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Abstract: The management of wineries for industrial red winemaking is limited by the capacity
and availability of fermentation tanks over the harvest season. The winemakers aim to optimize
the wine quality, the fermentative maceration length, and the fermentation tank’s productive cycle
simultaneously. Maceration in varietal wine production is carried out until a specific sugar content
(digging-out point) is attained, finishing before alcoholic fermentation. Winemakers have found
that by trial and error handling of the digging-out point, they can improve the winery capacity and
production cost. In this work, we develop an optimal control problem for managing the digging-out
point considering two objectives associated with process efficiency and costs. A good compromise
between these objectives was found by applying multi-criteria decision-making (MCDM) techniques
and the knee point. Two control strategies were compared: free nutrition and traditional nutrition.
TOPSIS and LINMAP algorithms were used to choose the most suitable strategy that coincided with
the knee point. The preferred option was nitrogen addition only at the beginning of fermentation
(6.6–10.6 g/hL of DAP) and a high fermentation temperature (30 °C), yielding the desired digging-out
point with a small error (6–9 g/L).

Keywords: model predictive control; wine fermentation; dynamic optimization; multi-objective
optimization; multi-criteria decision-making; knee point

1. Introduction

In red winemaking, the must is fermented in contact with grape pomace and seeds
to extract several phenolic compounds, such as anthocyanins and tannins, which define
the color and mouthfeel properties of red wine, respectively [1]. This process is known as
fermentative maceration and generally begins with the grape crushing process [2]. The
extraction kinetics of these phenolic compounds depend on several variables, such as the
solid–liquid phase’s contact area, their molecular structure (skins and seeds), maceration
duration, temperature, and solvent composition [3]. Therefore, the way in which the
alcoholic fermentation is performed is a significant factor contributing to wine quality.

At industrial-scale wineries, only some of these variables can be controlled. The
fermentation temperature is usually controlled by a closed-loop control manipulating the
refrigerant’s flowrate that circulates through the tank’s jacket. Winemakers control phenolic
extraction, comprising homogenization of must and skins, by defining the maceration
duration and the pump-over program. The maceration process finishes when the solids are
separated from the fermenting juice, known as the digging-out point. Overall, winemakers
define this as the point at which a specific sugar content or must density is achieved. This
criterion is handled through wine taste, wine color, grape quality, and the management of
the winery capacity.
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The operation strategy should be adapted season to season to the uncertainties and
vintage shortening caused by climate change [4]. Global warming has led to problems
in the planning, management, and productivity of the winery. In particular, the winery’s
management is limited to the fermentation tanks’ capacity and availability on a specific
date. Consequently, winemakers frequently change the original fermentation recipe and
make new decisions during the fermentation, such as reducing the maceration duration
or increasing the fermentation rate by adding diammonium phosphate (DAP). Optimal
handling of maceration and DAP additions could improve wineries’ capacity and reduce
production costs without sacrificing the wine’s quality and typicity.

Model-based design (MBD) and model predictive control (MPC) can achieve optimal
fermentation operating strategies that simultaneously optimize efficiency, economic in-
dexes, and product quality. The winery operation can be adapted to unexpected events
during the vintage season by applying these techniques, providing faster and more reli-
able solutions than experimental trial and error [5]. The process model’s reliability and
predictive capacity are crucial to guarantee the robust performance of these techniques.

Most wine fermentation models are described by a set of nonlinear differential and
algebraic equations (DAEs) with specific assumptions and purposes [6]. Coleman et al. [7]
developed a simple lumped parameter model assuming nitrogen as the primary limiting
substrate and temperature-dependent kinetic parameters. Cerda-Drago et al. [8] considered
a spatial distribution to describe oxygen incorporation and dissolution during white wine
fermentation. Zenteno et al. [9] developed a compartment model to simulate the temper-
ature gradients at an industrial scale. Miller et al. [10,11] developed a three-dimensional
industrial red wine fermentation model using the finite element method to simulate the
temperature gradient and their influence on anthocyanin and tannin extraction rates.

The above studies focused on replicating experimental fermentations operating un-
der similar conditions. New operating conditions are rarely explored by optimization
techniques. Model-based design could allow exploration of the impact of new operating
conditions such as fermentation temperature profile or nutrient addition during fermen-
tation. Overall, MPC has been applied widely in the pharmaceutical and biochemical
industries: penicillin production [12], bacterial culture for acetate production [13], mam-
malian cell culture for glucose production [14], and fed-batch ethanol production [15].
Nevertheless, the applications of MPC to fermentation tanks in the wine industry are
scarce. Schenk et al. [16] developed an MPC to minimize the cooling energy in white wine
fermentation. The MPC strategy reduced the energy consumption by 52% compared to an
industrial controller without decreasing the wine quality.

Model-based optimal operation has been increasingly applied in the process industries
since the arrival of the Industry 4.0 paradigm [17]. The higher levels of automation and dig-
italization allow mathematical models to transform process data into valuable information
for online automatic high-level decision-making [18]. The beverage and food industry has
adopted these technologies (sensors, big data, machine learning models, first-principles
models, etc.) at a slower rate than other process industries such as mineral, chemical,
and pharmaceutical production plants [19]. To the best of the authors’ knowledge, the
application of MPC and the development of optimal strategies for industrial red wine
fermentation have not been tackled yet. There are very few applications of model-based
optimal decision-making in the alcoholic beverage industry. For instance, Rodman and
Gerogiorgis [20] applied dynamic multi-objective optimization (MOO) to the beer fer-
mentation process. The optimization problem looked for an optimal temperature profile
that could simultaneously maximize the final ethanol concentration and minimize the
fermentation time. Luna et al. [21] solved a dynamic MOO problem to design optimal dis-
tillation recipes for muscat wine spirits. Moreover, they used multi-criteria decision-making
(MDCM) algorithms to select different kinds of muscat spirit recipes based on objective
prioritization. These applications demonstrated that model-based optimal operation and
MDCM techniques could be valuable tools for managing the wine process.
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Hence, our hypothesis is that using model-based optimal control and MCDM tech-
niques makes it possible to improve the process efficiency and costs compared with stan-
dard operation, without sacrificing product quality. In this work, an optimal control
problem (OCP) for red wine fermentation is developed using a reparametrized fermenta-
tion kinetic model [22]. The OCP considered two oenological objectives: i) sugar target
concentration at the digging-out point and ii) minimization of the total DAP additions
throughout fermentation. The decision variables were the fermentation temperature profile
and the DAP addition during the fermentative maceration. A dynamic MOO problem was
formulated and solved by applying the weighting approach. Two nutrition strategies were
evaluated: free nutrition at each sampling time and traditional nutrition that considers
two additions, one at the beginning and another at the middle of the fermentation pro-
cess. Then, the optimal strategies were selected using MCDM algorithms. Thus, the main
contributions of this work are:

• Optimal control for managing industrial bulk red winemaking;
• Weighting approach for solving MOO problems with oenological requirements;
• MCDM algorithms for helping the decision-making process.

The paper is organized as follows: a brief process description for industrial bulk
red winemaking is introduced in Section 2.1, where the digging-out point is defined
as the separation of the solids from the fermenting must at the specific sugar content.
A general explanation of the dynamic fermentation model is introduced in Section 2.2.
The oenological multi-objective cost function using the weighting approach is detailed
in Section 2.3. The optimal control problem formulation and the nutrition strategies are
presented in Section 2.4. The MCDM algorithms and the knee point are introduced in
Section 2.5. Finally, the results and the conclusions are presented in Sections 3 and 4,
respectively.

2. Materials and Methods
2.1. Process Description

Red wine fermentation involves simultaneous fermentation and solid–liquid extrac-
tion (maceration); hence, it is also called fermentative maceration. In commercial wineries,
the maceration duration is typically regulated to achieve a specified level of phenolics.
Short macerations are preferred for varietal or bulk wines, while longer macerations (ex-
tended macerations) are favored for premium wines [23]. Since our technology is intended
to produce varietal red wines, we focus on shorter macerations, which finish before the fer-
mentation is completed. Figure 1 shows the process scheme for industrial red winemaking
for bulk wines. The process is divided into fermentative maceration (FM) and fermentation
completion (FC). The FM stage is carried out in first set of tanks until the digging-out
point is reached, where the specific sugar content is achieved; this is called digging-out
density by winemakers. At this point, the solids are separated from the fermenting must,
and the liquids from the different tanks are transferred into a larger tank to complete
the fermentation. In this study, we developed a model-based procedure for the optimal
management of the digging-out point in FM.
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Figure 1. Scheme for industrial bulk red winemaking: fermentative maceration (1) and alcoholic
fermentation completion (2). The blue line represents the juice fed at the digging-out point to
complete the alcoholic fermentation, and the green line represents the solids (pomace) fed to produce
press wines.

2.2. Fermentation Model

The kinetic fermentation model developed by Zenteno et al. [9] was used to design
the optimal operation strategies. The model was simplified by removing the compartment
equations; hence, temperature gradients were not considered [22]. The nitrogen addition
and temperature setpoint were added as model inputs since they are the decision variables
of the formulated optimal control problem. The CO2 state variable was removed from the
model since it did not affect other state variables. The model equations are represented
represented by Equation (1):

dx
dt

= f (x(t), u(t), θ)

ρ(t) = h(G(t), F(t))
(1)

where x, u θ, and t correspond to the state variables, model input vector, model parameters
vector, and time process, respectively. The state variables are biomass (X), nitrogen (N),
glucose (G), fructose (F), and ethanol (E). Total sugar (S) includes glucose and fructose.
Table 1 shows the initial values of the state variables. The model inputs (u) are the nitrogen
addition using DAP (Ndap) and the fermentation temperature (T). The model parameters
(θ) were estimated using a specifically designed, robust reparameterization method for
red wine fermentation [22], which yields an optimal model structure characterized by
given free and fixed parameters. The model parameter values and model equations are
available in Torrealba et al. [22] and Zenteno et al. [9], respectively. Finally, ρ corresponds
to the must/wine density and was calculated through a correlation with total sugar (S)
obtained using experimental fermentation data. The complete model equations are given
in Appendix A.
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Table 1. Initial conditions for state variables.

State Variables Nomenclature Values

Biomass X(0) 0.200 g/L
Nitrogen N(0) 0.150 g/L
Glucose G(0) 105 g/L
Fructose F(0) 105 g/L
Ethanol E(0) 0 g/L

2.3. Multi-Objective Cost Function

The objective function Equation (2) considers the process efficiency and costs during
fermentative maceration. The process efficiency is associated with oenological require-
ments, such as the sugar level at the end of the fermentative maceration stage (digging-out
point; see Section 2.1). The amount of DAP added at the beginning and during fermenta-
tive maceration defines this stage’s operating costs. The optimal control is formulated as
the following MOO problem:

min
ui

J(ui) = α ·
(
S(tdout)− Ssp

)2

100
+ (1− α) ·

∑n
i=1 Ndap,i

0.200
(2)

where α is a relative weight (positive scalar ≤ 1) defining the objective’s priority and
Ndap,i is the nitrogen added at time i considering a sample time of 6 h. This approach
is known as the weighting method, which transforms the MOO into a traditional single-
objective problem [24,25]. The first objective is to obtain the desired sugar concentration
at the digging-out point. Here, Ssp is the sugar setpoint defined by the winemaker at
the digging-out point, and tdout is the digging-out time. In this study, the digging-out
point is established as five fermentation days (tdout = 120 h) with Ssp = 11 g/L of sugar
concentration (equivalent to 995 kg/m3). The second objective is the minimization of the
total nitrogen addition over a time period of t = 120 h (see Section 2.4).

Both objectives were normalized to obtain comparable values. The sugar setpoint
weight was defined by trial and error, and the second term weight (1/0.200 g/L) corre-
sponds to approximately the maximum DAP dose allowed by the Chilean law (96 g/hL),
considering that it is composed of 21% nitrogen [26]. Finally, grid values for alpha were
defined to solve the MOO problem (α = [0, 0.02, 0.04, . . . , 1]), resulting in 51 optimization
problem runs.

2.4. Optimal Control Problem Formulation

The optimal control problem (OCP) searches the manipulated variable profile (nitrogen
addition, fermentation temperature) that minimizes the objective function and satisfies
the constraints. The optimization problem was discretized using a direct collocation
method, which simultaneously solves the simulation and optimization [27]. This method
discretizes the control and state variables over a time period, using collocation points on
finite elements [28]. Then, the OCP was reformulated as a nonlinear programming problem
(NLP) [27,29] by Equations (3):
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min
ui

J(ui)

s.t

∀i = 1 . . . n, j = 1 . . . m

xi,j = xi−1 + hi

m

∑
j=1

Ωj(τj) ·
dx

dti,j

dx
dti,j

= f (xi,j, yi,j, ui,j, θ)

g(xi,j, yi,j, ui,j, θ) = 0

uL ≤ ui,j ≤ uU , xL ≤ xi,j ≤ xU , yL ≤ yi,j ≤ yU

(3)

where n is the number of finite elements, m is the number of collocation points, hi is the
length of the finite element (sample time), and Ω is the interpolation polynomial function
for each finite element. In total, 20 finite elements over a time period of 120 h (finite element
size was ti = 6 h) and five Legendre collocation points were used. In this equation, x, y, u,
and θ correspond to the state variables, algebraic variables, control variables, and model
parameters vector, respectively. The simultaneous simulation/optimization problem was
coded in Python using the CasADi package [30] with the optimization solver IPOPT [31].

Two control strategies were compared. One considers the fermentation tempera-
ture variation and nitrogen additions at each sampling time (ti = 6 h) as decision vari-
ables. This strategy has more degrees of freedom, and we called it free nutrition (FN).
The second strategy, called traditional nutrition (TN), considers temperature variation at
each sample time, but with only two nitrogen additions: at the beginning of the process
(t = 0 h) and at t = 48 h, which corresponds to the start of the yeast stationary growth
phase (1070–1050 kg/m3) [32,33]. In both cases, the fermentation temperature path was
constrained to the range of 20–30 ◦C while total nitrogen addition should be lower than
0.200 g/L.

2.5. Selection of Optimal Control Strategy by MCDM

The solution of the MOO problem is a set known as non-dominated solutions or
Pareto front, which is represented as an objective matrix ( f ) with n rows (one row for each
Pareto solution) and m columns (one column for each objective). Here, the dimension of
the objective matrix was n = 21 and m = 2 (see Section 2.3). The next step is to select one
of the non-dominated solutions, and multi-criteria decision-making (MCDM) algorithms
have been developed for this purpose [34]. In this work, simple MCDM algorithms were
evaluated to select an optimal solution: TOPSIS, LINMAP, SAW, MEW, and FUCA. These
algorithms require a weight (w) for each objective defined by the user. For this application,
a compromise among the objectives is needed. These solutions are known as “knee” points,
where a significant improvement in some objectives means insignificant degradation in
the other objectives [35,36]. Therefore, the weights of the MCDM algorithms were set with
equal priority (w = [0.5, 0.5]) for both objectives. Moreover, the optimal solutions selected
by the MCDM algorithms were compared with the knee point to evaluate the performance.
The knee point was calculated as the minimum Euclidean distance between each optimal
solution (di) and the utopian solution by Equations (4) and (5):

Fi,j =
fi,j

maxi∈n( fi,j)
(4)

di =

√√√√ m

∑
j=1

(
Fi,j − F∗j

)2
(5)



Fermentation 2021, 7, 94 7 of 14

where Fi,j is the normalized objective matrix and F∗j are the coordinates of the utopian
solution for each objective. Since both objectives correspond to a minimization criterion,
the utopian point was zero (F∗1,2 = [0, 0]). The solution with the smallest di is the knee point.

3. Results

This section presents the obtained results and it is divided into three parts: (i) the free
nutrition case study; (ii) the traditional nutrition case study, and (iii) comparative results of
the most suitable strategies.

3.1. Free Nutrition Strategies

The simulations of optimal control for free nutrition strategies are shown in Figure 2
for different values of α. As expected, the strategy for α = 0 (priority for minimization of
nitrogen additions) did not add any DAP, but the sugar level at the end of the maceration
process was far from the desired digging-out point (42 g/L sugar difference). On the other
hand, the strategy with α = 1 achieved the sugar concentration of the desired digging-out
point by the end of the maceration, and DAP was added at each sampling time, obtaining
94.3 g/hL of total DAP dose (near the limit). Overall, the fermentation temperature profile
was low for both strategies for the first three days and then increased near the end.

Intermediate α values (0.2, 0.5, 0.8) yielded similar strategies, characterized by nitrogen
additions concentrated at the beginning of the fermentation with DAP doses of 15, 22, and
25 g/hL, respectively. Moreover, the sugar differences from the desired digging-out point
were small, namely 4.3, 1.45, and 0.43 g/L, respectively, representing an error smaller than
5%. In all cases, temperature profiles throughout the fermentation were characterized by
high values (>27 °C).
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Figure 2. Optimal control simulations for free nutrition strategies. Black line in total sugar graph
corresponds to the desired digging-out point.

Figure 3 shows the Pareto front composed of 51 solutions, the selected solutions
by MCDM, and the knee point. The solution chosen by TOPSIS and LINMAP was the
same and coincided with the knee point. These algorithms are very similar and usually
recommend similar or the same solution [21,34]. This optimal solution corresponds to the
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strategy with α = 0.08. SAW and MEW are also similar approaches that often recommend
the same solution [21,34]. Here, the solution chosen by SAW and MEW is the neighbor
of the knee point (α = 0.06). This solution added 3.6 g/hL of DAP at the beginning
of the fermentation, and the error from the digging-out point was 11.3 g/L. Finally, the
FUCA method selected a solution (α = 0.02) far from the knee point that prioritizes the
minimization of nitrogen additions (0 g/hL of DAP) with 14 g/L of sugar difference from
the desired digging-out point.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
JN (g/L)

0

25

50

75

100

125

150

175

200

J sp
 (g

/L
)2

Pareto
TOPSIS
LINMAP
SAW
MEW
FUCA
Knee Point

Figure 3. Pareto front for free nutrition strategies, optimal solutions selected by MCDM algorithms
and knee point. Points corresponding to α = 0 and α = 1 are omitted.

3.2. Traditional Nutrition Strategies

Figure 4 shows the simulation of optimal control for traditional strategies for different
values of α. Like the FN strategy, the TN strategy for α = 0 did not add DAP and the sugar
concentration achieved was 53.4 g/L, i.e., 43.4 of sugar difference from the desired digging-
out point. Contrarily, the TN strategy with α = 1 achieved the desired digging-out point
(11 g/L of sugar), and the total DAP addition was 58.7 g/hL, where 35.3 g/hL was added
at the beginning and 23.4 g/hL at time t = 48 h. For both TN strategies, the temperature
profile was very similar. For the first 2.5 days, the temperature was low (near the lower
bound 20 °C) and then linearly increased to 25 °C.

Contrarily to the FN strategies with α values 0.2, 0.5, and 0.8, the TN strategies with
α in this range added nitrogen only at time t = 48 h, with DAP doses of 44.6, 45.4, and
60.2 g/hL, respectively. Total DAP additions in TN strategies were higher than total DAP
additions in FN strategies. Nevertheless, the sugar differences from the desired digging-out
point (11 g/L) were similar to the FN strategies: 5.5, 1.7, and 0.5 g/L for α = [0.2, 0.5, 0.8],
respectively. This difference was because the fermentation temperature profile for TN
strategies started with a lower temperature level than FN strategies and then increased
until 30 °C from day three. Instead, the temperature profiles for FN strategies were high
throughout the entire process (see Section 3.1). The TN strategies with α = [0.2, 0.5, 0.8]
are ideal for white wines. Pérez et al. [32] reported that lower fermentation temperatures
and nitrogen additions in the middle of the fermentation obtained more aromatic wines
with higher concentrations of higher-alcohol acetates.

As was done in FN strategies, MCDM algorithms and the knee point were used to
obtain a suitable compromise between both objectives. Figure 5 shows the Pareto front and
the selected solutions by MCDM for TN strategies. The Pareto front’s shape was different
from that obtained by the FN strategies (Figure 3). Here, the Pareto front’s shape was
disconnected, whereas, for FN strategies, the shapes were convex [37]. In addition, the
solutions for TN strategies were more sensitive to intermediate α values, i.e., the solutions
were more separated from each other.

Again, TOPSIS and LINMAP algorithms recommended the same solution, and it
coincided with the knee point. This optimal solution corresponds to the strategy with
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α = 0.12. Meanwhile, SAW and MEW chose identical solutions (α = 0.06) that were
different from the knee point, prioritizing the minimization of nitrogen additions (3.6 g/hL
of DAP) with 11.3 g/L of sugar distance from the desired digging-out-point. Finally, the
solution recommended by the FUCA algorithm (α = 0.88) was far from the knee point.
This alternative prioritized the minimization of the distance (0.28 g/L) from the sugar
concentration at the digging-out point and added 50.6 g/hL of DAP.
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Figure 4. Optimal control simulations for traditional nutrition. Black line in total sugar graph
corresponds to the desired digging-out point.
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Figure 5. Pareto front with DAP addition at t = 0 h and t = 48 h. Total of 50 points with 0.05 step.
The points corresponding to α = 0 and α = 1 are omitted.

3.3. Comparison of the Most Suitable Strategies

Figure 6 shows the simulation of the optimal control solutions for FN and TN strate-
gies on the knee point. Despite obtaining different Pareto fronts for FN and TN strategies
(Figures 3 and 5), the solutions on the knee point for both strategies were very similar. The
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nitrogen addition was concentrated only at the beginning of the fermentation, with DAP
doses of 6.6 and 10.6 g/hL for FN and TN, respectively. Similarly, the sugar differences
from the desired digging-out point were small: 9.16 and 6.7 g/L for FN and TN, respec-
tively. Moreover, the fermentation temperature path was very similar for both strategies,
characterized by high values (>27 °C) throughout the whole process. These strategies are
ideal for red wine fermentations since high temperatures favor the extraction of phenolic
compounds [2,3].
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Figure 6. Comparison of the chosen optimal control strategies. Black line in total sugar graph
corresponds to the desired digging-out point.

At the knee point, both strategies converge to similar solutions with DAP addition at
the beginning of the fermentation. Nevertheless, an analysis of the Pareto fronts points in
another direction. The TN has fewer degrees of freedom because it can only add nutrition
at two opportunities. Because of this, it is more difficult to optimize the process, which
leads to more scattered solutions and higher DAP use in most cases, as can be seen in
Figure 5. In contrast, the FN has a smoother Pareto front and lower nitrogen use in most
cases. These differences indicate that the FN strategy probably is more robust to changes
in the parameters of the model or the objectives given by maceration time and final sugar
content. The robustness of the strategies can be properly analyzed in future works.

4. Conclusions

An optimal control was developed to manage the digging-out point to improve the
process efficiency and costs simultaneously. A trade-off between the minimization of
the sugar concentration error at the digging-out point and the minimization of nitrogen
additions using DAP was identified. Then, five MCDM algorithms were assessed to choose
an optimal strategy from the Pareto front, using equal priorities for each objective. The
selected solutions by MCDM were compared with the knee point. TOPSIS and LINMAP
algorithms recommended identical solutions and coincided with the knee point for both
free and traditional strategies.

Although the Pareto fronts were different for the FN and TN strategies, the solutions
regarding the knee point were similar. The most suitable option was adding nitrogen
only at the beginning of the fermentation (6.6–10.6 g/hL of DAP) and high fermentation
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temperatures (close to 30 °C), yielding the desired digging-out point with a small error
(6–9 g/L). Thus, these strategies are a good option for red winemaking, favoring phenolic
extraction. The methods described in this study can be extended to include quality indexes
such as aroma production in white wines or phenolic extraction in red wines and can also
be adapted to any fruit wine fermentation. Finally, it is planned for future work to integrate
a phenolic extraction model with the fermentation model presented in this work. Thus, a
multi-objective optimization problem will be formulated, including a quality index for the
decision-making process.
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Appendix A. Fermentation Model Equations

A simplified fermentation model of Zenteno et al. [9] presented in Torrealba et al. [22]
is used here. The reduced Zenteno model is introduced as follows.

Differential equations:

Biomass generation and decay
dX
dt

= (µ− kd) · X (A1)

Nitrogen consumption
dN
dt

= − µ

YXN
· X (A2)

Glucose consumption

dG
dt

= −
(

µ

YXG
+

βG
YEG

+ m · G
G + F

)
· X (A3)

Fructose consumption

dF
dt

= −
(

µ

YXF
+

βF
YEF

+ m · F
G + F

)
· X (A4)

Ethanol production
dE
dt

= (βG + βF) · X (A5)

Constitutive equations:

Specific growth rate

µ = µmax ·
N

N + KN(T)
(A6)
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Maximum growth rate

µmax = µ0 · exp
(

Eac · (T − 300)
300 · R · T

)
(A7)

Biomass decay rate (when T>Td)

kd = kd0 · exp
(
(Cde · E) + Etd ·

(
T − 305.65

305.65 · R · T

))
(A8)

Thermal death ethanol-related threshold

TD = −0.0001 · E3 + 0.0049 · E2 − 0.1279 · E + 315.89 (A9)

Ethanol production rate from fructose

βF = βFmax ·
F

F + KF(T)
· KIG(T)

G + KIG(T)
· KIE(T)

E + KIE(T)
(A10)

Ethanol production rate from glucose

βG = βGmax ·
G

G + KG(T)
· KIE(T)

E + KIE(T)
(A11)

Specific cell maintenance rate

m = m0 · exp
(

Eam · (T − 293.3)
293.3 · R · T

)
(A12)

Maximum ethanol production rates

βimax = βi0 · exp

(
Ea f e · (T − 296.15)

296.15 · R · T

)
, i = G, F (A13)

Temperature inhibition parameters

Ki(T) = Ki0 · exp
(

Eaki · (T − T∗)
293.3 · R · T

)
, i = N, G, F, iG, iE (A14)

The re-estimated parameter values are available in [22], and the rest of the parameters
in [9].
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