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Abstract: A data-processing and statistical analysis workflow was proposed to evaluate the metabolic
changes and its contribution to the sensory characteristics of different wines. This workflow was
applied to rosé wines from different fermentation strategies. The metabolome was acquired by means
of two high-throughput techniques: gas chromatography–mass spectrometry (GC-MS) and liquid
chromatography–mass spectrometry (LC-MS) for volatile and non-volatile metabolites, respectively,
in an untargeted approach, while the sensory evaluation of the wines was performed by a trained
panel. Wine volatile and non-volatile metabolites modulation was independently evaluated by
means of partial least squares discriminant analysis (PLS-DA), obtaining potential markers of the
fermentation strategies. Then, the complete metabolome was integrated by means of sparse gener-
alised canonical correlation analysis discriminant analysis (sGCC-DA). This integrative approach
revealed a high link between the volatile and non-volatile data, and additional potential metabolite
markers of the fermentation strategies were found. Subsequently, the evaluation of the contribution of
metabolome to the sensory characteristics of wines was carried out. First, the all-relevant metabolites
affected by the different fermentation processes were selected using PLS-DA and random forest (RF).
Each set of volatile and non-volatile metabolites selected was then related to the sensory attributes of
the wines by means of partial least squares regression (PLSR). Finally, the relationships among the
three datasets were complementary evaluated using regularised generalised canonical correlation
analysis (RGCCA), revealing new correlations among metabolites and sensory data.

Keywords: data-integration; untargeted; multivariate analysis; metabolomics; chemometrics; rosé
wines; yeasts; sequential inoculation

1. Introduction

Wine quality perception by consumers is a complex concept involving a sensory
experience and consumers’ expectation [1]. The sensory experience in wine tasting is
related to its organoleptic attributes, such as aroma, taste and mouthfeel, which are further
linked to its chemical composition [1,2]. In recent years, the advent of robust and high-
throughput analytical techniques such as gas chromatography–mass spectrometry (GC-MS)
and liquid chromatography–mass spectrometry (LC-MS) has prompted the study of the
metabolic profile of foods and beverages. In this sense, untargeted strategies, that aim to
simultaneously measure as many compounds as possible present in samples [3], have been
successfully used to untangling the wine metabolome in the last few years [4–9]. However,
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the data generated by these analytical platforms are complex, with multi-scale (different
orders of magnitude) and multivariate (different chemical substances) properties [10],
requiring the use of proper statistical methodologies to correctly process and extract the
relevant information.

The complete workflow in metabolomics studies to extract the biological information
from the raw files generated by the high-throughput analytical techniques generally in-
cludes a pre-processing (convert the raw instrumental files into organised and tabulated
file formats), pre-treatment (refinement of the pre-processed data for posterior data analy-
sis) and statistical analysis of the data (application of appropriate algorithms to find the
relevant biological information) [11].

Pre-processing of GC-MS and LC-MS chromatograms must fulfil the correct identi-
fication of the mass spectrum of individual metabolites and the accurate determination
of metabolites abundance in each sample, being challenging due to coelution of analytes
within single chromatographic peaks and retention time shifts between samples [12]. For
this reason, several bioinformatics tools such as PARAFAC2, AMDIS, ChromaTOF, eRah,
XCMS, MS-Dial, MZmine 2, MarkerView, or Compound Discoverer among others have
been developed to automatically pre-process chromatographic data. For GC-MS data,
the so-called PARAllel FACtor analysis2 (PARAFAC2) algorithm [13] demonstrated to
successfully handle complex situations with coelutions, low signal-to-noise (S/N) ratio and
retention time shifted chromatographic peaks, with the advantage that only the number
of components of the model in a selected region of the chromatogram is required to be
set, diminishing the risk of modelling problems [12]. Meanwhile, for pre-processing of
LC-MS data, the XCMS framework implementing the feature detection algorithm centWave,
the time alignment algorithm OBI-warp, and the grouping of features across samples al-
gorithm group.density [14], has yielded better metabolite identification abilities than other
widely-used similar methods, while keeping a high quantification performance [3].

During the pre-treatment step, the pre-processed data are filtered, cleaned, drift
corrected, missing value imputed, normalized, transformed and/or scaled [15] with the
aim to make it adequate for the subsequent statistical analysis.

Finally, statistical analyses are performed on the data to discover the relevant biologi-
cal information. Different computational and statistical methods have been developed for
this task, comprising unsupervised and supervised analysis [11]. In metabolomics studies,
unsupervised analyses are fundamentally used to explore and unravel the structure of
the data, aiming at detecting sample clusters or systematic trends and errors. One of
the most popular and powerful unsupervised statistics used in metabolomics studies is
principal component analysis (PCA), based on dimensionality reduction [16]. Meanwhile,
supervised learning methods are used for classification, prediction and biomarker discov-
ering, dealing with datasets that have response variables either continuous (regression
problems) or discrete (classification problems) [16]. Partial least squares (PLS) and its dis-
criminant extension PLS-DA are one of the most popular methods used for regression and
classification problems, respectively, in metabolomics studies due to its high performance
and easy interpretation [17]. These models are useful when the data are acquired from
the same omics platform (i.e., LC-MS or GC-MS or nuclear magnetic resonance (NMR),
etc.), since simple concatenation of different omics data ignores their heterogeneity and a
single type of omics is mainly highlighted [18]. However, metabolomics studies usually
involve measurements from different omics platforms that may contain latent biological
relationships and the independent assessment of each biological domain may not reveal
that information. To overcome this, several frameworks implementing multi-omics data
integration have emerged [19], including the unsupervised regularised generalised canon-
ical analysis (RGCCA) and its sparse discriminant version sGCC-DA (DIABLO), which
are useful multiblock methods to study the relationships between blocks of data measured
in different platforms and to identify the main subsets of variables involved in those
relationships [18].
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The aim of this study was to establish a data processing and statistical analysis pipeline
to (1) evaluate the impact of different elaboration processes on the metabolome of wines,
acquired by means of two high throughput analytical platforms in an untargeted approach:
GC-MS (volatile metabolites) and LC-MS (non-volatile metabolites), and to (2) relate those
changes with their sensory descriptors. An optimal pre-treatment and pre-processing
of the data generated from both analytical platforms was proposed to ensure its quality.
Variable selection procedures were used to reveal the metabolites more impacted by the
different wine elaboration processes. Each single omics data set and the sensory data were
independently assessed by means of univariate and multivariate statistical analyses to
study the impact of the wine elaboration process. The relationships between each single
analytical platform and the sensory descriptors were evaluated by means of partial least
squares regression (PLSR) models. Finally, the data obtained from the three sources were
treated as a whole by means of data integration models to reveal hidden correlations.

2. Materials and Methods
2.1. Wine Samples

The red grape varieties Vitis vinifera L. cv. Garnacha and L. cv. Cabernet Sauvignon
were used to elaborate rosé wines with three fermentation strategies (classes of the factorial
design). Both grapes were picked at optimum ripeness, destemmed, and crushed. The
maceration process was performed for 24 h with the addition of 40 mg/L of sulphur
dioxide (SO2) (Enartis, La Rioja, Spain). During the maceration tank filling the enzymes
(Enartiszym Arom MP, Enartis, La Rioja, Spain) were added according to the supplier’s
recommendations (3 g/100 kg). The resulting musts were softly pressed homogenized and
dejuiced at 4 ◦C for 24 h with the addition of 2.5 mL/hL of pectolytic enzymes (EnartisZym
Blanco L, Enartis, La Rioja, Spain). At the beginning of the monoculture fermentation
the Saccharomyces cerevisiae yeasts (Red Fruit, Enartis, La Rioja, Spain) were added at
25 g/hL, while in the sequential inoculations the non-Sc yeasts (Torulaspora delbrueckii TD291
BiodivaTM and Metschnikowia pulcherrima MP346 Flavia®) at 25 g/hL were used as starters
of the fermentation, and 1 day later Sc yeasts were also added at 25 g/hL. The non-Sc yeasts
were supplied by Lallemand as activated dried yeasts (ADY). The alcoholic fermentation
was carried out at 17–18 ◦C. To control the kinetics of the alcoholic fermentation, density
and temperature were daily monitored. The alcoholic fermentation finished when residual
sugar concentrations were under 2 g/L. The wines we <re racked 15 days after the final
alcoholic fermentation by cold settling using 60 g/hL of bentonite (Enartis, La Rioja, Spain)
and 15 mL/hL of liquid gelatin at 30% (Enartis, La Rioja, Spain). After two months of
cold stabilization at 0 ◦C, the wines were filtered, first using CKPV 16 plates (Cordenons,
Milan, Italy) and then using a membrane cartridge of 1.0, 2.0 and 0.45 µm (Millipore), and
then bottled using agglomerated cork caps (Selecork model, Tapones del Sur, Jerez de la
Frontera, Spain).

2.2. Analysis, Data Acquisition and Processing of Headspace Solid-Phase Microextraction Coupled
with Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) Data

The volatile metabolome of the wines was determined using headspace solid-phase
microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS).
Samples of 15 mL were diluted 1:1 with EDTA solution (200 mM and pH 7.0 adjusted with
NaOH 1.0 M) and 10 mL of this dilution were transferred to a 20 mL SPME vial closed
with a 18mm magnetic PTFE/Sil headspace cap after the addition of 3.5 mg of NaCl. The
samples processed were then homogenized in a vortex shaker for 30 s and placed in the
autosampler tray (CTC Analytics, Zwingen, Switzerland). The fibre used for the HS-SPME
was DVB/CAR/PDMS (1 cm, StableFlex/SS) supplied by Supelco (Bellefonte, PA, USA).
The vials were incubated at 500 r.p.m for 2 min at 40 ◦C. The volatile fraction was extracted
at 40 ◦C for 38 min followed by the desorption at 250 ◦C for 15 min into a Trace GC ultragas
chromatograph (Thermo Fisher Scientific S.p.A., Rodano, Milan, Italy) coupled to an ISQ
Single Quadrupole MS spectrometer (Thermo Fisher Scientific, Austin, TX, USA). Injection
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was set to splitless mode for 0.75 min. GC separation was performed on a BP21 column
(50 m × 0.32 mm × 0.25 µm) (SGE Analytical Science, Milton Keynes, United Kingdom).
The carrier gas used was helium at a flow rate of 1.7 mL/min. The oven temperature started
at 40 ◦C for 5 min, then raised to 220 ◦C at 3 ◦C/min and maintained for 30 min. The MS
transfer line and ion source temperatures were 230 ◦C and 200 ◦C, respectively. The mass
spectrometer operated in electron ionization mode at 70 eV. Mass spectra were recorded
in the 50–400 m/z value range and the scanning frequency was 5 scans/s. The Thermo
Xcalibur v. 2.2 software was used to control both the Combipal autosampler and GC-MS.

Raw untargeted GC-MS data from rosé wines were acquired in Xcalibur file format
(.raw) and converted to the international ANDI file format (.cdf) by means of the file
converter tool implemented in Xcalibur. They were then pre-processed (Figure 1) to convert
the chromatograms into extracted data (tables of metabolite chromatographic areas). The
raw .cdf files with a three-way array structure (elution time × mass spectra × samples)
were deconvoluted by means of the PARAFAC2 algorithm. The chromatograms were first
divided into 335 intervals in the elution time dimension in order to reduce the complexity
and a single model was built for each interval. For each model, one to eight components
were fitted and the selection of the optimal number of components was based on model
fit (%), core consistency, distribution of the residuals, comparison of the resolved mass
spectral profiles against the raw profiles, and retention times of the weighted elution
profiles. The freely-available platform PARADISe v. 3.88 was used to implement this
framework [12]. To verify the quality of the data, pooled quality control (QC) samples
were repeatedly injected throughout the whole sequence. Different levels of metabolite
identification confidence were categorized in accordance with the proposed minimum
reporting criteria defined by the metabolomic standard initiative [20]. Two orthogonal
properties: linear retention index (LRI) calculated with the equation of Van den Dool and
Kratz, and fragmentation mass spectrum, were used for metabolite identification. Three
levels of identification were considered. The resolved PARAFAC2 mass spectrums and
linear retention index were compared against an authentic chemical standard analysed
under the same experimental conditions for definitive identification (level 1). Level 2 was
considered for metabolites showing a match factor (MF) > 850 and LRI ± 30 compared to
the NIST database. Level 3 was considered for metabolites with 650 ≤ MF ≤ 85 a and LRI
± 30 compared to the NIST database. Since close values of MF and reverse match factor
(RMF) are related to low levels of background, RMF was used to control the quality of each
metabolite background subtraction.

2.3. Analysis, Data Acquisition and Processing of Using Ultra-High-Performance Liquid
Chromatography High-Resolution Mass Spectrometry (UHPLC-HRMS) Data

The relative non-volatile metabolome of rosé wines was determined using ultra-high-
performance liquid chromatography coupled to an Exactive Orbitrap mass spectrometer
(UHPLC-HRMS) controlled by the Thermo Xcalibur v. 2.2 software. A total of 1 mL of
each rosé wine sample was centrifuged at 15,000 rpm for 10 min at 20 ◦C (Eppendorf™
5424 Microcentrifuges, Hamburg, Germany) and 200 µL of the supernatant were trans-
ferred into a 1.5 mL amber glass vial, mixed with 380 µL of acetonitrile and placed in the
autosampler refrigerated at 10 ◦C of a Dionex Ultimate 3000 RS UHPLC system coupled
to an Exactive Orbitrap mass spectrometer detector (Thermo Fisher Scientific, San Jose,
CA, USA). Hydrophilic interaction separation was carried out on a 2.1 mm × 150 mm
ACQUITY UPLC 1.7 µm BEH amide column, equipped with an ACQUITY UPLC BEH
amide 1.7 µm van-guard pre-column (Waters, Barcelona, Spain). The temperature of the
column was maintained at 40 ◦C and two mobile phases were used: A: acetonitrile and
B: acetonitrile-water (2:98) + 1 mM ammonium formate. The injection volume was 5 µL
and the separation was obtained at a flow rate of 0.4 mL/min with a 40 min gradient.
The gradient started at 5% B for 4 min, raised to 28% B in 25 min, raised to 60% B in
30 min, maintained for 0.5 min before rising to 80% B in 33 min. After that, the column
was equilibrated to the previous conditions within 10 min. Full scans were recorded in the
m/z range from 100 to 1000 with a resolution of 50,000 Hz and with a full AGC target of
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100,000 charges, using 2 microscans. Analyses were also based on scans with in-source
collision-induced dissociation (CID) at 25.0 eV. MS experiment condition with HESI in
positive ionization (separately analysed) mode was: (i) capillary temperature was 325 ◦C,
the heater temperature was 300 ◦C, the sheath gas was 25 units, the auxiliary gas was
4 units, and the spray voltage was 4.0 kV. While the MS experiment condition with HESI in
negative ionization (separately analysed) mode was: (i) capillary temperature was 325 ◦C,
the heater temperature was 300 ◦C, the sheath gas was 20 units, the auxiliary gas was
2 units, and the spray voltage was 4.0 kV.

Raw untargeted UHPLC-ESI-MS data from rosé wines were acquired in the Xcalibur
file format (.raw) and converted to the international ANDI file format (.cdf) by means of
the file converter tool implemented in the Xcalibur software. Then, the data were pre-
processed (Figure 1) using the R package XCMS v. 3.4.4 [21]. Peak picking, retention
time correction and grouping parameters from XCMS were optimised by means of a
Box-Behnken design using the R package IPO v. 1.8.1 [22]. The centWave algorithm was
selected for peak picking, while the OBI-warp and density methods were used for retention
time corrections and grouping, respectively. Then, the features derived from the same
metabolite and annotation of the ion species were grouped with the R package CAMERA
v. 1.38.1 [23]. Scripts including XCMS optimised parameter settings and CAMERA are
given in the Supplementary material R scripts. Metabolite annotation was performed on
the basis of the minimum reporting criteria of the four identification levels defined by the
metabolomic standard initiative [20] and described in [24]. The mass-based searching tool
MetaboQuest was used to find putative metabolite identities from the HMDB and METLIN
databases. The results shown in Supplementary Tables S1 and S2 were compared against
the feature list from the WinMet database [9] by using an automated R routine (available
in the Supplementary material R scripts) that matches neutral masses of WinMet with the
putative metabolites obtained in MetaboQuest and selects the candidates present in both
lists. Finally, the metabolites were manually inspected and annotated for up to 5 ppm error.

2.4. Sensory Analysis

The sensory analysis of the wines was performed at IFAPA Rancho de la Merced
(Jerez) by means of a tasting panel composed of 10 trained panellists between 35 and
55 years. The panellists were trained following the AENOR (UNE-EN ISO 8586:2014 and
UNE 87022:1992) standards and the procedure was the same than that described in [25].
The wine description terminology agreed by consensus included 5 attributes scored in
an olfactory phase (scent intensity, red fruit, black fruit, citrus fruit and tree fruit) and
6 attributes scored in a taste phase (taste intensity, acidity, alcohol, complexity, balance
and persistence).

2.5. Statistical Analysis

The data from the different sources were pre-treated in different ways (Figure 1).
The sensorial scores were only autoscaled before the integration approach. Meanwhile,
the data from both analytical platforms were first cleaned, replacing features with non-
detected single classes but detected in other classes by the minimum peak area reported
in the data matrix divided by 2. Next, the data were peak filtered by removing rows
(samples) or columns (features) with missing values ≥30% across all classes. To reduce the
contribution of the experimental and analytical variability, the data were drift corrected by
fitting a smoothed cubic spline onto the QC samples as described by [26]. The R function
smooth.spline was used, and the smoothing parameter was set to 1 after its optimization
using leave-one-out cross validation at different values of this hyperparameter. The drift
correction was performed as followed (Equation (1)):

Xcorrected (i) = Xoriginal (i) + mean(XQC) − fdrift(i) (1)

where i is the injection order of each sample, Xcorrected is the corrected value of a feature,
mean(XQC) is the mean value of all the QC samples used to fit the smoothed cubic function
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and fdrift is the smoothed cubic function. Subsequently, features with an RSD > 20 and RSD
> 30 in QC samples for LC-MS and GC-MS data respectively were removed. Random forest
imputation was applied to impute missing values using the R package missForest [27]. QC
samples were not included in the data to ensure a proper imputation based on patterns
of the real wine data. Next, data were probabilistic quotient normalised (PQN) using
the median of the QC samples, since it is less sensitive to outliers than the mean [28].
Finally, GC-MS and LC-MS data were autoscaled. Throughout this pre-treatment, principal
component analyses (PCA) including QCs were conducted to unravel the structure of the
data and to detect systematic trends and errors.

Univariate analyses were performed on the data without autoscaling. Normality and
heteroscedasticity were checked with the Shapiro–Wilk’s and Levene’s tests respectively,
and the variables that failed the parametric assumptions were box-cox transformed. Two-
way analysis of variance (ANOVA) and Tukey’s honestly significant difference (HSD)
post-hoc tests were then applied to identify differences in the metabolites and sensory
descriptors due to the factors studied.

Partial least squares discriminant analysis (PLS-DA) was used for the selection of
the most discriminative features (potential markers) and for classification tasks, which
were further used for the biological interpretation. The optimization and validation of the
PLS-DA models were based on a double cross-validation described by [29]. Briefly, the
cross-validation consisted of two nested loops, referred to as inner and outer loops. In
the former, the model was optimised using leave-one-out exhaustive cross-validation. In
the latter, a 4-fold cross-validation made it possible to assess the performance of the final
discriminant model. The optimization and validation of the models were based on the
balanced error rate (BER) measured at the Mahalanobis distance. The significance of the
PLS-DA models was obtained through the following equation (Equation (2)):

p-value = 1 + (HPP ≤ HP)/N (2)

where HP is a hyperparameter: BER, number of misclassification (NMC) or the area
under receiver operating characteristic curve (AUROC), and (HPP ≤ HP) is the number
of elements in the H0 distribution which are smaller or equal to the hyperparameter
of the original data. H0 distribution was generated by random permutation of sample
labels. N = 1000 permutations were simulated, since this number was large enough to
sample the distribution tails and attain a p-value up to 0.001. The BER, NMC and AUROC
of the original data were calculated by averaging the values of each hyperparameter
obtained from the sub-models fitted during the cross-validation. The selection of the most
discriminative metabolites (potential markers) followed an iterative workflow based on
variable importance in projection (VIP) described in [30]. Alternatively, the data from
the three different sources was integrated using the framework DIABLO, which is the
supervised extension of sparse generalized canonical correlation analysis (sGCC-DA) [18].

Partial least squares regression (PLSR) was used to predict the sensory attributes scores
from the volatile and the non-volatile profile separately. Afterwards, the simultaneous
integration of the three datasets was carried out by means of RGCCA implemented in the R
package mixOmics [18]. To this end, the R package MUVR [31] was first used to extract the
all-relevant variables from the LC-MS and GC-MS platforms, i.e., all features influenced by
the studied factor (in this case the fermentation strategy) once the non-informative features
were removed. A PLS-DA and random forest (RF) models were independently fitted in
each single dataset using a double cross-validation scheme. The all-relevant variables from
both discriminant analyses were merged to perform the PLSR and RGCCA models.
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Figure 1. Flowchart illustrating the step-by-step processes followed to convert raw data into processed data to extract
biological interpretations.
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3. Results
3.1. Volatile Profile

Prior to GC-MS injection of the real samples, pooled QCs were used to optimize the
dilution factor and the extraction fibre employed. Dilution ratios of 1:1, 1:2, 1:4 and non-
dilution were tested in three different fibres, which covered a vast range of polarities, such
as PDMS, CAR/PDMS and DVB/CAR/PDMS. The combination of the DVB/CAR/PDMS
fibre and non-dilution yielded the best results in terms of total chromatographic peak
signal (sensitivity). However, the DVB/CAR/PDMS fibre and 1:1 dilution ratio were
selected, since 10% more features could be detected with low deviation coefficients (20%
RSD), improving stability. Subsequently, the real rosé wine samples were analysed with
the optimised methodology. PARAllel FACtor analysis2 (PARAFAC2) deconvolution
algorithm [13] was used to pre-process the converted data, with a total of 505 molecular
features assigned to detected peaks. After the pre-treatment step, 429 features remained in
the data set, among which 126 were definitive—or putatively identified (Supplementary
Table S3). PCAs including QC samples were used during data pre-treatment to check
the quality of the data (Figure 2). The quality of the raw data (before pre-treatment) was
quite satisfactory, since QCs were allocated in a narrow region and samples were grouped
according to the fermentation strategy. However, the pre-treatment workflow proposed in
this study led to a slight improvement of the final data, with QCs and samples belonging
to the same fermentation strategy being allocated in closer areas.

Figure 2. Principal component analysis (PCA) performed for the gas chromatography (GC) data during pre-treatment.
(a) Raw data and (b) pre-treated data. Quality control samples (QCs) are included to verify the quality of the data. TD:
wines fermented with sequential inoculation of Torulaspora delbrueckii and Saccharomyces cerevisiae. MP: wines fermented
with sequential inoculation of Metchnikovia pulcherrima and Saccharomyces cerevisiae. SC: wines fermented with monoculture
of Saccharomyces cerevisiae.

Afterwards, a two-way ANOVA (Supplementary Table S3) was performed to study the
effect of the fermentation strategy, that impacted to different chemical groups, especially es-
ters, alcohols and terpenes, independently of the grape variety of the wine (Supplementary
Table S3). Rosé wines that followed a sequential inoculation with the Flavia Metschnikowia
pulcherrima yeasts (Sc-Mp) showed statistically significant differences compared with those
fermented with the monoculture Red Fruit Saccharomyces cerevisiae yeasts (Sc). However,
the sequential inoculation with Biodiva Torulaspora delbrueckii yeasts (Sc-Td) produced
rosé wines with the most distinct volatile profile, with overall lower contents of esters
and aldehydes, but an increase in several alcohols and terpenes (Supplementary Table S3).
Subsequently, the main wine volatile metabolites linked to the fermentation strategy were
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selected by means of a variable reduction procedure based on variable importance in
projection (VIP) from the PLS-DA model. These metabolites were considered as potential
markers of the fermentation strategy and a new model was fitted using the reduced data.
The performance of the PLS-DA including the potential volatile markers displayed a mean
overall BER of 0.08 ± 0.06 and p-values from the permutation test below 0.05 in the three
diagnostic statistics (Table 1). This resulted in a slight improvement compared to the model
fitted with all the variables (BER of 0.11 ± 0.08), and the complexity of the model was
reduced from 3 to 2 components. The X-variate 1 explained a high 65% of the total variance
found in the rosé wine samples, that separated the Sc-Td wines from the rest (Figure 3). This
result supported the more distinct volatile profile of Sc-Td wines previously observed in the
ANOVA. Considering the annotated compounds, 3-ethoxy-1-propanol, ethyl decanoate,
1-dodecanol, methyl 4-decenoate, (E)-nerolidol and ethyl 2-methylpropanoate (ethyl isobu-
tyrate) were selected as the most discriminative metabolites of this fermentation strategy
by displaying higher overall content. Meanwhile, Sc and Sc-Mp wines were separated in
X-variate 2, that explained the 20% of the total variance of the samples (Figure 3). The
volatile metabolites involved in such differentiation were pentyl-cyclopropane, isopentyl
hexanoate and ethyl heptanoate, found in overall higher concentrations in Sc-Mp wines, and
3-isopropyl-1-pentanol (3-ethyl-4-methylpentanol), ethyl trans-3-hexenoate, (E,E)-farnesol
and 3-furaldehyde, that were found in higher contents in Sc wines.

Table 1. Model performance of the partial least squares discriminant analysis (PLS-DA) models built to discriminate yeast
fermentation strategy and grape variety used to elaborate the rosé wine samples.

Analytical
Platform Model Mean Overall

BER (1) Ncomp Class Mean Class
Error (2) p-Value (3)

GC-MS Allvariables 0.11 ± 0.08 3
Sc-Td 0.01 ± 0.03 BER: <0.001
Sc-Mp 0.15 ± 0.16 NMC: 0.024

Sc 0.18 ± 0.17 AUROC: 0.020

GC-MS Variable
reduction

0.08 ± 0.06 2
Sc-Td 0.00 ± 0.00 BER: <0.001
Sc-Mp 0.12 ± 0.11 NMC: 0.007

Sc 0.14 ± 0.11 AUROC: 0.003

LC-MS Allvariables 0.17 ± 0.10 4
Sc-Td 0.14 ± 0.09 BER: <0.001
Sc-Mp 0.07 ± 0.13 NMC: 0.120

Sc 0.29 ± 0.21 AUROC: 0.035

LC-MS Variable
reduction

0.02 ± 0.04 2
Sc-Td 0.00 ± 0.00 BER: <0.001
Sc-Mp 0.05 ± 0.11 NMC: 0.027

Sc 0.00 ± 0.02 AUROC: 0.002
1 Mean overall balanced error rate (BER) values with the standard deviation calculated on the basis of 200 PLS-DA sub-models in a
double-cross validation scheme. 2 Mean class error values with the standard deviation calculated on the basis of 200 PLS-DA sub-models in
a double-cross validation scheme. 3 Model statistical significance was calculated on the basis of a permutation test (N = 1000) using the
mean overall BER, number of misclassifications (NMC) and the area under receiver operating characteristic curve (AUROC) as diagnostic
statistics. Statistically significant models (p-value ≤ 0.05) were highlighted in bold. Sc-Td: wines fermented with sequential inoculation of
Torulaspora delbrueckii and Saccharomyces cerevisiae. Sc-Mp: wines fermented with sequential inoculation of Metchnikovia pulcherrima and
Saccharomyces cerevisiae. Sc: wines fermented with monoculture of Saccharomyces cerevisiae.
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Figure 3. Graphical outputs of the partial least squares discriminant analysis (PLS-DA) performed to classify rosé wines
according to the fermentation strategy on the basis of their volatile profile. (a) Scores plot for the components 1 and 2;
(b) and (c) loading contribution barplot on components 1 and 2. Colour indicates the class for which the compound has
a maximal mean value. Bar length represents the multivariate regression coefficient with either a positive or negative
sign for that particular feature of each component, i.e., the importance of each variable in the model. Sc-Td: wines
fermented with sequential inoculation of Torulaspora delbrueckii and Saccharomyces cerevisiae. Sc-Mp: wines fermented with
sequential inoculation of Metchnikovia pulcherrima and Saccharomyces cerevisiae. Sc: wines fermented with monoculture of
Saccharomyces cerevisiae.
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3.2. Non-Volatile Profile

The optimization of the dilution procedure for the wine samples was achieved using
pooled QC samples. Direct injection and dilution ratios of 1:1, 1:2 and 1:5 were tested.
Samples were analysed and processed to extract the features, and two parameters were
considered to select the best dilution conditions: total sum area (response) and number
of features with RSD <30 (stability). The dilution of the samples yielded a reduction in
the response but increased the stability of the features. In positive ionization mode, the
compounds were most stable at a dilution ratio of 1:2, which captured close to 2-fold
more compounds with RSD <30 than direct injection. Meanwhile, in negative ionization
mode, the dilution ratio of 1:5 displayed slightly better results than 1:2 in terms of response.
However, this dilution ratio was discarded due to loss of sensitivity (around 50% compared
to 1:2). Therefore, the best consensus in terms of sensitivity and stability was obtained
for a dilution ratio of 1:2, which was used for the analysis of the real samples. Respective
totals of 1801 and 4275 features for positive and negative ionization modes were obtained
after XCMS pre-processing, and 1167 and 1701 features remained respectively after data
pre-treatment step. PCAs including QC samples were again used during the pre-treatment
process to verify the quality of the data (Figures 4 and 5 for negative and positive ESI
modes, respectively). Data acquired in negative ESI mode displayed an important batch
effect which was highlighted by the QC samples, and after data pre-treatment this effect
was successfully eliminated (Figure 4). Although a batch effect was not observed in positive
ionization mode, an improvement in the final quality of the data was also achieved after the
pre-treatment process, since QCs and samples were grouped closer and better separated
(Figure 5).

As for the volatile data, ANOVA and PLS-DA models were used to disclose the
relevant biological information contained in the data. The ANOVA showed clear differences
in the non-volatile profile of the rosé wines due to the fermentation strategy regardless of
the grape variety, with amino acids and organic acids being the most impacted compound
families (Supplementary Table S4). The variable reduction procedure allowed us to obtain
a PLS-DA with improved classification performance compared to the model fitted with
all the metabolites, displaying a BER of 0.02 ± 0.04 and p-values from the permutation
test below 0.05 using the three diagnostic statistics (Table 1). A total of 38 metabolites
were selected as markers and the model was optimized for two components accounting
for 88% of the total variance found in the samples, which were clearly grouped according
to the fermentation strategy (Figure 6). As found for the volatile profile, Sc-Td wines
displayed the most distinct non-volatile profile, since these wines were separated from the
rest on component 1 (X-variate 1), that explained the 71% of the total variance of samples.
Among the annotated compounds, glutamic acid and D-mannitol/dulcitol were selected as
potential markers of the fermentation strategy, displaying higher overall concentrations in
Sc-Td wines (Figure 6). Meanwhile the variance explained in component 2 made it possible
to differentiate Sc-Mp from Sc wines, being the non-volatile metabolites quinic acid and
imidazole acetic acid selected as potential markers of Sc-Mp wines (Figure 6).
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Figure 4. Principal component analysis (PCA) performed for the liquid chromatography (LC) negative ESI mode data
during pre-treatment. (a) Raw data, (b) after smoothed cubic spline and (c) pre-treated data. Quality control samples (QCs)
are included to verify the quality of the data. TD: wines fermented with sequential inoculation of Torulaspora delbrueckii and
Saccharomyces cerevisiae. MP: wines fermented with sequential inoculation of Metchnikovia pulcherrima and Saccharomyces
cerevisiae. SC: wines fermented with monoculture of Saccharomyces cerevisiae.
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Figure 5. Principal component analysis (PCA) performed for the LC positive ESI mode data during pre-treatment. (a) Raw
data, (b) after smoothed cubic spline and (c) pre-treated data. Quality control samples (QCs) are included to verify the
quality of the data. TD: wines fermented with sequential inoculation of Torulaspora delbrueckii and Saccharomyces cerevisiae.
MP: wines fermented with sequential inoculation of Metchnikovia pulcherrima and Saccharomyces cerevisiae. SC: wines
fermented with monoculture of Saccharomyces cerevisiae.
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Figure 6. Graphical outputs of the partial least squares discriminant analysis (PLS-DA) performed to classify rosé wines
according to the fermentation strategy on the basis of their non-volatile profile. (a) Scores plot for the components 1 and
2; (b,c) loading contribution barplot on components 1 and 2. Colour indicates the class for which the compound has
a maximal mean value. Bar length represents the multivariate regression coefficient with either a positive or negative
sign for that particular feature of each component, i.e., the importance of each variable in the model. Sc-Td: wines
fermented with sequential inoculation of Torulaspora delbrueckii and Saccharomyces cerevisiae. Sc-Mp: wines fermented with
sequential inoculation of Metchnikovia pulcherrima and Saccharomyces cerevisiae. Sc: wines fermented with monoculture of
Saccharomyces cerevisiae.
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3.3. Sensory Attributes

The impact of the fermentation strategy on the sensory attributes of wines was assessed
by means of a two-way ANOVA. All the sensory attributes except taste intensity were
affected by the fermentation strategy (Table 2). Overall higher scores were assigned to
Sc and Sc-Mp wines regarding scent intensity, red fruit, black fruit, citrus fruit, tree fruit,
acidity, alcohol and complexity. In addition, Sc wines displayed the highest scores in
balance, followed by Sc-Mp wines. Persistence was the only sensory descriptor with the
highest score in Sc-Td wines (Table 2).

Table 2. Two-way analysis of variance (ANOVA) performed on the sensory scores of the rosé wines from different
fermentation strategies and grape varieties.

Sensory
Descriptor Sc-Td 1 Sc-Mp 2 Sc 3 p-Value 4 CS 5 GT 6 p-Value Interactions

(p-Value)

Scent intensity 6.0b 6.2ab 6.6a * 6.4 6.1 ns ***
Red fruit 1.35b 1.97a 2.01a *** 1.90 1.66 ns ns

Black fruit 1.47b 1.99a 2.03a * 2.95a 0.71b *** ***
Citrus fruit 0.86b 1.65a 1.84a *** 1.00b 1.90a *** ***
Tree fruit 1.10b 1.78a 2.12a *** 1.58 1.75 ns **

Taste intensity 5.8 5.5 5.6 ns 5.9a 5.4b ** ns
Acidity 4.5b 4.9a 5.0a ** 4.6b 5.0a * ns
Alcohol 4.7b 5.0a 4.9a ** 4.8 4.9 ns ns

Complexity 4.1b 4.6a 4.7a *** 4.6a 4.3b * ns
Balance 4.1c 5.0b 5.7a *** 4.5b 5.3a *** **

Persistence 5.1a 4.2b 4.3b *** 4.7 4.4 ns *
1 Sc-Td: wines fermented with sequential inoculation of Torulaspora delbrueckii and Saccharomyces cerevisiae. 2 Sc-Mp: wines fermented with
sequential inoculation of Metchnikovia pulcherrima and Saccharomyces cerevisiae. 3 Sc: wines fermented with monoculture of Saccharomyces
cerevisiae. 4 p-value from the two-way ANOVA. ns: not significant, * : 0.05 > p-value > 0.01, ** : 0.01 > p-value > 0.001, and *** : p-value < 0.001.
Mean values with different letters differ significantly. 5 CS: Cabernet sauvignon. 6 GT: Garnacha Tinta.

3.4. Data Integration: Sparse Generalised Canonical Correlation Analysis Discriminant Analysis
(sGCC-DA) Approach

To look for the most important metabolites and sensory descriptors linked to the
wine fermentation strategy, sparse generalized canonical correlation discriminant analysis
(DIABLO) was also performed integrating the three datasets. This multi-block data anal-
ysis framework maximises the covariance between the data from the different analytical
platforms and identifies the multi-omics signature that better discriminates the target
outputs [18]. A consensus between maximising the correlation of datasets and the discrimi-
nation was adopted by setting the connection of blocks to a link of 0.7 [18]. The sGCC-DA
model was optimized for three components, displaying a satisfactory error rate of 0 for both
LC and GC analytical platforms and 0.222 for the sensory data. The Pearson’s correlation
coefficient revealed a good connection between the different blocks, with values above 0.85,
being observed the highest correlations for the volatile and non-volatile metabolites blocks
(Figure 7).

This approach made it possible to identify additional markers of the fermentation
strategy which were not previously selected during the independent assessment of each
analytical platform (Figure 8). The new potential markers selected were 1-undecanol
and shikimic acid for Sc-Mp wines, which were respectively in around 9-fold and 6-
fold higher concentrations compared to the Sc-Td wines, and duplicated in both cases
the concentrations of Sc wines (Supplementary Tables S3 and S4). Meanwhile, linalyl
anthranilate, ethyl 5-hexenoate, hexyl acetate and proline betaine for were selected as
potential markers for Sc wines, found in around 1.5 to 4-fold higher concentrations in
comparison to Sc-Td and Sc-Mp wines (Supplementary Tables S3 and S4).
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Figure 7. Pearson correlation plot obtained from the sparse generalised canonical correlation analysis
discriminant analysis (sGCC-DA) model.

Figure 8. Loading contribution barplot on components 1 and 2 for the different blocks of the sGCC-DA. Colour indicates
the class for which the compound has a maximal mean value. Bar length represents the multivariate regression coefficient
with either a positive or negative sign for that particular feature of each component, i.e., the importance of each variable in
the model.

3.5. Partial Least Squares (PLS) Regression

The relationships between the sensory attributes and the metabolite composition of
wines was studied by means of partial least squares (PLS) regression. To that end, PLS1
and PLS2 regression was computed for each analytical platform (LC-MS and GC-MS),
which were used as independent variables to predict the response of each sensory attribute
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(dependent variables). The models were fitted using the all-relevant variables previously
selected by means of the MUVR package implemented in R (Supplementary Figure S1).
A total of 74 and 247 metabolites for GC and LC platforms were, respectively, selected as
relevant, which were obtained by combining the results from a PLS-DA and random forest
(RF) models. For both platforms, a better performance was observed for PLS-DA over RF
to discriminate and select a major number of relevant compounds.

The root mean squares error (RMSE) and R2 were used to optimise the number of
component of the PLS models. Using PLS1 regression, the sensory descriptors balance,
black fruit and citrus fruit were satisfactory predicted by the volatile and non-volatile pro-
files with R2 in cross validation higher than 0.72, while good predictions of the descriptors
complexity and tree fruit were also obtained using the non-volatile data (Supplementary
Figures S2 and S3).

To study the correlation between the sensory data and the volatile profile, PLS2 re-
gression was subsequently performed. The model fitted with the volatile and sensory data
was optimised for two components, which explained a 66% of the total variance found
in the X matrix. In Supplementary Figure S4, the correlation loadings plot from the PLS2
highlights the contribution of each variable to each component. Greater distances from
the origin implies stronger correlations. Thus, variables falling within the inner circum-
ference displayed light associations. In addition, if variables are represented as vectors
sourcing from the origin, acute angles between vectors of two variables indicate positive
correlations, while obtuse angles indicate negative correlations. The sensory attributes
balance, citrus fruit, acidity, tree fruit and alcohol were highly correlated with 3-isopropyl-
1-pentanol. Meanwhile, red fruit, complexity and black fruit were positively correlated
with 3-methylpentanol, methyl 4-decenoate, 3-ethoxy-1-propanol, (E)-nerolidol, ethyl de-
canoate, ethyl 2-methylpropanoate, trans-3-hexen-1-ol and 1-dodecanol. Finally, positive
correlations were observed between the sensory descriptor persistence and isopentyl hex-
anoate, ethyl heptanoate and pentyl cyclopropane. Only two sensory descriptors were
poorly correlated with the volatile profile data (taste intensity and scent intensity). Only
scent intensity fell within the inner circumference, meaning weak correlations of this de-
scriptor with the volatile data. For the LC-MS data, a PLS regression was optimized for
2 components, which explained 80% of the total variance in the X matrix. The sensory
attributes balance, citrus fruit, acidity and alcohol were slightly and positively correlated
with several amino acids (alanine, glutamic acid, 2-Phenylglycine, L-Alanine, N-propyl-
/L-Alloisoleucine/L-Isoleucine/L-norleucine, L-leucyl-L-proline, N-acetyl-L-ornithine,
N-acetylproline, phenylalanine, proline betaine and suberylglycine). Meanwhile, persis-
tence, taste intensity and to a lower extent black fruit displayed light positive correlation
with cycloleucine, uracil and two organic acids (imidazole acetic acid and shikimic acid).
The remaining sensory descriptors were placed within the inner circumference, being again
the scent intensity descriptor in this area.

3.6. Data Integration: Regularised Generalised Canonical Correlation Analysis (RGCCA) Approach

Once the relationships between the sensory attributes and the metabolite composi-
tion of wines were independently assessed (GC-sensory and LC-sensory), regularized
generalized canonical correlation analysis (RGCCA) was performed to integrate the three
datasets. The connection of the three blocks was set to a link of 1 to maximise their cor-
relations. As stated in the previous section, a total of 74 and 247 metabolites for GC and
LC platforms were, respectively, selected as relevant and were used to built the RGCCA
model. Using this approach, all the sensory attributes fell between the two circumferences
of the correlation circle plot, showing important correlations with several metabolites
(Figure 9). As stated in the PLSR models, citrus fruit, balance, acidity, tree fruit and alcohol
descriptors were highly correlated with 3-isopropyl-1-pentanol (A5). In addition, other
compounds such as ethyl 5-hexenoate (E3), hexyl acetate (E7), linalyl anthranilate (T3),
proline betaine (AA11) and alanine (AA2) were found to be also related with these sensory
descriptors. In this approach, scent intensity was allocated between the two circumferences,
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showing correlations with 2-pyrimidine acetic acid (OA1), 2-phenylglycine (AA4) and
trans-3-hexen-1-ol (A7), as well as with complexity, black fruit, red fruit and taste intensity.
Meanwhile, the sensory descriptor persistence was negatively correlated with most of the
sensory descriptors and positively correlated with imidazole acetic acid (OA4), L-alanine,
N-propyl-/L-alloisoleucine/L-isoleucine/L-norleucine (OA6), uracil (M2), 1-undecanol
(A3), isopentyl hexanoate (E8), ethyl heptanoate (E1), pentyl-cyclopropane (M1), 1-nonanol
(A2) and ethyl hexanoate (E5). The rest of volatile and non-volatile metabolites were
allocated within the inner circumference and therefore, no correlations were established.

Figure 9. Circle correlation plot from the regularised generalised canonical correlation analysis (RGCCA) performed on the
volatile, non-volatile and sensory data. A: alcohol, E: ester, M: miscellaneous, AA: amino acid, OA: organic acid.

4. Discussion

The pre-processing and data pre-treatment workflow proposed in this study for the
volatile and non-volatile profile made it possible to extract the signal of a large number of
metabolites with low deviation coefficients. The use of automatic pre-processing softwares
(IPO-XCMS-CAMERA for LC-MS data and PARAFADISe implementing PARAFAC2 for
GC-MS data) with low number of parameters required to be set, diminished the risk of
modelling problems. The pre-treatment step included cleaning and filtering of the data
(samples and metabolites), drift corrections based on QCs, removing molecular features
with high RSD, missing value imputation, PQN normalization and autoscaling, and the
quality of the data was checked by means of different PCAs (Figures 2, 4 and 5). The
proposed workflow allowed us to adequate the data for the subsequent statistical analyses.
The use of quality control samples (QCs) analysed along the analytical sequences, combined
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with PCA was demonstrated to be a strong tool to verify the quality of the final data. In
our case, this methodology was especially useful for the non-volatile data since higher
variability in those data was observed (Figures 4 and 5). In particular, LC-MS data acquired
in negative ionization mode suffered of an important drift that was revealed by two
well separated clusters of QCs in the PCA (Figure 4). On this basis, we recommend the
systematic use of QCs for metabolomics studies to both verify the quality of the data and
to correct for drifts or batch effects.

The independent (PLS-DA and PLSR) and integrative (sGCCA-DA and RGCCA)
statistical analysis led to complementary results of modulation of the wine metabolome
and the relationships with their sensory descriptors, obtaining robust potential markers of
the fermentation strategy which had important contribution on the sensory characteristics
of the wines. To study the link between wine metabolome and sensory descriptors, a
previous selection of the all-relevant metabolites involved in the fermentation strategy was
performed by means of PLS-DA and RF. This methodology reduced the complexity of the
final PLSR and RGCCA models by focusing on the compounds that were modulated by
yeasts, making it easier the interpretation.

Interestingly, the markers selected from the sGCCA-DA approach were highly cor-
related with the sensory descriptors. Several metabolites such as 3-isopropyl-1-pentanol,
isopentyl hexanoate, ethyl heptanoate, pentyl-cyclopropane, ethyl trans-3-hexenoate, (E,E)-
farnesol, 1-dodecanol and imidazole acetic acid were selected as markers in both the
independent and integrative assessments (Figures 3, 6 and 8). However, others such as
1-undecanol (A3) and shikimic acid (OA6), which were very positively correlated with
persistence of the wines and to a lower extent with taste intensity, and linalyl anthranilate
(T3), ethyl 5-hexenoate (E3), hexyl acetate (E7) and proline betaine (A11), highly corre-
lated with citrus fruit, balance, acidity, tree fruit and alcohol descriptors (Figure 9), were
not selected during the independent assessment. Therefore, the integration of both data
sets revealed hidden biological information, supporting this approach to complement the
classical independent assessment.

Several sensory descriptors displayed high correlation between predicted and ob-
served sensory attribute scores in the PLSR1 assessment (Supplementary Figures S2 and S3),
highlighting the quality of the metabolic data to make sensory predictions. The RGCCA
also led to additional information hidden during the independent assessments with PLSR.
While scent intensity fell within the inner circumference in the PLSR model, intermediate
correlations were established with 2-pyrimidine acetic acid (OA1), 2-phenylglycine (AA4)
and trans-3-hexen-1-ol (A7), complexity, black fruit, red fruit and taste intensity (Figure 9).
These results highlight the potential of using PLSR in combination with RGCCA to extract
subtle information that could be ignored in an independent assessment.

The results obtained in this work were in accordance with literature regarding the
lower contents of isoamyl acetate, hexyl acetate and medium chain ethyl fatty acids as
well as the higher contents of diethyl succinate found in Sc-Td wines [32,33]. Sc-Td also
favoured the production of some terpenes such as linalool and geraniol, in agreement with
previous findings [34]. The selected potential marker of Sc-Td wines 3-ethoxy-1-propanol,
has been described as a compound highly dependent on yeast strain and species, and
it was also found in higher concentrations in the wines elaborated with Td yeasts [35].
Three of the selected potential markers of Sc-Td were esters (ethyl decanoate, methyl 4-
decenoate and ethyl 2-methylpropanoate). The formation of esters during fermentation
and their concentration relationships with the predominant yeast strains have been widely
described in the literature [36]. These compounds are present at low concentrations in
wine, often below the aroma threshold concentration, but make a strong contribution to
the aroma of wine through synergistic interaction effects. In agreement with our findings,
previous studies have reported increases in ethyl decanoate and ethyl 2-methylpropanoate
in wines fermented with Td yeasts and its contribution was related to the fruity character
of wines [37,38]. In addition, we found positive correlations between these esters and the
sensory descriptors red fruit, complexity and black fruit in the PLSR model (Supplementary
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Figure S4). Several esters not selected as potential markers of the fermentation strategy, such
as ethyl 2-methylbutyrate and ethyl phenylacetate, were also found in significantly higher
concentrations in rosé wines fermented with Sc-Td (Supplementary Table S3). The larger
production capacity of Td yeasts, a synergistic effect between Td and Sc [39] or modifications
in the nitrogen available for Sc species due to non-Sc yeasts activity could explain these
results. Another volatile compound selected as a potential marker of the fermentation
strategy was (E)-nerolidol, a sesquiterpene derived from farnesyl pyrophosphate, which can
be produced by Td yeasts [40] and was found in significantly higher concentrations in the
Sc-Td fermented rosé wines (Supplementary Table S3). In addition, several terpenes such as
geranyl ethyl ether, (Z)-β-farnesene, nerolidyl acetate, linalool and citronellol were found in
higher contents in these wines (Supplementary Table S3). The impact of terpenoids on the
grape aroma typicity highlights the importance of the fermentation strategy and the yeasts
selected for winemaking to obtain wines with specific sensory characteristics. The selected
potential marker 1-dodecanol has pleasant flowery descriptors at low concentrations, but
it may give unpleasant aromas to the wine at high concentrations [41]. In our study this
compound displayed slightly positive correlations with red fruit, complexity and black
fruit. (E,E)-farnesol, which was selected as a potential marker of Sc wines is a isoprenoid
alcohol with lemon descriptors [42]. This compound was found to be slightly related to the
citrus fruit descriptor in the PLSR, although in the integrative approach fell within the inner
circumference. The selected potential marker mannitol is a polyol mainly present in high-
quality full bodied wines [43], although no important correlations of this metabolite and
sensory descriptors were observed. Interactions between grapes and yeasts were found,
and in general, the wines fermented with Sc-Td had lower fruity descriptors in agreement
with literature [26,44]. This reduced fruitiness could be explained by the lack of ageing in
the wines analysed, since Td tend to enhance fruitiness with time (aged wines) [37].

5. Conclusions

A data processing and statistical analysis pipeline was proposed to study the metabolome
modulation of wines with different characteristics and to relate it to their sensory descrip-
tors. This methodology was then applied to study the effect of different fermentation
strategies in the elaboration of rosé wines with two grape varieties. A classical independent
assessment of the volatile, non-volatile and sensory data made it possible to identify the
most relevant metabolites and wine descriptors influenced by the fermentation strategy.
Afterwards, this approach was complemented with the statistical integration of the entire
metabolome and the sensory descriptors, revealing new potential markers that were highly
correlated with the sensory attributes of the wines. A parallel workflow was followed to
study the relationships among the metabolome and the sensory attributes of the wines, first
by assessing the independent volatile and non-volatile profiles and finally by statistical
integration of the three data sets. Strong correlations among sensory descriptors and
metabolites were found by means of partial least squares regression and data integration
strategies, demonstrating the suitability of combining both methodologies for making
robust interpretations of the interrelationships in these complex biological systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/fermentation7020072/s1, Figure S1: Balanced error rates (BER) obtained for the partial least
squares discriminant analysis (PLS-DA) and random forest (RF) double-cross validated models used
to select for the maximum number of relevant variables in GC data (a and b) and LC data (c and d),
Figure S2: Partial least squares regression (PLSR) performed to predict the sensory descriptors
from the volatile profile, Figure S3: Partial least squares regression (PLSR) performed to predict the
sensory descriptors from the non-volatile profile, Figure S4: Correlation loadings plot from the partial
least squares regression (PLS2) performed on the GC-sensory and LC-sensory data sets, Table S1:
non-volatile metabolites identification results from MetaboQuest using the Metlin database. Positive
ionization ESI mode, Table S2: Non-volatile metabolites identification results from MetaboQuest
using the Metlin database. Negative ionization ESI mode, Table S3: Two-way analysis of variance
(ANOVA) for the inoculation strategy and variety using both the identified and non-identified
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volatile metabolites, Table S4: Two-way analysis of variance (ANOVA) for the inoculation strategy
and variety using both the identified and non-identified non-volatile metabolites.
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