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Abstract: Beer quality is a difficult concept to describe and assess by physicochemical and sensory
analysis due to the complexity of beer appreciation and acceptability by consumers, which can be
dynamic and related to changes in climate affecting raw materials, consumer preference, and rising
quality requirements. Artificial intelligence (AI) may offer unique capabilities based on the integration
of sensor technology, robotics, and data analysis using machine learning (ML) to identify specific
quality traits and process modifications to produce quality beers. This research presented the
integration and implementation of AI technology based on low-cost sensor networks in the form
of an electronic nose (e-nose), robotics, and ML. Results of ML showed high accuracy (97%) in the
identification of fermentation type (Model 1) based on e-nose data; prediction of consumer acceptability
from near-infrared (Model 2; R = 0.90) and e-nose data (Model 3; R = 0.95), and physicochemical
and colorimetry of beers from e-nose data. The use of the RoboBEER coupled with the e-nose and
AI could be used by brewers to assess the fermentation process, quality of beers, detection of faults,
traceability, and authentication purposes in an affordable, user-friendly, and accurate manner.
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1. Introduction

Beer quality is usually regarded as a subjective concept that can be described as more objectively
based on beer quality traits through physicochemical analysis and/or sensory analysis of beers using
either trained panels or consumer tests, the latter for perceived quality. However, by themselves,
parameters and tests may not describe specific quality traits related to the overall liking of beer and the
complexity of consumer perception.

Based on the latest research, beers’ physicochemical analysis has been mainly based on the
bioactive compounds in craft beers [1], volatiles, and antioxidant properties when adding fruit
using gas chromatography/mass-spectroscopy (GC-MS) and high-performance liquid chromatography
(HPLC) [1–3]. Many other studies coupled these analyses of quality traits with sensory trials when
analyzing processes to change beer characteristics, such as ultrasound-assisted thermal processing [4],
antioxidant activity through natural additives [5–7], for sweet potato beers [8] and commercial beers [9].
In the case of traditional consumer sensory tests, they tend to be subjective, and require a laboratory
with individual booths that meet specific requirements; it also involves the recruitment of a large
number of participants, which often requires an incentive to participate, which leads to higher costs
and time for conducting the sessions and analyzing the data [10–12]. Therefore, all these studies’
translational results are not easy to implement in the broad brewing industry to be used in every single
batch since they require laboratory instrumentation, specialized personnel, and skills for operation,
data acquisition, and analysis and may be time-consuming and costly.
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Many non-invasive technologies have been proposed for the analysis of beer quality traits,
such as the implementation of robotics coupled with sensors and computer vision capabilities
like the RoboBEER [13], with a similar approach applied for sparkling wines analysis though the
FIZZEyeRobot [14] constructed with more ubiquitous components, making them more applicable to
bigger brewing companies than to craft beer enterprises. Other non-invasive technologies based on
near-infrared spectroscopy (NIR) have also been applied within the beer production process from
fermentation analysis [15] and coupled with artificial intelligence (AI) to predict relative protein content
of commercial beers [16], beer quality assessment [17], the effect of sonication on beer quality [18] and
many other applications within AI [19]. More recently, an integrated gas sensor technology application
has resulted in the development of a low-cost electronic nose (e-nose) that can be attached to robotics
(i.e., RoboBEER) to assess aroma profiles [20] also implementing AI [21].

The implementation of e-noses for beer research is not new in the food science field as they have
been used to assess aromas in products such as coffee acidity [22], and roasting level prediction [23],
tea quality grading [24–26], classification of strawberry juices [24], assessment of wine smoke taint [27]
and alcohol content [28], beer quality classification and aging [29–31], beer aroma prediction [20],
meat quality and shelf life [32,33], olive oil origin and quality [33,34], milk spoilage [35], and rice
infestation [36], among others. However, most of the e-noses used in those studies are expensive and
need to be installed in a laboratory as they have a similar system to a gas chromatograph (GC), and/or are
considered as low-cost compared to a GC, but still, cost ≥ USD 30,000 and require maintenance [37–39].
There have been some works using them for classification of beers using data-mining methods [40–43],
to evaluate the water use in the brewing process [44], aroma discrimination [45], alcohol content [46],
comparison of volatile compounds against gas chromatography methods [43]. However, there has not
been an integration of these e-noses with low-cost robotic systems to uniform pouring conditions or
comparing results with sensory analysis using machine-learning methods. This paper proposed an
integrated low-cost AI system integrating robotics (RoboBEER), NIR spectroscopy, a newly developed
e-nose, and sensory analysis to assess automatically the type of fermentation of beers (Model 1) based
on e-nose data, sensory perception of beers based on NIR data (Model 2) and e-nose data (Model 3)
and beer foamability parameters based on e-nose data (Model 4). All models presented high accuracy
(R > 0.90) in the prediction of beer targets before they were mentioned.

The integrated AI system proposed would offer brewers critical information based on robotics
and e-nose data related to the type of fermentation of beers that will help traceability and identification,
analysis of consumer acceptance, and bubble and physical foam properties of beers. All this information
would be possible with low-cost robotics and instrumentation, which could be affordable even to
small brewing companies that may give them reliable and critical information to tailor their beers
according to specific consumer expectations. Furthermore, the proposed e-nose and AI system offers
the advantage of being versatile and may be adapted to be used for different purposes, such as the
assessment of smoke taint in wines and berries [27].

2. Materials and Methods

2.1. Sample Description

A total of 20 different beer samples from the three types of fermentation (seven top, six bottom,
and seven spontaneous) were analyzed in triplicates (three bottles of each; n = 60). The top fermentation
samples consisted of beers from the abbey ale, porter, kölsch, red ale, steam ale, aged ale, and sparkling
ale styles. The bottom fermentation samples involved beer styles such as pale lager, Vienna lager,
and German pilsner. On the other hand, spontaneous fermentation samples consisted of different
lambic flavors and a wild Saison style. More details on the specific samples are shown as supplementary
material (Table S1).
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2.2. Electronic Nose (E-Nose)

A low-cost and portable electronic nose (e-nose; Figure 1) developed by the Digital Agriculture
Food and Wine (DAFW) Group from the Faculty of Veterinary and Agricultural Sciences (FVAS) of the
University of Melbourne (UoM) was used. This e-nose, which is composed of nine different gas sensors
(Table 1), is sensitive to different gases related to volatile aromatic compounds. It measures the signal
from all sensors in volts to obtain all outputs in the same scale The readings were performed by placing
the e-nose on a 500 mL beaker with each bottle’s entire content; the e-nose started recording during
the pouring of the sample and was placed on top of the beaker to collect readings for 3 min [20,27].
The e-nose was calibrated for 1–2 min between samples to ensure no carryover effects. All samples
were measured at refrigeration temperature (4 ◦C), which is the consumption temperature and the
same as used for sensory and physicochemical analysis.
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Figure 1. Electronic nose showing (a) the front side with the nine gas sensors attached to the printed
circuit board (PCB) and the mini security digital (SD) card to store data, and (b) the back/side of the PCB.

Table 1. Sensors integrated into the electronic nose.

Sensor (Gas) * Label/Model Sensitivity

Alcohol MQ3 0.5–10 mg L−1

Methane MQ4 200–10,000 ppm
Carbon monoxide MQ7 20–2000 ppm

Hydrogen MQ8 100–10,000 ppm
Ammonia/Alcohol/Benzene MQ135 10–300 ppm/10–300 ppm/10–1000 ppm

Hydrogen Sulfide MQ136 1–100 ppm
Ammonia MQ137 5–200 ppm

Benzene/Alcohol/Ammonia MQ138 10–1000 ppm/10–1000 ppm/10–3000 ppm
Carbon dioxide MG811 350–10,000 ppm

* All sensors are from Henan Hanwei Electronics Co., Ltd., Henan, China.

2.3. Sensory: Consumer Acceptance Test

A sensory session was conducted with frequent beer consumers (n = 31) recruited from the staff and
students at UoM, Australia. According to the Power analysis performed using SAS® v. 9.4 (SAS Institute,
Cary, NC, USA), the number of participants was enough to find significant differences (1–β > 0.99).
Participants were asked to sign a consent form approved by the FVAS–UoM Human Ethics Advisory Group
(Ethics ID: 1545786.2). The session was conducted in individual sensory booths at the sensory laboratory
of the FVAS–UoM. The samples were served at refrigeration temperature (4 ◦C) in standard wine-tasting
glasses. Samples were served in a semi-randomized order (two groups of beers). Participants were
provided with water and water crackers to cleanse their palates and were asked to rest for a few minutes
between samples to avoid fatigue. The questionnaire was displayed in the BioSensory Application
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(University of Melbourne, Parkville, Victoria, Australia, [47]). The sensory attributes evaluated for
acceptability and the scale used are shown in Table 2.

Table 2. Sensory attributes evaluated in the beer consumer test.

Attribute Label Scale

Carbonation Mouthfeel Mcarb 9-point hedonic
Bitterness Tbitter 9-point hedonic

Aroma Aroma Liking 9-point hedonic
Flavor Flavor Liking 9-point hedonic

Overall Liking Overall Liking 9-point hedonic

2.4. Near-Infrared Spectroscopy

Samples were analyzed using a NIR spectroscopy handheld device MicroPHAZIR™ RX
Analyzer (Thermo Fisher Scientific, Waltham, MA, USA) able to read spectra from 1596–2396 nm.
Gonzalez Viejo et al. [29] described a filter paper soaked with the beer sample and measured using
the NIR device. The dry filter paper absorbance values were subtracted from the filter soaked in beer
readings to obtain only the liquid’s absorbance values.

2.5. Physical Parameters

The beer samples were analyzed using the robotic pourer RoboBEER (The University of Melbourne,
Parkville, Vic, Australia), as Gonzalez Viejo et al. [10] described. Each beer bottle was poured using
the pourer to record 5-min videos and further analyzed using computer vision algorithms in Matlab®

R2020b (Mathworks, Inc., Natick, MA, USA) to obtain the physical parameters related to foam and
color (Table 3).

Table 3. Physical parameters analyzed using the RoboBEER.

Parameter Label

Maximum volume of foam MaxVol
Total lifetime of foam TLTF

Lifetime of foam LTF
Foam drainage FDrain
Color lab scale L, a and b

Color RGB scale R, G, and B
Small bubbles SmBubb

Medium bubbles MedBubb
Large bubbles LgBubb

2.6. Statistical Analysis and Machine-Learning Modeling

A multivariate data analysis based on principal component analysis (PCA) was conducted using
a code written in Matlab® R2020a to find relationships between the data obtained from the e-nose,
RoboBEER, and the consumer test responses. Furthermore, a correlation matrix was developed using
Matlab® R2020b to assess only the significant correlations (p < 0.05) between all parameters.

For machine-learning Model 1, pattern recognition, artificial neural networks (ANN) were used.
This model consisted of the use of the maximum (Max), mean, and area under the curve (AUC) values
of each sensor’s outputs from the e-nose to classify the samples into the three types of fermentation
(top, bottom, and spontaneous; Figure 2a). A total of 17 different training algorithms were tested in
a loop using a code written in Matlab® R2020a to find the best model based on the lack of under-
or overfitting, highest accuracy, and best performance (Levenberg–Marquardt). Data were divided
randomly as 60% for training, 20% for validation with a mean squared error (MSE) performance
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algorithm, and 20% for training. A neuron trimming test was conducted using 3, 5, 7, and 10 neurons,
with the latter resulting in the best performance with no signs of under- or overfitting.
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Figure 2. Diagrams of the two-layer feedforward artificial neural networks showing (a) pattern
recognition Model 1 with a tan-sigmoid function in the hidden layer and Softmax neurons in the
output layer, (b,c) regression Models 2–4 with a tan-sigmoid function in the hidden layer and a linear
transfer function in the output layer.

Models 2–4 were developed using a regression ANN, similar to Model 1; 17 different training
algorithms were tested, with Levenberg–Marquardt resulting in the best performance and accuracy for
the three models. Model 2 was developed using the NIR absorbance values from the whole spectra
(1596–2396 nm) as inputs, while Model 3 was created using the Max, mean, and AUC values of each
sensor’s outputs from the e-nose as inputs. For both models, the consumer test responses for the
five attributes shown in Table 2 were used as targets (Figure 2b). On the other hand, Model 4 used
the same e-nose inputs as Model 3, but with the RoboBEER outputs (Table 3) as targets (Figure 2c).
A random data division was used as 60% for training, 20% for validation with an MSE performance
algorithm, and 20% for testing. For these models, a trimming exercise was also performed using 3, 5, 7,
and 10 neurons, with the latter resulting in the best performance with no signs of under- or over-fitting.

3. Results

3.1. Multivariate Data Analysis

As shown in Figure 3a, the PCA principal component one (PC1) explained 33.06% of total data
variability, while PC2 accounted for 22.37% (total PC = 55.43%), which is close to the cut-off point
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of 60% [48]. According to the factor loadings (FL), the PC1 was mainly represented by the e-nose
sensors MQ138 (FL = 0.32), MQ8 (FL = 0.31), and MQ137 (FL = 0.30) on the positive side of the axis,
and by B (FL = −0.19) from RGB color scale on the negative side. On the other hand, PC2 was mainly
represented by G (FL = 0.36) and R (FL = 0.34) from the RGB color scale, and L (FL = 0.35) from the
CIELab color scale on the positive side of the axis, and by ‘a’ (FL = −0.32) from the CIELab color scale,
and medium (FL = −0.22) and large (FL = −0.23) bubbles on the negative side. Positive relationships
were observed between the e-nose sensors and physical parameters such as total lifetime of foam (TLTF)
and MaxVol as well as liking of all sensory attributes, especially aroma. By contrast, the e-nose sensors
had a negative correlation with foam drainage (FDrain). Samples from bottom fermentation were
associated with lower voltage from the e-nose and with FDrain. In comparison, most top fermentation
and three spontaneous fermentation beers were associated with higher voltage from the e-nose and the
sensory attributes’ liking. The other four spontaneous fermentation beers were more associated with
the physical parameters such as bubble size and lifetime of foam (LTF) and ‘a’ and ‘b’ from the CIELab
color scale.

Figure 3b shows the correlation matrix with all physical, sensory, and e-nose parameters.
Positive and significant correlations (p < 0.05) were found between the sensory attributes’ liking
and e-nose sensors MQ8, MQ136, and MQ138. Furthermore, positive and significant correlations were
found between physical parameters such as LTF, color (‘a’, ‘b’, and B), MedBubb, and the e-nose data.
As expected, beer foam drainage (FDrain) was inversely correlated to maximum volume (MaxVol) and
the total lifetime of foam (TLTF).
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Figure 3. Multivariate data analysis results showing (a) the biplot from the principal components
analysis (PCA) and (b) the correlation matrix depicting only the significant correlations (p < 0.05) of
the data obtained from the electronic nose, RoboBEER physical parameters, and consumer sensory
responses. Abbreviations are shown in Tables 1–3.

3.2. Machine-Learning Modeling

In Table 4, it can be observed that there was a high overall accuracy (97%) in predicting the type of
beer fermentation using the Max, mean, and AUC data from the e-nose outputs as inputs. Furthermore,
all stages had an accuracy of >90%. Compared to the validation and testing, the lower MSE value of
the training stage and the latter two being the same, are indicators of no under- or overfitting. Figure 4
shows the receiver operating characteristic (ROC) curve depicting the true-positive (sensitivity) and
false-positive (specificity) rates; as can be observed, the three categories had a sensitivity > 0.90.
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Table 4. Statistical data from the pattern recognition artificial neural network Model 1 classify beers
into the type of fermentation (top, bottom, and spontaneous) using the electronic nose outputs as inputs.
The performance was based on means squared error (MSE).

Stage Samples Accuracy Error Performance (MSE)

Training 36 100% 0% <0.01
Validation 12 92% 8% 0.10

Testing 12 92% 8% 0.10
Overall 60 97% 3% N/A

N/A: Not applicable.
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Figure 4. Receiver operating characteristics (ROC) curve depicting the true positive (y-axis) and false
positive (x-axis) rates of Model 1 constructed to predict the type of fermentation of beers using the
electronic nose outputs as inputs.

Table 5 shows the statistical data from the regression models. It can be observed that Model 2 had a
high overall correlation coefficient (r = 0.90) and a high slope (>0.85) for all the stages. The training MSE
value (MSE = 0.02) was lower than the validation and testing, which is a sign of no under- or overfitting;
however, the validation (MSE = 0.12) and training (MSE = 0.30) were not as close, which may indicate
some overfitting. Model 3, developed using the e-nose outputs to predict sensory descriptors’ liking,
had a higher overall correlation coefficient (R = 0.95) than Model 2, which was constructed using NIR
inputs to predict the same sensory descriptors. Furthermore, Model 3 had high slope values for all
stages. The training performance MSE value was lower than the validation and testing, and these
two were close (validation MSE = 0.15; training MSE = 0.13); therefore, there were no signs of under-
or overfitting. On the other hand, Model 3, developed using the e-nose outputs as inputs to predict
the physical parameters obtained using RoboBEER, also had high overall accuracy (r = 0.93) with
moderate-high slope values. This model had close MSE values for validation (MSE = 0.10) and testing
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(MSE = 0.20) and with the training stage having a lower value (MSE = 0.02), therefore, no signs of
under- or over-fitting.

Table 5. Statistical data from the regression artificial neural network Models 2–5. Performance was
based on means squared error (MSE). Abbreviations: R: correlation coefficient.

Stage Samples Observations R Slope Performance (MSE)

Model 2 (Near-infrared inputs/Sensory targets)

Training 36 180 0.98 0.96 0.02
Validation 12 60 0.87 0.85 0.12
Testing 12 60 0.80 1.00 0.30
Overall 60 300 0.90 0.96 N/A

Model 3 (Electronic nose inputs/Sensory targets)

Training 36 180 0.99 1.00 <0.01
Validation 12 60 0.95 0.94 0.15
Testing 12 60 0.85 0.94 0.13
Overall 60 300 0.95 0.97 N/A

Model 3 (Electronic nose inputs/RoboBEER targets)

Training 36 468 0.98 0.93 0.02
Validation 12 156 0.90 0.80 0.10
Testing 12 156 0.82 0.87 0.20
Overall 60 780 0.93 0.89 N/A

N/A: Not applicable.

Figure 5 shows the overall regression models with their respective R values and regression
equation. According to the 95% confidence bounds, Model 2 had 5% (15 out of 300 observations) of
outliers, while Model 3 had 7% (21 out of 300 observations). On the other hand, Model 4 presented
5.3% (41 out of 780 observations) of outliers. It can be observed that in Model 2, flavor liking and
carbonation mouthfeel were the attributes with the highest number of outliers (4 out of 60 each),
while bitterness and aroma had the lowest (2 out of 60 each). In Model 3, bitterness was the highest
in outliers (8 out of 60), while aroma was the lowest (1 out of 60). Conversely, in Model 4, ‘a’ and
FDrain had the highest number of outliers (7 out of 60 each), while SmBubb did not present any outlier,
and MedBubb only had 1 outlier out of 60.
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4. Discussion

4.1. Relationships between E-nose and Physicochemical Analysis

Most of the bottom fermentation beers were clustered close to vectors related to foam drainage
(FDrain) of beers and color red, green and blue (RGB) and L; the latter may be explained due to
the lighter color that these beers tend to have [49] compared to those form top and spontaneous
fermentation. Furthermore, the spontaneous beers were grouped mostly close to bubble formation with
the distribution of bubbles between small, medium, and large size (SmBubb, MedBubb, and LgBubb)
contributing to a higher lifetime of foam (LTF), similar results have been previously reported for both
physicochemical and sensory data [10,13,50,51]. On the other hand, top fermentation beers clustered
mostly closer to all the gas sensors’ sensitivity with a variation of foamability and bitterness which
mainly influenced overall aroma, and flavor liking along with higher beer carbonation mouthfeel
(Mcarb) (Figure 3a). The reason for top fermentation beers to be spread along the PCA may be mainly
due to the variability in the bitterness and flavor due to the addition of different types and amounts of
hops, which is greater than that in the bottom, and spontaneous fermentation beers [10,52,53].

Most of the gas sensors from the e-nose were related to each other as expected. Still, more importantly,
there were statistically significant and positive correlations between sensors from the e-nose and carbonation
sensation and bitterness, which can be directly related to the CO2 release from beers in the pouring and
aromas related to hops giving bitterness taste on beers [13,54] (Figures 2a and 3b), which directly influenced
the flavor and overall liking from the sensory analysis. Furthermore, there were also significant and positive
correlations between the e-nose sensors and the lifetime of foam and blue to yellow colors (b) from CIELab
and blue (B) from the RGB color scales (Figure 2b). The latter may be explained since volatile compounds such
as hydrogen sulfide (MQ136) are present in the malt and hops, which are responsible for beer color [49,55].
Furthermore, hydrogen sulfide (MQ136), alcohol (MQ3, MQ135, MQ138), and hydrogen are produced
during fermentation in which a drop in pH is caused, provoking a change in color intensity [49,56,57].

There are significant correlations between small bubbles (SmBubb) and liking, which were directly
related to the lifetime of foam (LTF) and retention of foam of beers, hence decreasing the release of gases
after pouring, which can explain the absence of correlation between small bubbles and the e-nose gas
sensors. Furthermore, correlations between LTF and SmBubb with ‘a’ from CIELab scale were found;
this may be explained with the findings in other studies showing that beers and berries with more
red color had higher sugar content [50,58], and at the same time sugars act as surfactant substances,
which are responsible for increasing beer’s viscosity and, therefore, increasing foam stability and
reducing bubble size [13,17,59].

4.2. Artificial Intelligence Applied to Beer Quality Assessment

The machine learning-based Model 1 was able to classify all the beers studied into the top,
bottom, and spontaneous fermentation with very high accuracy (97%) using data from the e-nose.
The latter is consistent with the data from multivariate data analysis presented here (Figure 2a,b)
and previous research using data from the RoboBEER as inputs to classify beers into the three types
of fermentation with similarly reported accuracies of 92.4% [13]. These results are important since,
for this specific type of application related to beer classification, data analysis is based on the signal
analysis in the case of the e-nose compared to more complex implementation of computer vision
algorithms in the case of RoboBEER. Furthermore, the e-nose could offer additional gas classification
capabilities and identification of the specific gases that every sensor is sensitive to and aroma profiles
from beers [20,27,29,31,60]. Further applications could be focused on identifying faults and proteins in
beers [16] and traceability using new and emerging sensor technologies [61].

The use of the e-nose could also be more efficient, cost-effective, and user-friendly than NIR spectroscopy
methods, as per the results shown here to assess consumer sensory perception and acceptability of beers,
which resulted in Model 3 having higher accuracy (e-nose) compared to Model 2 (NIR). Finally, Model 4,
based on e-nose inputs, was shown to be highly accurate at detecting physical parameters of foam
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formation, drainage, size, and distribution of bubbles and colorimetric assessment of beers compared
to the RoboBEER. These results are very encouraging when aligned to Model 1 since this makes it
possible for the RoboBEER to act just like a precise pouring device to be attached to the e-nose to obtain
all the required physicochemical, colorimetric, and sensory perception by consumer parameters for a
more accurate, objective, cost-effective and user-friendly beer quality assessment system. Furthermore,
the e-nose may be installed as a stand-alone device at different stages of the production line to assess
beer quality and detect any faults in real-time to take corrective actions in the processing line before
the final product. These parameters obtained from the new system proposed here can be used as an
integrative system coupled with blockchain for traceability and authentication of beers [62,63].

5. Conclusions

A novel system based on artificial intelligence (AI) has been proposed using robotics, electronic
sensors (e-nose), and machine learning to assess beer quality more objectively. The system proposed
here offers high accuracy in identifying beer fermentation, consumer preference, and acceptance,
as well as physicochemical and colorimetric analysis. Furthermore, it potentially could be used
for authentication and traceability coupled with blockchain technology for higher transparency
within the brewing chain from raw materials, brewing, quality assurance, and sensory analysis,
to commercialization. Finally, the integration of low-cost technology with AI makes it possible to
apply these new and emerging technologies to the broad spectrum of brewing processes and brewing
companies, from craft beer enterprises to the biggest brewers.
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