell, the mRNA is translated by the cellular mechanisms to produce the
corresponding proteins [68]. Viral vectors, such as adeno-associated viruses (AAVs) or
lentiviruses, are engineered to efficiently deliver mRNA into target cells, ensuring high
levels of protein expression. This methodology enables the production of recombinant
proteins or antigens in a controlled and scalable manner, making it a promising strategy
for upstream manufacturing, including mRNA-based vaccine development and gene
therapy [69]. One challenge to the advancement of AAV-based therapies is the selection of
the proper mRNA targets for translation. This limiting factor is addressed through machine
learning-enabled synthetic biology approaches to the design of viral vectors [70,71].

Insect cells are utilized as one of the ideal cell types in bioprocess engineering due
to their capacity for performing complex post-translational modifications similar to mam-
malian cells, robust scalability in suspension culture systems, and general flexibility in
expressing a wide range of recombinant proteins, collectively enabling the efficient large-
scale production of biopharmaceuticals and viral vectors [72]. In the research conducted
by Marwidi et al. and colleagues, insect cell lines were used for the manufacturing of
AAV vector production. The insect cell line used was Sf9, which is a common cell line
that is used in baculovirus-insect cell systems for AAV vector production. This ability of
insect cells to produce viral vectors is transferable to bioprocess engineering and upstream
manufacturing applications as well. For example, scalability, gene expression control, and
quality control are valid reasons to consider insect cell lines, specifically Sf9, for manufac-
turing purposes. The ability to modulate the expression level and content and individual
Rep and Cap proteins is an ideal example of precise gene expression control in bioprocess
engineering for AAV vector production [73]. Machine learning can be used to further capi-
talize on the scalability of insect-cell-based systems, such as in the work of Altenburg et al.,
which featured double differential digital holographic microscopy and machine learning
to determine the precise moments in which viability and cell density were optimized [74].
This information could then be used to determine strategies for replicating or prolonging
these optimized culture conditions.

6.2. The Rising Need for Explainable Artificial Intelligence

A topic that has become increasingly prevalent within AI and ML is explainable
artificial intelligence (XAI), which refers to the ability of AI systems to provide justification
and explanations for the decisions or outputs that are provided by many “black-box”
models in a manner that is understandable to users. Moving forward, XAIs will be critical
as black-box models are used more in bioprocess optimization. There are various terms used
to denote the level of interpretability that AI models possess, such as transparent or opaque,
model-agnostic or model-specific, explanation by simplification or feature relevance, and
visual or local explanation [75]. The National Institute of Standards and Technology (NIST)
recognizes four fundamental principles that determine whether a form of AI is to be
considered XAI or not: explanation, meaningfulness, accuracy, and knowledge limits [76].
These standards are set forth to promote the societal acceptance of AI utilization, emphasize
the safe usage of AI, and increase knowledge of the policy regarding it, all of which are
critical for numerous industries, including biomanufacturing. The implementation of XAI
in biomanufacturing can improve the state of the art by contributing to factors such as
process optimization and quality assurance, as well as providing the necessary transparency
needed in order to train operators on the skills needed for bioprocess control and inform
consumers and stakeholders of the role that AI plays in biomanufacturing.
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7. Conclusions

This review addresses various machine learning and deep learning strategies for data-
driven bioprocess engineering. The core of Industry 4.0 is to converge digital technologies,
automation, and powerful data to transform, optimize, and ease traditional industrial
processes. A wide range of machine learning and deep learning methodologies are being
discussed, including the examination of various models, mathematical approaches, and the
significance of mathematical equations for bioprocess engineering. As this field continues
to evolve, the integration of ML and DL approaches in the biotechnology/pharmaceutical
industry promises to revolutionize the standards of innovation without compromising on
quality, safety, and data integrity.
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