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Abstract: Clinical needs for novel antifungal agents have increased due to the increase of people
with a compromised immune system, the appearance of resistant fungi, and infections by unusual
yeasts. The search for new molecular targets for antifungals has generated considerable research,
especially using modern omics methods (genomics, genome-wide collections of mutants, and proteomics)
and bioinformatics approaches. Recently, micro- and nanoscale approaches have been introduced in
antifungal drug discovery. Microfluidic platforms have been developed, since they have a number
of advantages compared to traditional multiwell-plate screening, such as low reagent consumption,
the manipulation of a large number of cells simultaneously and independently, and ease of integrating
numerous analytical standard operations and large-scale integration. Automated high-throughput
antifungal drug screening is achievable by massive parallel processing. Various microfluidic antimicrobial
susceptibility testing (AST) methods have been developed, since they can provide the result in a short
time-frame, which is necessary for personalized medicine in the clinic. New nanosensors, based on
detecting the nanomotions of cells, have been developed to further decrease the time to test antifungal
susceptibility to a few minutes. Finally, nanoparticles (especially, silver nanoparticles) that demonstrated
antifungal activity are reviewed.

Keywords: antifungal drug discovery; microfluidics; nanobiotechnology; omics-based approaches;
antifungal susceptibility testing; nanomotion detection; nanoparticles

1. Introduction

Fungal infections are an extremely important health problem. Fungi infect about 1.2 billion
people every year, yet their contribution to the global burden of disease is largely unrecognised [1,2].
Over 600 different fungi have been reported to infect humans. Most are “relatively” minor infections,
but millions contract diseases that kill at least as many people as tuberculosis or malaria. More than
300 million people are affected by serious fungal infections worldwide. Invasive fungal infections are
responsible for about 1.5 million deaths per year. Fungi are present everywhere in our environment
and are, usually, harmless for people with a normal immune system. Fungal infections can be topical
and local, such as infections on the skin or in the vaginal tract. Systemic infections arise when the
fungi enter and proliferate in the bloodstream. Systemic fungal infections affect people with an
altered immune system due to medical interventions (such as cancer therapy, organ transplantation,
and immune-modulatory medications), immunosuppressive diseases (such as Acquired Immune
Deficiency Syndrome (AIDS)) [3], or malnutrition (under- and overnutrition) [4–6].

The choice of available antifungal drugs to treat invasive fungal infections is limited, since
only three structural classes of compounds are available, i.e., polyenes, azoles, and echinocandins.
Antifungal therapy has become progressively more effective since the 1990s, however, no new
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antifungal classes have been reported since 2006 [7]. Current antifungal drugs show some limitations:
Amphothericin B (a polyene antibiotic) displays a considerable toxicity and undesirable side
effects [8,9], issues with pharmacokinetic properties (such as a short half-life of echinocandins)
and activity spectrum, a small number of targets [10,11], and they can interact with other drugs,
such as chemotherapy agents and immunosuppressants [12,13]. The last approved antifungal (i.e.,
anidulafungin) by the European Medicines Agency and the Food and Drug Administration (FDA)
dates back to 2006 [14]. There is an urgent need for safer and more effective antifungal drugs. Multiple
types of antifungal compounds are in clinical development and these new agents have been recently
reviewed [15–17].

Over the last 20 years, several approaches to antifungal discovery have been explored.
The traditional approach seeks, first, to identify active compounds from large compound libraries
using a panel of fungal pathogens in standardised assays when possible. In the genetic, genomic, or
bioinformatics approach, the objective is, initially, to identify broadly represented targets in fungal
pathogens and non-pathogens [18]. In this “target-centric” genomic approach, up-front genetic,
bioinformatics, and biochemical target prioritisation is performed and, subsequently, an in vitro-based
screening of individual targets is achieved. However, an exceedingly high rate of failure has been
observed when applying this approach [19]. Additionally, not all bioactive compounds act through
a target-specific mechanism of action (MoA). Various compounds act non-selectively as alkylating
agents, intercalators, detergents, etc. Therefore, an integrated approach has been recently proposed for
antimicrobial lead discovery that is rooted in empirical whole-cell screening for small molecules with
intrinsic bioactivity whose MoA may be determined using a variety of forward or reverse genomic
platforms to identify and, subsequently, validate their target [20]. In this “compound-centric” strategy,
it is proposed to use existing genetic methods to evaluate the therapeutic effect of inactivating the target
(both in vitro and in vivo). These methods often use the principles of genetic interaction, relying on the
idea of genetic modifiers (enhancers or suppressors) to generate target hypotheses. Direct biochemical
methods or computational inference have also been used for target identification. In many cases,
however, a combination of approaches may be required to fully characterise on-target and off-target
effects, and understand the mechanisms of small-molecule actions [21].

Recently, micro- and nanoscale approaches have been introduced in the field of antifungal drug
discovery. In this paper, microfluidic approaches for antifungal screening and antifungal susceptibility
testing (AFST), nanosensor development for AFST, and antifungal nanoparticles are reviewed.

2. Emerging Fungal Diseases and Antifungal Drugs

The epidemiology of invasive fungal infection is evolving [22–25]. A growing population of
immunosuppressed patients have been diagnosed with invasive fungal infections. The epidemiology
of candida infections has shifted over the last decade [26]. Non-albicans Candida species, with a reduced
susceptibility to antifungals, are becoming more and more responsible for invasive candidiasis [27].
Several species, such as Candida glabrata and C. krusei, which are less susceptible to azole antifungal
therapy, are increasing in some settings. C. auris has emerged in hospitals as a global concern, since the
strains demonstrated multidrug resistance. Trichosporon species infections are the second most common
cause of fungaemia in patients with haematological malignant disease and they were the third most
commonly isolated non-candida species from patients in the ARTEMIS Global Antifungal Surveillance
Program [28]. These species show resistance to amphotericin and echinocandins. Rhodotorula species
are emerging opportunistic yeasts that are responsible for catheter-related fungaemia and sepsis, and
invasive infections, particularly in immunosuppressed or -compromised patients [24]. The incidence
of infections with non-neoformans crytococci has increased over the past 40 years, especially in patients
with advanced HIV infection or cancer who are undergoing transplant [29]. Since the 1990s, there have
been a growing number of reports about Saccharomyces cerevisiae invasive infections and novel strains
continue to be identified [24,30,31].
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Aspergillus species have, historically, been one of the most common causative organisms associated
with invasive mould diseases [32]. Aspergillus fumigatus species were responsible for most of infections.
Recently, the epidemiology has changed towards non-A. fumigatus species and other moulds, such as
Zygomycetes [33–36], Fusarium [37,38], and Scedosporium [38,39] species. This is due to the occurrence
of azole resistant Aspergillus species [40,41].

Antifungal development is challenging, since, apart from the fungal cell wall, fungi are
metabolically similar to mammalian cells and, therefore, offer few pathogen-specific targets [42].
As explained above, only three molecular classes that target three different fungal metabolic pathways
are commonly used in clinical practice to treat, essentially, systemic fungal infections: Polyenes, azoles,
and echinocandins (Table 1) [43]. The fluoropyrimidine analog 5-fluorocystosine is also used, but only
in combination with amphotericin B.

Table 1. Overview of the mostly used antifungal agents, mechanism of action (MoA), and spectrum of
activity [43–50].

Class Compound MoA Spectrum of Activity Comment

Polyenes

Amphotericin B
Selective binding to ergosterol
cause the formation of pores in

the membrane.

Treatment of deep mycoses,
candidiasis, cryptococcosis,

histoplasmosis, blastomycosis,
paracoccodioidomycosis,

cocciodioidomycosis, aspergillosis,
extracutaneous sporotrichichosis,
and some cases of mucormycosis,

hyalohyphomycosis, and
phaeohyphomycosis, S. cerevisiae.

Fungicidal, broad spectrum,
intravenous, little resistance

observed, significant nephrotoxicity,
indirectly affects action of

many drugs.

Nystatin/Nyotran
Selective binding to ergosterol
cause the formation of pores in

the membrane.
Candidiasis Nyotran is a liposomal formulation

of nystatin with lowered toxicity.

Natamycin

Binds to ergosterol in the
plasma membrane, preventing
ergosterol-dependent fusion of

vacuoles, membrane fusion,
and fission.

Keratinophilic fungi,
corneal infections

Azoles

Fluconazole
Selective inhibition of fungal
cytochrome P450-dependent
lanosterol-14-α-demethylase.

Candida immitis, C. neoformans,
Paracoccidioides brasiliensis; lower

activity against Aspergillus,
Fusarium, Scedosporium, Penicillium

species and other
filamentous fungi.

Fluconazole resistant C. albicans and
non-albicans strains increasing.

Itraconazole
Selective inhibition of fungal
cytochrome P450-dependent
lanosterol-14-α-demethylase.

Most Candida species,
P. brasiliensis, H. capsulatum,

Blastomyces dermatitidis,
Aspergillus fumigatus, A. niger,

Penicillium marneffei.

Better than fluconazole in the
treatment of cocciodioido-mycosis,

not reaching the central nervous
system; numerous drug interactions

due to inhibition of CYP 3A4.

Voriconazole
Selective inhibition of fungal
cytochrome P450-dependent
lanosterol-14-α-demethylase.

Candida species, including
C. krusei, S. cerevisiae.

More potent than fluconazole; very
rapid metabolism in children;

numerous drug interactions due to
inhibition of CYP 3A4.

Econazole
Selective inhibition of fungal
cytochrome P450-dependent
lanosterol-14-α-demethylase.

Trichophyton rubrum,
T. Mentagrophytes,

Epidermophyton floccosum.

Is an immidazole antifungal for the
treatment of tinea pedis and crusis,

pityriasis versicolor.

Tioconazole
Selective inhibition of fungal
cytochrome P450-dependent
lanosterol-14-α-demethylase.

C. albicans, Trichophyton sp.,
Epidermophyton sp.

Is an immidazole antifungal for
topical treatment of superficial
mycoses (ringworm, jock itch,
athlete’s foot, tinea versicolor.
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Table 1. Cont.

Class Compound MoA Spectrum of Activity Comment

Echinocandins

Caspofungin Fungal β-1,3-glucan
synthase inhibitors.

Candida species,
Aspergillus species.

Fungicidal for Candida, fungistatic
for Aspergillus; modest efficacy as

first-line agent for invasive
aspergillosis; intravenous

formulation only; interacts with
ciclosporin and rifampicin.

Anidulafungin Fungal β-1,3-glucan
synthase inhibitors.

Candida species,
Aspergillus species.

Fungicidal for Candida, fungistatic
for Aspergillus; licensed for the

treatment of invasive and
esophageal candidiasis.

Micafungin Fungal β-1,3-glucan
synthase inhibitors.

Candida species,
Aspergillus species.

Fungicidal for Candida, fungistatic
for Aspergillus; licensed invasive

and esophageal candidiasis.

5-Fluoropyrimidine

5-Fluorocystosine Selective conversion of toxic
intermediate (5-fluorouridine).

Cryptococcosis, candidiasis,
chromoblastomycosis; high MIC

for some strains of Aspergillus,
Penicillium and several

Zygomycetes, except for
chromoblastomycosis.

5-Fluorocystosine is always used in
combination with amphotericin B.

Recently, a lot of effort has also been made in analysing the antifungal action of natural compounds
or natural bioactive compounds. The discovered natural antifungal derivatives or compounds derived
from natural origins have been recently reviewed [17,51]. Some examples of these compounds
include chitosan [52]; herbal compounds, such as thymol, carvacrol, eugenol, and menthol [53];
and extracts from plants, such as Hypericum carinatum [54], Stenachaenium megapotamicum [55], and
Acca sellowiana [56].

3. Omics-Based Antifungal Drug Discovery Approaches

The traditional approach seeks, first, to identify active compounds (generally from large libraries
of synthetic small molecules or natural products) that inhibit the growth of the fungus. The most
commonly used assay to identify antifungal leads is liquid growth inhibition assay in which microbial
growth is measured by optical density (OD) of the culture. These assays have some limitations, such
as, sometimes, a poor correlation between growth and OD for fungi that grow as filaments, and
these assays are unable to distinguish between molecules that inhibit growth (fungistatic) from those
that kill the organism (fungicidal), a feature that is very important for the treatment of some fungi
(e.g., Cryptococcus) [57]. Recently, cell viability screening assays based on other readouts have been
developed. The most widely adopted approach is the use of the dyes, Alamar Blue and tetrazolium
salt (XTT), as reporters for metabolic activity. These dyes are converted to fluorescent molecules when
metabolised by viable molecules and can be used for high-throughput multiwell screening [58,59].
The dye, resazurin, was used to develop an assay for high-throughput screening of A. fumigatus [60].
An Alamar-Blue-based high-throughput protocol was devised to identify molecules with fungicidal
activity against C. neoformans [61]. A second type of viability assay that was recently developed is
based on the detection of extracellular adenylate kinase (AK) as a reporter of cell lysis [62]. AK is a
conserved enzyme that has been used as a cytotoxicity reporter in mammalian cell culture assays and
as a reporter of brewing yeast autolysis in the beverage industry [63].

Another approach is referred to as genetic, genomic, or bioinformatics in which the objective
is, initially, to identify broadly represented targets in fungal pathogens and non-pathogens.
The operational code for this strategy consists of three basic rules for identifying potential targets:
(i) A bioinformatics-driven approach is used to identify pathogen-specific genes with the desired
conservation and spectrum, and the absence of a human ortholog; (ii) genetic analyses are performed to
confirm that loss-of-function mutations result in a nonviable growth phenotype and/or a nonvirulent
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phenotype under standard laboratory conditions and/or a nonvirulent phenotype in a relevant animal
model of infection; and (iii) there should be some evidence, derived from sequence, structure, or
biochemical information that the target is druggable [64]. This operational code was used to guide
genomic and target-based antimicrobial discovery. Forward and reverse chemical-genetic methods
have been used to identify the target of drug-like bioactive compounds and MoA. Target-based
approaches have been pursued using high-throughput screening for inhibitor of enzymes and/or
proteins that perform essential functions in microbes. Molecular target-based screening has provided
mediocre to poor results in the field of anti-infective drug discovery, suggesting that cell-based
screening for antimicrobials remains the most effective strategy [19]. Gene knockout microorganisms
and small molecules with well-defined mechanisms can each be used to alter the functions of putative
targets, uncovering dependencies on activity. Reverse chemical screens that exploit genome-wide
collections of mutants have been employed to map susceptibility phenotypes to specific genes by
systematically screening antimicrobial agents against a defined (ideally) comprehensive mutant
collection [20]. Mating of laboratory and wild yeast strains can reveal patterns of small-molecule
sensitivity with specific loci [65]. In another method, molecularly barcoded libraries of open reading
frames have been used to detect small-molecule-resistant clones that are then identified by microarray
analysis [66].

A proteomic profiling approach, based on two-dimensional difference gel electrophoresis and
mass spectrometric identification of the proteins, has been used to predict the target protein of small
molecules of interest [67]. It was demonstrated that this proteomic profiling system could discriminate
small molecules by their mechanism of action. Omics methods have also been used successfully
to identify the MoA of compounds that were discovered using traditional screening approaches.
A key illustrative case is the discovery of the orotomide F901318 compound [68]. A combination
of genetic and biochemical approaches revealed the target of F901318 in A. fumigatus, which was
initially discovered in a high-throughput screen of compound libraries. It was found that F901318
acts via the inhibition of the pyrimidine biosynthesis enzyme, dihydroorotate dehydrogenase, in a
fungal-specific manner.

Although only around 1100 of the 6000 genes of S. cerevisiae are essential under nutrient-rich growth
conditions [69], almost all genes become essential in specific genetic backgrounds in which another
non-essential gene has been deleted or otherwise attenuated, an effect termed synthetic lethality [70].
Genome-scale surveys suggest that over 200,000 binary synthetic lethal gene combinations dominate
the yeast genetic landscape [71]. The genetic buffering phenomenon is also manifested as a phalanx of
differential chemical-genetic interactions in the presence of sublethal doses of bioactive compounds [72].
These observations highlight the inherent redundancy of genetic networks and frame the problem of
interdicting network functions with single agent therapeutics [73]. This genetic network organisation
suggests that judicious combinations of small molecule inhibitors of both essential and non-essential
targets may elicit additive or synergistic effects on cell growth [74,75]. Compounds that enhance the
activity of known agents in yeasts have been identified by small molecule library screens [76–79].
Direct tests of synergistic compounds have successfully yielded combinations that are active against
pathogenic fungi, such as the combination of fluconazole with chemical inhibitors (such as 17-AAG and
17-DMAG) of Hsp90 [80], calcineurin (such as miconazole, ketoconazole), or adenosine diphosphate
(ADP) ribosylation factor (ARF) (such as brefeldin A [81], the antibiotic polymyxin B [78]), and
compounds selected from an off-patent drugs library [79]. Combinatorial antifungal therapies
have many advantages, including a decrease in the rate of selection of resistant strains, a lower
required dosage of individual drugs, a decrease in host toxicity, and enhanced antifungal activity [82].
Syncretic combinations of drugs with improved antifungal properties can be readily identified in both
model fungal species and highly pathogenic clinical isolates [83]. Additionally, it was shown that
synergistic combinations usually yield enhanced selectivity without adverse side effects [84].

These, recently developed, omics-based approaches require expensive, automated, robotic
screening platforms when applied in high throughput. Additionally, these platforms are usually
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based on multiwell screening, which has some limitations. As discussed in the next section, further
improvements can be achieved by integrating these methods in microfluidic screening platforms.

4. Micro- and Nanoscale Approaches

4.1. Microfluidic High-Throughput Antifungal Drug Discovery

Growing cells in 96-, 384-, or 1536-well plates has miniaturised cell assays for drug discovery.
These experiments with multiwell plates are typically integrated in a robotic analysis platform.
Major drawbacks of robotic platforms are the expense of the instrumentation, the cost of experimental
consumables, the systems are closed (no flow through of reagents or cell culture medium), and
still a relatively high consumption of reagents compared to recent developed microfluidic chips.
Additionally, as cell collections are growing, there is a need to further miniaturise the assays to increase
the parallelism of analyses.

In microfluidic lab-on-a-chips, fluids are manipulated at the micrometer length scale [85].
Reducing the scale evidently reduces the reagent consumption and, consequently, the cost to perform
assays, which becomes significant for high-throughput drug screening. The physics at micro/nano
scale are exploited in microfluidic chip designs for drug discovery. Other physical phenomena
dominate at this small length scale compared to the macroscale [86]. Fluid flow in microchannels
is characterized by a low Reynolds number (a dimensional criterion that determines the relative
importance of inertial and viscous effects). The dominant role of viscous forces results in laminar flow
behavior and mass transport by diffusion between two adjacent fluids, resulting in the generation of
stable concentration gradients [87]. Also, fast media and temperature changes can be obtained using
the laminar flow [88]. Mass transport by diffusion becomes a fast mixing method when the length
scale is reduced in small channels or wells. It has been demonstrated that, at these small length scales,
time-resolved reactions have been conducted with millisecond resolution due to the extremely rapid
diffusive mixing [89,90]. Surface tension plays an important role in the formation of small droplet
emulsions in immiscible fluids in microfluidic channels [86]. Surface tension and viscous stresses
destabilize the interface and create droplets when water is injected into a stream of oil at a T-junction
or two perpendicular crossing microchannels [91]. Based on this principle, droplet-based microfluidic
platforms have been developed to encapsulate and screen single cells [92].

Due to the ease of controlling the cellular environment, microfluidic technology has been used to
perturb cellular physiology in screening arrays. Additionally, the cell number and density of a given
area or volume can be controlled, which allows monitoring of a high spatial and temporal resolution
and observation of the dynamic behavior of many cells [93,94]. Parallellisation of experimental
conditions and automatization in microfluidic chips has resulted in designs for high-throughput cell
screening [95], such as living cell microarrays [96–101]. Microfluidic parallelization and single-cell
monitoring allows the measurement and averaging of parameters on hundreds of individual cells,
compared to measuring parameters of a whole cell population. New insights can be obtained by
observing single cells, such as the monitoring of certain classes of proteins, using fluorescently tagged
proteins [102,103] and give information about the cell-to-cell variation in a heterogeneous microbial
population [104–106]. Automation of microfluidic cell culture systems also leads to standardized
manipulation and monitoring, which allows the perfect timing of protocols to characterize dynamic
processes at high temporal resolution to be performed [94].

Cellular microarray platforms have been developed for high-throughput antifungal drug
discovery based on the screening of nanoliter biofilms that are created in hydrogels (Table 2).
Robotic printing is used to fabricate the cellular arrays. The formation of biofilms complicates antifungal
therapy, since the ability of fungal cells to form biofilms is an important reason for the emergence of
severe resistance to most clinically available antifungal agents [107–110]. A better understanding of
fungal biofilms provides new opportunities for the development of urgently needed novel antifungal
agents and strategies.
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Table 2. Examples of microfluidic platforms for high-throughput antifungal drug discovery.

High-Throughput
Technology Application Microorganism Characteristics References

Cellular microarray Antifungal biofilm screening Candida albicans
Cells robotically printed,

768 (48 × 16 array) cultures of
50 nL biofilms in collagen.

[111,112]

Cellular microarray Antifungal biofilm screening C. albicans
Cells robotically printed,

1200 (60 × 20 array) cultures of
30 nL biofilms in alginate.

[113]

Cellular microarray Antibiotic and antifungal
biofilm screening

C. albicans,
Staphylococcus aureus,

Pseudomonas aeruginosa

Robotically printing of mono-
and polymicrobial biofilms,

576 (48 × 12 array) cultures of
30 nL biofilms in alginate.

[114]

Droplet microfluidics Antifungal drug screening Phytophthora sojae

The plant pathogen spores and
the drug were encapsulated in

liquid droplets. Phenotypic
responses to the drug at

different concentrations were
microscopically quantified.

[115]

4.2. Microfluidics for Antifungal Susceptibility Testing

Resistant microbial infections are becoming a major threat to public health, causing increasing
mortality worldwide. The fast emergence of multiresistant pathogens is caused by extensive, and
sometimes unnecessary, use of antimicrobials and the lack of interest in developing new variants.
The cost of antimicrobial resistance (AMR) is projected to increase significantly as some models predict
a rise in global casualties from the present figure of one million to 10 million in 2050 [116]. A survey of
antimicrobial susceptibility test (AST) methods available demonstrated a need for new approaches
that would enable rapid, inexpensive, and sensitive tests that can quickly provide physicians with
antibiotic profiles [117]. A quick diagnostic method is necessary to prescribe a patient that is infected
by a life-threatening microbe with an effective antimicrobial [118]. AST is widely applied to determine
antimicrobial resistance profiles of the microbial isolates and to help in the selection of an antimicrobial
treatment option [117,119–121]. Currently, AST is usually not performed in the clinic, but in a clinical
microbiology lab, which necessitates transportation of the patient samples [122]. Current susceptibility
tests, that are based on cell culturing of the pathogen, can take several days (especially for slow growing
microbes) and extends the time to make the correct diagnosis and decisions for appropriate and
effective antimicrobial therapy. This leads to increased patient mortality and the use of broad-spectrum
antimicrobials that promote resistance [120]. To survive this evolutionary war against microbial
pathogens, we must pursue technologies that can rapidly perform AST to enable personalized therapies
(narrow-spectrum antimicrobial administration) at the earliest possible treatment stage [122].

Standard antifungal susceptibility (AFST) methods rely on measuring fungal growth in the
presence of antifungals over a few days. The broth microdilution (BMD) is the standard method
for the evaluation of susceptibility to antifungal agents in Candida species [123–126]. Standardized
micro-dilution-based procedures by the Clinical and Laboratory Standards Institute (CLSI) and the
European Committee on Antibiotic Susceptibility Testing (EUCAST) are universally accepted for
performing AFST [127]. However, these procedures are complex, time-consuming, and not intended
for routine use.

Commercially available tests, such as Sensititre YeastOne (broth microdilution method),
Etest (agar-based disk diffusion method), and the fully automated Vitek 2 (broth microdilution
method) yeast susceptibility system, all easy-to-use modifications from CLSI/EUCAST reference
methods, are widely used for testing antifungal susceptibility of relevant Candida and Aspergillus
species [10]. New diagnostic approaches based on emerging technologies, such as flow cytometry,
MALDI-TOF mass spectroscopy, and isothermal microcalorimetry, have been developed to expand, and
potentially improve, the capability of the clinical microbiology laboratory to yield AFST results [126].
Flow cytometry is used to determine the effect of an antifungal compound by measuring changes in the
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viability of fungal cells that are fluorescently labeled [128,129]. A simple and rapid AFST assay based
on MALDI-TOF was developed [130]. This approach facilitated the discrimination of the susceptible
and resistant isolates of C. albicans after a 3-h incubation in the presence of “breakpoint” level drug
concentrations of the echinocandin caspofungin (CSF). A microcalorimetry-based AFST assay has
been developed for real-time susceptibility testing of Aspergillus spp. [131]. The method is based on
measuring changes in growth-related heat production in the presence of the antifungal compound.

Semi-automated susceptibility systems (such as VITEK and MicroScan) decrease the turn-around-time
and operator touch-time (culture and colony isolation are still required) compared to traditional
culture-based methods, but can add significant cost to the tests [132]. The fastest test still requires 9 h and,
therefore, these semi-automated systems do not provide information in time to influence initial treatment
decisions [133,134].

Since microfluidics promises several advantages over existing macro-scale methods, several
microfluidic platforms that can perform rapid antimicrobial susceptibility tests have been developed
during the last years (Table 3) [132,135]. The recent development of microfluidic platforms was mostly
focused on devices for antibiotics susceptibility testing and much less on antifungals susceptibility
testing, although the same designs could, usually, be used for both (e.g., see [136,137]). Most systems
rely on microscopic transmission or fluorescence observation of cells to quantify the effect of the
antimicrobial on the cell growth or viability. The microorganisms are confined to a small volume (wells,
channels, chambers, or droplets). In many systems, the cells are immobilized in a hydrogel, such as
agarose or alginate (Table 3) (Figure 1).

Table 3. Examples of microfluidic platforms for antimicrobial susceptibility testing.

Microorganism Measurement Principle Description Reference

Fungi

Candida strains Fluorescence-based distinction
between living and dead cells.

Cell Chip kit 1 used as cell sorter and the
determination of fluorescence histograms

of previously labelled cells.
[138]

Candida albicans Immunosorbent
ATP-bioluminescence assay.

The microfluidic device employs a
fiberglass membrane sandwiched

between two polypropylene components,
with capture antibodies immobilised on

the membrane. Cells immobilised in
alginate hydrogel.

[136]

Saccharomyces cerevisiae Fluorescence staining and imaging
after incubation.

Cell seeding and diffusive medium
supply is provided by phase-guide
technology, enabling operation of

continuous culturing.

[137]

Bacteria

Escherichia coli Optical imaging of single cell growth
(number of cells).

Growth of cells in channels, with a large
surface-to-volume ratio. [139]

E. coli
Magnetic bead rotation, which is

inversely proportional to
bacterial mass.

Droplet microfluidics where single cells
are entrapped in liquid drops. [140]

E. coli Optical imaging of single cell growth
(number of cells).

Individual cells grow in gas permeable
(PDMS) microchannels, with dimensions

comparable to a single cell.
[141]

E. coli Fluorescence imaging of cells that
express green fluorescent protein.

Growth of cells in 12 sets of quadruplicate
microfluidic chambers. Quantification of

the effect of four antibiotics and
their combinations.

[142]

E. coli

Reflectometric interference
spectroscopy of pH-sensitive chitosan
hydrogel measured the accumulation

of metabolic products.

Growth of cells in microfluidic channels. [143]

E. coli
Fluorescence imaging of

immunomicrobeads attached to
the cells.

Growth in microfluidic chambers. [144]
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Table 3. Cont.

Microorganism Measurement Principle Description Reference

Bacteria

E. coli Optical imaging.

The standard broth microdilution method
was miniaturised in a microfluidic chip

that generates an antibiotic concentration
gradient and delivers

antibiotic-containing culture media to
eight 30-nL chambers for cell culture.

[145]

E. coli Fluorescence imaging.

The microfluidic chip allows the carrying
out of commonly executed antibiotic

susceptibility assays in an array of
nanoliter droplets.

[146]

E. coli
Optical phase-shift

reflectometric interference
spectroscopic measurements.

The use of biofunctionalised silicon
micropillar arrays to provide both a
preferable solid-liquid interface for

bacteria networking and a simultaneous
transducing element that monitors the
response of bacteria when exposed to

chosen antibiotics in real time.

[147]

E. coli Spectral absorbance of
cell suspensions.

An automated linear gradient generator
based on centrifugal microfluidics. [148]

E. coli, Nitrosomas europaea Optical imaging of single cell growth
(number of cells).

The cells grow in a layer of agarose upon
which a gradient of the antibiotic

is applied.
[149]

Enterobacter cloacae, E. coli,
Klebsiella pneumoniae, P. aeruginosa,

Acinetobacter baumannii

Optical imaging of
bacterial replication.

A solid-phase microwell growth surface
in a 384-well plate format was used, with
inkjet printing–based application of both

antimicrobials and bacteria at any
desired concentrations.

[150]

Enterococcus faecalis, E. coli Fluorescence staining and imaging
after incubation.

Cell seeding and diffusive medium
supply is provided by phase-guide
technology, enabling operation of

continuous culturing.

[137]

Mycobacterium tuberculosis Optical imaging of single cell growth
(number of cells).

Cells were immobilized in an agarose
matrix, which was molded in a

microfluidic chip.
[151]

Pseudomonas aeruginosa Fluorescence imaging of
GFP-expressing cells.

The microfluidic chip generates a
logarithmic concentration gradient

through semidirect dilution in a zero-flow
condition and cells grow in

nanoliter reactors.

[135]

Staphylococcus aureus Fluorescence imaging of
viability indicator.

Stochastic confinement of individual cells
into liquid plugs (droplet microfluidics);

distinction between sensitive and
resistant bacteria.

[152]

S. aureus Optical imaging of single cell growth
(number of cells).

Antibiotics diffuse into a microfluidic
channel containing the cells. [153]

S. aureus Fluorescence imaging for dead cells
(rates of killing).

Cells are covalently bound to the bottom
of the channels and fluid flow shear stress

activation of pathways that are targets
of antibiotics.

[154]

S. aureus Optical imaging of single cell growth
(number of cells). Chip with 32 individual fluidic channels. [155]

S. aureus, E. coli, K. pneumoniae,
P. aeroginosa

Optical imaging of single cell growth
(number of cells).

Antibiotics diffuse into a microfluidic
agarose channels in 96-well format. [156]

S. aureus, S. epidermitis,
S. saprophyticus, E. coli,

K. pneumonia, P. aeruginosa,
P. mirabilis, Streptococcus pyrogenes,

S. viridans

Immunosorbent
ATP-bioluminescence assay.

The microfluidic device employs a
fiberglass membrane sandwiched

between two polypropylene components,
with capture antibodies immobilised on

the membrane. Cells immobilised in
alginate hydrogel.

[136]

Salmonella thyphimurium, E. coli,
S. aureus

Optical imaging of single cell growth
(number of cells).

Cells immobilised in agarose with a
gradient of the antibiotic in the gel slab. [157]

P. aeruginosa Optical imaging of single cell growth
(number of cells). Growth of cells in four parallel channels. [158]

1 Agilent Technologies.
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dye solution and water were injected to upper (1) and lower (2) inlet ports. (a) Reprinted with 
permission from [145]; (C) Schematic diagram of the AST process for the microfluidic agarose channel 
(MAC) system. (a) The MAC chip was fabricated with PDMS on glass. An agarose–bacteria mixture 
solution was injected into the center of the chip, which flowed synchronously into the six main 
channels. Each interface between the agarose with the bacteria and antibiotic solutions was monitored 
microscopically to analyse bacterial cell growth. (b) (1) The empty channel before AST. (2) The 
bacteria were mixed with agarose and then injected into the main channels. (3) A sharp interface was 
generated due to the anchors and then liquid medium with different concentrations of antibiotic. (4) 
Time-lapse microscopic observation of a bacterial cell. Reprinted with permission from [153]; (D) The 
structure of the AST microfluidic device for MIC determination of five drugs. (a) Design. (b) Actual 
image. (c) Precise structure of one set of fluids. (d) Microscopic image of Pseudomonas aeruginosa 
grown in the presence of piperacillin. Reprinted with permission from [158]; (E) Stochastic 
confinement of bacteria into plugs. (a) Schematic drawing illustrates the increase in cell density, 
resulting from the stochastic confinement of an individual bacterium in a nanoliter-sized plug. (b) 
Screening of many antibiotics against the same bacterial sample. Antibiotics: Ampicillin (AMP), 
levofloxacin (LVF), vancomycin (VCN), and oxacillin (OXA). Reprinted with permission from [152]. 
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Figure 1. (A) An automated linear concentration gradient generator based on centrifugal microfluidics
for antibiotic susceptibility testing (AST). The operation is based on the use of multi-layered
microfluidics in which individual fluidic samples to be mixed together are stored and metered in
their respective layers before, finally, being transferred to a mixing chamber. Reprinted with permission
from [148]; (B) (a) The microfluidic microchip design: Black and red channels represent 149-µm and
4-µm tall features, respectively; (b) A photograph of the fabricated PDMS chip. Blue food dye solution
and water were injected to upper (1) and lower (2) inlet ports. (a) Reprinted with permission from [145];
(C) Schematic diagram of the AST process for the microfluidic agarose channel (MAC) system. (a) The
MAC chip was fabricated with PDMS on glass. An agarose–bacteria mixture solution was injected
into the center of the chip, which flowed synchronously into the six main channels. Each interface
between the agarose with the bacteria and antibiotic solutions was monitored microscopically to
analyse bacterial cell growth. (b) (1) The empty channel before AST. (2) The bacteria were mixed with
agarose and then injected into the main channels. (3) A sharp interface was generated due to the
anchors and then liquid medium with different concentrations of antibiotic. (4) Time-lapse microscopic
observation of a bacterial cell. Reprinted with permission from [153]; (D) The structure of the AST
microfluidic device for MIC determination of five drugs. (a) Design. (b) Actual image. (c) Precise
structure of one set of fluids. (d) Microscopic image of Pseudomonas aeruginosa grown in the presence of
piperacillin. Reprinted with permission from [158]; (E) Stochastic confinement of bacteria into plugs.
(a) Schematic drawing illustrates the increase in cell density, resulting from the stochastic confinement
of an individual bacterium in a nanoliter-sized plug. (b) Screening of many antibiotics against the same
bacterial sample. Antibiotics: Ampicillin (AMP), levofloxacin (LVF), vancomycin (VCN), and oxacillin
(OXA). Reprinted with permission from [152].
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4.3. Nanomotion Analysis for Evaluating Antifungal Suscessibility

Recently, very new sensitive sensor technologies based on microcantilevers have been
developed [159–161]. Nanomechanical oscillators are being used for the detection of very small
masses [162,163], for measuring buoyant mass, and determining the “instantaneous” growth rates
of individual cells [164] for the quantitative time-resolved membrane protein (vancomycin)—ligand
(mucopeptides) on cantilever arrays with 10 nM sensitivity and at clinically relevant concentrations in
blood serum [165]. Cantilever nanosensors have been used to measure mass differences in the pico- to
femtogram ranges in air [166] and liquid [167,168]. Many of the available systems are limited by the
need to perform the measurements in air or in a humid environment [161].

Microcantilevers have been explored as nanosensors for living cell studies, since they offer many
advantages, such as being highly sensitive, selective, label-free, performed in real time, and provide
in situ detection capabilities [169]. Single cell detection and monitoring on the cantilever sensor
has been reported for S. cerevisiae cells [164,170,171], E. coli [164,171,172], Bacillus subtilis [164,172],
Enterococcus faecalis [171], HeLa cells [173], mouse lymphoblasts [164], and human lung carcinoma
and mouse lymphocytic leukemia cells [171,174], and mouse and human T cells [171]. Cell growth
detection has been demonstrated by monitoring resonance frequency changes of cantilevers as the
mass increases from immobilized S. cerevisiae and fungal A. niger spores on the surface of the cantilevers
in humid air [175]. S. cerevisiae cells were deposited onto the cantilever surface and its bending as a
function of time and corresponded to the yeast growth behaviour [169]. Recently, serial microfluidic
mass resonator arrays were used to measure single-cell growth of yeast, bacterial and mammalian cells
in liquid and a higher throughput [171].

Recently, a nanomechanical detector, that can be used to assess the effects of chemicals on living
organisms in a timeframe of minutes, was developed. In this technique, the living microorganisms are
adsorbed to the surface of a nanomechanical sensor, i.e., an AFM cantilever, and its fluctuations are
measured as a function of time (Figure 2). This approach requires only a few minutes without
cell growth, since the decrease in cell activity in the presence of the antimicrobial is measured.
Moreover, it is a label-free technique. These are major advantages compared to current methods.
Antimicrobials can be introduced in the measuring chamber, allowing a rapid identification of the
antimicrobial to which the microorganism is susceptible. The sensor position detection is similar to
the one used in Atomic Force Microscopy (AFM): A laser beam is focused onto the sensor (cantilever)
and ends its path onto a multisegment photodiode. Numerous proof-of-concept experiments have
been performed involving several species of bacteria and fungi. By comparing this method with the
traditional techniques in double-blind experiments, a success rate close to 90% could be achieved [176].
The variation of the nanovibration signal is directly proportional to the metabolic activity of the
microbial cell. It allowed estimating with unpreceded speed (15 min per ampicillin dose), the minimum
inhibitory (MIC) and bactericidal concentrations (MBC) for the effect of the antibiotic ampicillin on
E. coli [177]. The high sensitivity of the nanosensor allowed differentiation between bacteriostatic
(kanamycin) and bactericidal (ampicillin) effects when exposed to a resistant E. coli. The high sensitivity
of the nanosensor made it possible to differentiate between bacteriostatic and bactericidal effects.
Recently, this method was successfully applied to blood culture pellets to determine the antibiotic
susceptibility against agents of bloodstream infection [178]. AFM-nanomotion detection (NMD) has
also been applied for AFST, where the effect of a low (10 µg/mL) and high (40 µg/mL) caspofungin
concentration on C. albicans was evaluated [179]. It was recently demonstrated that AFM-cantilever
NMD is so sensitive that single-cell activities of S. cerevisiae cells could be detected [179], and even cell
cycle progression could be observed [180].
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Figure 2. (A) Outline of experimental setup and description of experiments. (a) Schematics of
nanomotion detector setup with a cantilever sensor; laser beam is focused on the surface of the
sensor and reflection is used to monitor movements of the cantilever. (b) Representation of a typical
nanomotion susceptibility test. When microorganisms are not attached to the sensor, fluctuations are
driven only by thermal motion and are relatively low. After attachment of living cells, fluctuations
are linked to their metabolic activity and are high. Finally, after exposure to an antimicrobial drug,
the cells are nonviable and fluctuations return to low levels. Reprinted with permission from [178].
(B) (a) C. albicans deposited onto a cantilever. (b) Reprinted with permission from [161].

4.4. Antifungal Nanoparticles

Due to the development of antimicrobial resistance, pharmaceutical companies and researchers
are searching for new antimicrobial agents. Nanoscale materials have emerged as novel antimicrobial
agents, owing to their high surface area to volume ratio and their unique chemical and physical
properties [181,182]. By definition, nanoparticles are structures that have dimensions in the
1–100 nm [183]. Silver nanoparticles (Ag-NPs) are one of the most commonly used nanomaterials in
consumer and medical products because of their antimicrobial activity [184,185]. It is increasingly
used in a variety of both medical and consumer products, resulting in an increase in human
exposure [183,186]. A large number of in vitro studies indicate that Ag-NPs are also toxic to mammalian
cells derived from the skin, liver, lung, brain, vascular system, reproductive organs, and the immune
system. Although significant progress has been achieved on the elucidation of the antimicrobial
mechanism of silver nanoparticles, the exact mechanism of action is still not completely known [187].
It has been demonstrated that non-cytotoxic doses of Ag-NPs could induce genes that are associated
with cell cycle progression [188,189] and apoptosis in human hepatoma cells [189]. DNA damage by
Ag-NPs in mammalian cells has also been reported [188,190]. The mechanisms for Ag-NP induced
toxicity include the effects of this particle on cell membranes, mitochondria, and genetic material. It has
been recently demonstrated that bacteria (E. coli, P. aeruginosa) can also develop resistance to silver
nanoparticles after repeated exposure [191]. The biosynthesis of silver nanoparticles is now considered
to be the most environmentally friendly and cost-effective method [185]. It can be achieved using a
variety of organisms, such as by the fungi, A. flavus [185], A. terreus [192], Arthroderma fulvum [193],
Penicillium fellutanum [194], and P. expansum [192].

Other nanostructures have been discovered that also show antifungal activity. It was demonstrated
that cationic terephthalamide-bisurea molecules showed excellent microbial selectivity, with
minimal host toxicity [195]. The terephthalamide-bisurea recognition motif facilitated spontaneous
supramolecular self-assembly, with the formation of fibres in water. Antifungal activity against
clinically isolated, drug-sensitive, and drug-resistant Cryptococcus neoformans strains was observed.
These antifungal agents showed effectively dispersed C. albicans biofilms and excellent in vivo
biocompatibility. Homogeneously dispersed copper nanoparticles (originating from n-Cu sepiolite
fibres) in soda-lime glass powder showed high antibacterial properties against gram-positive
(Micrococcus luteus) and gram-negative bacteria (E. coli), and antifungal (Issatchenkia orientalis)
activity [196]. The observed high activity of the n-Cu glass powder was explained by the inhibitory
synergistic effect of the Ca2+ lixiviated from the glass on the growth of the cells, since n-Cu sepiolite
had no significant antifungal activity. Another approach of obtaining nanoparticles with antifungal
activity is to immobilize, covalently, the antifungal amphotericin into nanomaterials, such as silica
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nanoparticles [197]. These antifungal nanoparticle conjugates demonstrated fungicidal activity against
several strains of Candida sp., mainly by contact. In addition, they could be reused for up to five cycles
without losing their activity. The results showed that the antifungal nanoparticle conjugates were more
fungistatic and fungicidal than 10 nm colloidal silver.

5. Conclusions

Fungal infections continue to appear as the population of people with an altered immune system
increases. An impaired immune system arises due to medical intervention, immunosuppressive
diseases, or malnutrition. The infections become life-threatening for systemic infections. The therapeutic
options for invasive fungal infections are limited, since a very limited number of structural classes
of drug compounds are available and some demonstrate significant limitations. The discovery
of new antifungals is mostly achieved by the screening of natural or synthetic/semisynthetic
chemical compounds [16,17]. Using the genomics approach, substantial progress has been made
in antifungal drug development for a multitude of potential drug targets [198] and inhibitors [199,200].
Recent advances that could support and refine the antifungal pipeline were focused on elucidating
fungal pathways, targets, and mechanisms of action that could lead to new antifungal therapies;
antifungal compounds and immune strategies currently in development that could become new
antifungal therapies; improved formulations of existing compounds; and the repurposing of drugs
approved for other indications and could show potential antifungal activity [16]

Surely, there is a need for novel antifungal discovery approaches. The current antifungal tools
that are available to tackle the invasive fungal epidemic occurring in clinics and hospitals have
improved, but are still inadequate for use in all patient groups [16]. Recently, micro- and nanoscale
approaches have been introduced in antifungal drug discovery. It has become increasingly clear
in trends in antimicrobial drug discovery that microfluidic approaches will have an increasing
role. The capability of manipulating fluids, flexibility on geometries and materials, manipulation
of a large number of cells simultaneously and independently, and ease of integrating numerous
analytical standard operations and large-scale integration makes microfluidic devices a versatile
tool for antifungal drugs. One of the future challenges lies in the construction of extended cell
microarrays, or single-cell droplet arrays, and integration in the microfluidic chip [100], since the
recently developed bioinformatics approach for antifungal discovery could be further improved by
integrating these methods in a microfluidic screening platform. Living cell arraying methods, based on
closed microchambers arrays in microfluidic bioreactors, could increase throughput significantly
compared to classical multiwell-plate cell assays, with significantly reduced amounts spent on
expensive test reagents, cells, and chemical compounds, and without the need for expensive robotic
multiwell-plate screening facilities.

Significant progress has been made in the development of microfluidic platforms for antimicrobial
susceptibility testing (AST). Recent efforts are focused on the development of AFST methods that
are independent of cell growth and can provide susceptibility results in a very short time frame.
These methods rely on measuring the cell death in the presence of the antifungal. A promising
technique is the AFM-based nanomotion detection, which can give an answer about the susceptibility
in a few minutes. Further parallelization of this method is required to introduce it in the clinic.

Nanoscale materials have emerged as novel antimicrobial agents. One of the most extensively
studied nanoparticles are silver nanoparticles and this is for their antifungal, but also antibacterial
and antiviral, activities. In minute concentrations, it was found not to be toxic to humans and
microorganisms [185]. Further research should focus on a better understanding the toxicity and
determining the exact mechanism of the interaction between nanoparticles and cells.
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