
fermentation

Article

Monitoring of Biopolymer Production Process Using Soft
Sensors Based on Off-Gas Composition Analysis and
Capacitance Measurement †

Pavel Hrnčiřík
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Abstract: This paper focuses on the design of soft sensors for on-line monitoring of the biotech-
nological process of biopolymer production, in which biopolymers are accumulated in bacteria as
an intracellular energy storage material. The proposed soft sensors for on-line estimation of the
biopolymer concentration represent an interesting alternative to the traditional off-line analytical
techniques of limited applicability for real-time process control. Due to the complexity of biochemical
reactions, which make it difficult to create reasonably complex first-principle mathematical models,
a data-driven approach to the design of soft sensors has been chosen in the presented study. Thus,
regression methods were used in this design, including multivariate statistical methods (PLS, PCR).
This approach enabled the creation of soft sensors using historical process data from fed-batch
cultivations of the Pseudomonas putida KT2442 strain used for the production of medium-chain-
length polyhydroxyalkanoates (mcl-PHAs). Specifically, data from on-line measurements of off-gas
composition analysis and culture medium capacitance were used as input to the soft sensors. The
resulting soft sensors allow not only on-line estimation of the biopolymer concentration, but also the
concentration of the cell biomass of the production bacterial culture. For most of these soft sensors,
the estimation error did not exceed 5% of the measurement range. In addition, soft sensors based
on capacitance measurement were able to accurately detect the end of the production phase. This
study thus offers an innovative and practically relevant contribution to the field of monitoring of
bioprocesses used for the production of medium-chain-length biopolymers.

Keywords: soft sensors; process monitoring; biopolymers; PLS and PCR regression; capacitance
measurement; off-gas composition analysis

1. Introduction

The range of applications of soft sensors in the monitoring of industrial production
biotechnological processes is increasing proportionally with the increasing demands on
the quality of the production processes and the final products. In comparison to costly
and relatively complex analytical techniques, soft sensors can be a more advantageous
solution, in particular for the monitoring of those bioprocesses which are operated as
fed-batch cultivations. These cultivations are typical for their complex reaction kinetics.
Additional variability is due to variable composition of substrates and frequent changes
in the production bioprocesses, as a result of the production of many different products.
Therefore, soft sensors can be applied not only for the monitoring of the process itself, but
additionally also for the evaluation of the quality of cultivation substrates and microbial
cultures used as seed [1–3].

The underlying principle of soft sensors is to use a set of more or less commonly on-
line measurable process variables for the estimation of other process variables or process
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indicators that are difficult to measure on-line or can only be measured with very low
sampling times. In general, it is possible to distinguish between two elementary types of
soft sensors [4,5], as follows:

• “gray box” type of soft sensor, alternatively referred to as “model-driven”—using
a first-principle mathematical model of the monitored process based on physical,
chemical, or biological relationships with experimental identification of unknown
parameters from historical process data;

• “black box” type of soft sensor, alternatively referred to as a “data-driven”—where the
mathematical model describing the relationship between the inputs and outputs of the
soft sensor is not known in advance, and hence the mathematical description of this
relationship must be designed on the basis of historical process data using suitable
computational tools, e.g., regression analysis, neural networks, etc.

Soft sensors of the “gray box” type that are used in the area of biotechnological pro-
cesses are typically based on mass or energy balances, usually in combination with models
of kinetic relationships describing the growth of the microbial culture. The calculation
of the soft sensor outputs itself is then realized using one of the traditional estimation
algorithms, such as Kalman filter or extended Kalman filter. The main problem in using this
type of soft sensor for the monitoring of bioprocesses is a considerable difficulty associated
with the process of designing mathematical models that could describe the monitored
process with sufficient accuracy. For this reason, this type of sensor is not very widespread
in the field of bioprocess monitoring [6]. In addition to the above-described complications
associated with bioprocess modeling, the following typical properties of biotechnological
processes also complicate the soft sensor design [5]:

• high sensitivity of the production microbial culture to changes in cultivation conditions
such as pH, temperature, etc.;

• during the cultivation itself, the microbial culture passes through various physiological
states, which usually result in different types of culture behavior;

• key parameters of bioprocess models typically change during cultivation, whereas
on-line measurement, or at least estimation, of these changes is rather complicated.

For the above-outlined reasons, soft sensors of the second type (“black box” or “data-
driven”) are more appropriate for the monitoring of biotechnological processes. Neural
networks, fuzzy systems [7], various multivariate statistical methods [8], or other variants
of regression analysis methods are used successfully for their design [5].

A key factor in the design of a soft sensor is not only the selection of a suitable
calculation method, but also the selection of suitable inputs to the sensor in the form of on-
line measured process variables. Soft sensors that use as their input on-line measurement
of the composition of the gases leaving the bioreactor (the so-called off-gas) are relatively
widespread [9]. These soft sensors are in their basic form frequently applied for on-line
calculation of so-called derived process variables, such as oxygen uptake rate (OUR),
CO2 production rate (CPR), respiratory quotient (RQ), or oxygen transfer coefficient from
gaseous to liquid phase in a bioreactor (kLa). More advanced soft sensors can be used
for the on-line estimation of key bioprocess indicators, such as biomass concentration,
biomass growth rate, or concentrations and rates of production of the main products
(see, e.g., [10–14]).

This paper is part of a larger study that focuses on the design of data-driven soft
sensors for on-line monitoring of the biotechnological process of mcl-PHAs biopolymer
production. Specifically, this paper deals with the topic of data-driven soft sensors for
estimating the concentrations of microbial biomass and biopolymer in the bioreactor. Two
basic types of data inputs to the soft sensor are considered. First, attention is paid to
soft sensors using on-line measurement of the composition of the off-gas leaving the
bioreactor [15]. In the following part, attention is focused on soft sensors, which use as
their input on-line capacitance measurement of the fermentation broth with the suspended
microbial culture in the bioreactor. The reasons why the second part of the study focused
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on examining the use of on-line capacitance measurement not only for on-line estimation
of bacterial biomass concentration, but especially for on-line estimation of mcl-PHAs
biopolymer concentration, were as follows: Capacitance measurement has in the past been
successfully used for the on-line monitoring of lipid storage in yeast cells [16,17], as well as
for the evaluation of the optimum harvesting time in the production of short-chain-length
polyhydroxyalkanoates (scl-PHAs) [18,19]. The aim of this part of the study was therefore
to examine the possibilities of using the capacitance measurement for on-line monitoring
of the bacterial mcl-PHAs production processes.

2. Materials and Methods
2.1. Process Description

The fed-batch cultivation process of the bacterium Pseudomonas putida KT2442 used for
the production of the mcl-PHAs biopolymer was chosen as a model process, for which a set
of historical experimental process data was available. All cultivations used as a data source
for this study were carried out in a 7-litre laboratory bioreactor at the Bioprocess Control
Laboratory of the University of Chemistry and Technology in Prague. The experimental
conditions for all cultivations were kept constant as follows: temperature 30 ◦C, pH 7,
stirrer speed 900 1/min, aeration rate 9.5 L/min. After the initial batch phase carbon
source (octanoic acid) was continually supplied to the bioreactor with a feeding rate set
by the operator. Feeding strategies varied by individual cultivations, typically there was a
phase of an exponential feeding followed by underfeeding and starvation, respectively. A
detailed description of the individual measurements, which were the source of historical
process data, is summarized in the following section.

2.2. Process Data Measurement and Analytical Methods

The oxygen and carbon dioxide concentrations in the off-gases exiting the bioreactor
were measured by Servomex Servopro 1100A (O2) and 1400B (CO2) process analyzers
(Spectris plc, Egham, UK) and these measurements were stored with a 1 min sampling
period. The resulting off-gas composition measurement data were then used for on-
line calculation of the OUR and CPR rates, as well as their corresponding cumulative
values—cumulative oxygen consumption (COC) and cumulative carbon dioxide produc-
tion (CCP), using Equations (1)–(4):

OUR =

.
VAρA
VL MA

(
∆O2 − O2

(
N2

N2 + ∆O2 − ∆CO2
− 1
))

MO2 kc (1)

CPR =

.
VAρA
VL MA

(
∆CO2 − CO2

(
N2

N2 + ∆O2 − ∆CO2
− 1
))

MCO2 kc (2)

COC =

t∫
0

OUR(τ)dτ (3)

CCP =

t∫
0

CPR(τ)dτ (4)

where
.

VA (m3/s) is the volumetric air flow rate on the inlet to the bioreactor, VL (m3)
is the broth volume in the bioreactor, ρA (kg/m3) is the air density, MA (kg/mol) is the
molecular weight of air, ∆O2 (% vol.) is the difference between oxygen concentrations
in the inlet air and the off-gas, ∆CO2 (% vol.) is the difference between carbon dioxide
concentrations in the inlet air and the off-gas, O2 (% vol.) is the oxygen concentration in
the off-gas, CO2 (% vol.) is the carbon dioxide concentration in the off-gas, N2 (% vol.) is
the nitrogen concentration in the air (assumed to be constant at 79.07%), MO2 (kg/mol) is
the molecular weight of oxygen, MCO2 (kg/mol) is the molecular weight of carbon dioxide,
kc is the coefficient for the conversion of concentration values from volume percent into
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dimensionless volume fraction (kconv = 1/100 = 0.01), t (min) is the current cultivation time,
and τ (min) is the variable of integration (takes on values from time 0 to the current t).

The capacitance measurement of the fermentation broth with the suspended micro-
bial culture in the bioreactor was performed with an Aber Biomass Monitor 210 (Aber
Instruments Ltd., Aberystwyth, UK) operating in scanning mode and equipped with a
four-annular ring probe AberProbe. The measuring device measured the capacitance spec-
trum (25 capacitance measurements corresponding to increasing frequencies on logarithmic
scale from 0.1 MHz to 19.49 MHz) with a sampling period of 15 s. The measured spectral
data were smoothed using a combination of two digital filters before further analysis. First,
outliers were removed using a moving median filter with a window length of 60 data points
(15 min) and the resulting signal was smoothed by a Savitzky-Golay filter with a third
order polynomial fitting and a window length of 200 data points (50 min). These specific
time window length settings were chosen according to the recommendations published in
the study by Maskow et al. [16]. Alternative settings were tested, but they did not lead to
better results. The capacitance data processed in this way were subsequently resampled
using a sampling period of 1 min, corresponding to the sampling rate of the data from the
measurement of the composition of the off-gases. See Figure 1 for a typical character of the
filtered capacitance spectrum data.
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Figure 1. Sample of capacitance spectrum data.

Biomass concentration in the bioreactor was determined off-line gravimetrically as
cell dry weight (CDW). Biopolymer concentration (PHA) was also determined off-line
gravimetrically using an analytical procedure based on Soxhlet extraction. Samples for
these two off-line analyses were taken at least every 3 h, in the final phase sampling was
typically more frequent. The sampling times were chosen so that the samples captured
key moments of the cultivation process, including transitions between the various process
stages. To detect these transitions, the process operator used, among other indicators,
on-line capacitance measurement provided by the Biomass Monitor 210 analyzer. In order
to obtain a one-to-one correspondence between the on-line and the off-line measured
data, the cell dry weight and biopolymer concentration data were interpolated using a
piecewise cubic polynomial interpolation onto regular 1-min intervals. The combination of
this interpolation method with off-line data measured at key moments of the cultivation
process ensured that possible information losses due to interpolation were minimized. The
resulting data set thus contained 4022 data records.

2.3. Soft Sensors Based on Off-Gas Analysis

Soft sensors for biomass concentration estimation based on the measured data describ-
ing the composition of the off-gas at the bioreactor outlet have been reported in several
applications [8,20,21]. The rates of oxygen uptake (OUR) and carbon dioxide production
(CPR) are closely linked to the biomass growth in microbial cultivation processes. In aerobic
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microbial cultivation processes this relationship can be described by the Luedeking–Piret
type of equation [20], (Equation (5)) for OUR and (Equation (6)) for CPR, respectively.

OUR = YO/X
dcX
dt

+ mocX (5)

CPR = YC/X
dcX
dt

+ mCcX (6)

where YO/X (kg oxygen consumed per 1 kg biomass produced) is the yield coefficient
relating oxygen consumption to biomass production, cX (kg/m3) is the microbial cell
concentration in the bioreactor, t (min) is the cultivation time, mO (kg oxygen consumed per
1 kg biomass per 1 min) is the oxygen consumption coefficient related to maintenance, YC/X
(kg carbon dioxide produced per 1 kg biomass produced) is the yield coefficient relating
carbon dioxide production to biomass production, and mC (kg carbon dioxide produced
per 1 kg biomass per 1 min) is the carbon dioxide coefficient related to maintenance. If the
yield coefficients can be assumed to be constant, and the contribution of the maintenance
part of Equations (5) and (6) is low enough to be neglected, then the relationship between
the cumulative (integral) values of O2 consumption (COC) and CO2 production (CCP), and
the biomass concentration can be considered to be linear [20,22].

Compared to soft sensors for the estimation of biomass concentration, less attention
has been paid to soft sensors for estimating product concentration (in the form of a storage
substance-biopolymer) based on the on-line measurement of off-gas composition. The
reason among others is a lower level of knowledge of related mechanisms. However, in
cases where it is assumed that the biopolymer formation is closely related to the growth
of microbial biomass, an analogous approach can be used as in the design of soft sensors
for biomass concentration estimation. Consequently, in this study, the possibility of using
both rates (OUR, CPR) and their cumulative values (COC, CCP) to estimate both the
concentration of biomass and the concentration of biopolymer product using soft sensors
was investigated.

2.4. Soft Sensors Based on Capacitance Measurement

Capacitance measurement provided by Aber Biomass Monitor type analyzers is
standardly used in biotechnological processes to estimate the concentration of living
microbial biomass in a bioreactor [16,17]. Not the entire measured spectrum is usually used
for these purposes, but rather the difference between capacitance measurements (∆C) at
2 selected frequencies according to Equation (7).

∆C = C( fL)− C( fH) (7)

where C(fL) is capacitance measurement at low frequency, which reflects the concentration
of living cells in the bioreactor, and C(fH) is background capacitance measurement at
high frequency corresponding to high frequency capacitance contributions from non-cell
components, such as air bubbles, etc. While fH is typically chosen as the highest available
frequency within the measured capacitance spectrum (e.g., 19.49 MHz in the case of Aber
Biomass Monitor 210), the main frequency fL is chosen so that the capacitance measurement
at this particular frequency is best correlated with the live cell concentration (compared to
capacitance measurement at other frequencies).

The results of several studies have shown that capacity measurements can be suc-
cessfully used not only to estimate the concentration of living cells, but also to monitor
the accumulation of lipid storage substances in yeast cells [16,17], as well as to detect
the transition between production and consumption phases of some intracellular storage
biopolymers (scl-PHAs) in bacterial cultures [18].

Following these findings, the presented study also focused on the possibility of using
both two-capacity difference measurement (∆C) and the capacitance spectra to estimate
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the concentration of bacterial biomass and especially the concentration of the intracellular
mcl-PHAs biopolymer.

3. Results and Discussion
3.1. Regression Analysis of the Relationship between the On-Line Process Data and Off-Line
Concentrations Measurements

The first part of the regression analysis was focused on examining the relationship
between on-line measured process variables calculated on the basis of the off-gas composi-
tion and both off-line variables, i.e., biomass and biopolymer concentrations. In total, four
different variants of linear relationships between on-line variables and off-line determined
concentrations of biomass and biopolymer were investigated. Specifically, the subject of the
regression analysis was not only the relationship between cumulative variables (COC, CCP)
and off-line concentrations, but also the relationship between the rates (OUR, CPR) and
off-line concentrations. Both rates were also included in the regression analysis because
studies documenting linearity of this relationship have been published for short chain
biopolymers [23,24]. These four investigated variants were as follows:

• Case 1: biomass and biopolymer concentrations, respectively, are assumed to be
linearly dependent on oxygen uptake rate OUR;

• Case 2: biomass and biopolymer concentrations, respectively, are assumed to be
linearly dependent on carbon dioxide production rate CPR;

• Case 3: biomass and biopolymer concentrations, respectively, are assumed to be
linearly dependent on cumulative oxygen consumption COC;

• Case 4: biomass and biopolymer concentrations, respectively, are assumed to be
linearly dependent on cumulative carbon dioxide production CCP.

Historical experimental data from a set of fed-batch cultivations of the bacterium
Pseudomonas putida KT2442 (see Sections 2.1 and 2.2) were used for the regression analysis.
The results of the regression analysis in the form of values of coefficients of determination
(R2) for individual variants are summarized in Table 1. The overall statistical significance
of the so obtained regression models has been tested and successfully verified using the
standard F-test (at the 0.05 level).

Table 1. Results of regression analysis (on-line variables based on off-gas composition data vs.
CDW, PHA).

Variants
Coefficients of Determination (R2)

Biomass Concentration
(CDW)

Biopolymer Concentration
(PHA)

Case 1 0.46 0.40
Case 2 0.59 0.53
Case 3 0.98 0.98
Case 4 0.97 0.98

It is apparent from the results of the regression analysis that in the case of both rates
(OUR-case 1 and CPR-case 2) the assumption of linear dependence with both off-line
concentrations is not justified. On the other hand, the assumption of a linear dependence
of both cumulative quantities (COC-case 3 and CCP-case 4) and off-line concentrations
was confirmed.

From the above, it can be concluded that in contrast to the biotechnological produc-
tion process of short chain length biopolymer production, in the case of medium chain
length biopolymer production process—which was the case in the presented study—the
assumption of linear relationship between rates and off-line measured concentrations does
not apply. On the contrary a strong linear relationship is observed between cumulative
quantities and off-line concentrations. Furthermore, the theoretical assumption of signif-
icant mutual correlation of both cumulative variables—COC and CCP—was confirmed
within the performed statistical analyses.



Fermentation 2021, 7, 318 7 of 13

The second part of the regression analysis was then focused on examining the rela-
tionship between capacitance measurement differences (∆C) calculated using Equation (7)
and both off-line concentrations (CDW, PHA). Since the capacitance spectrum data are
composed of 25 capacitance measurements corresponding to increasing frequencies on
logarithmic scale from 0.1 MHz to 19.49 MHz, the calculation of the ∆C (using Equation (7))
corresponding to individual frequencies was performed in the following manner: The
background capacitance measurement C(fH) was chosen, in line with the goal of removing
high frequency capacitance contributions from non-cell components, such as air bubbles
etc., as the capacitance measurement at the highest available frequency within the mea-
sured capacitance spectrum, i.e., fH = 19.49 MHz. The main frequency fL was variable and
corresponded to the remaining 24 measuring frequencies (0.1, 0.12, . . . 15.65 MHz). Hence,
a total of 24 capacitance measurement differences ∆Cf (where f = 0.1, 0.12, . . . 15.65 MHz)
were obtained. Each of the ∆Cf calculated in this way was then subjected to regression
analysis as an independent variable in relation to both off-line concentrations CDW and
PHA, respectively. The overall statistical significance of the so-obtained regression models
has been tested and successfully verified using the standard F-test (at the 0.05 level). The
resulting coefficients of determination (R2) for individual variants are shown in the bar
graphs in Figures 2 and 3.
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Figure 2. Coefficients of determination (R2) of simple linear regressions-biopolymer concentration
PHA as dependent variable, individual capacitance measurement differences ∆Cf as independent
variables, respectively.

In the case of biopolymer concentration, the highest value of R2 was reached at the
capacitance measurement difference ∆C0.24, i.e., for the main frequency value fL = 0.24
MHz. However, this maximum is not very distinct (see Figure 2); slightly lower values
were achieved for other capacitance measurement differences, approximately in the range
of main frequencies fL from 0.12 to 0.58 MHz. In the case of biomass concentration, the
highest value of R2 was reached at the capacitance measurement difference ∆C0.58, i.e., for
the main frequency value fL = 0.58 MHz. Here, the maximum is more distinct than in the
case of biopolymer concentration. However, even in this case the range of high values of
R2 corresponds approximately to the range of main frequencies fL from 0.12 to 1.40 MHz,
see Figure 3.
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Figure 3. Coefficients of determination (R2) of simple linear regressions-biomass concentration
CDW as dependent variable, individual capacitance measurement differences ∆Cf as independent
variables, respectively.

3.2. Design of Soft Sensors for Biomass and Biopolymer Concentration Estimation

Following the results of the regression analysis, two different types of soft sensors for
biomass and biopolymer concentration estimation from the on-line measurement of off-gas
composition and capacitance were proposed:

• Type 1: simply structured soft sensors based on simple linear regression, where
biomass and biopolymer concentrations are estimated using only single input on-line
process variable—COC or CCP or single ∆Cf, see Equation (8) and Figure 4a.

Out = k1 Inp + k0 (8)

where Out is the output of the soft sensor, i.e., either the estimated biomass or biopoly-
mer concentration, Inp is the input of the soft sensor, i.e., either COC or CCP or single
selected ∆Cf (specifically ∆C0.24 for biopolymer and ∆C0.58 for biomass concentration in
accordance with the above results of the regression analysis), and k1, k0 are calibration
constants of the specific soft sensor. This simple structure of the soft sensor (with only
one independent variable at the sensor input) based on linear regression was chosen for
two reasons—practical and statistical. The practical reason was that, in practice, both sets
of on-line measurements (off-gas composition and capacitance measurements) are often
not available at the same time, and even when only the off-gas composition is measured
(in practice more widespread than the capacitance measurement), sometimes only one of
the O2 or CO2 concentration measurements is available. The second, statistical reason why
a soft sensor with multiple independent variables on the input based on multiple linear
regression was not considered, was the fact that all considered variables (OUR, CPR, COC,
CCP, ∆Cf) are mutually correlated and therefore the condition of real independence of input
variables was not met. For this reason, multivariate regression methods based on partial
least squares regression and principal component regression were used for a complex type
of soft sensor with multiple inputs, see the following type 2.

• Type 2: comprehensively structured soft sensors based on multivariate statistical
methods—partial least squares regression (PLS) or principal component regression
(PCR), respectively, see Figure 4b. For a detailed description of both well-known
methods, see, e.g., [25,26]. In both of these cases, the input of the soft sensors consisted
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of both mutually correlated cumulative quantities based on off-gas composition mea-
surement (COC, CCP) combined with a selected set of ∆Cf. The output of the sensors
included both estimated concentrations (biomass and biopolymer). Specifically, the
selected set of ∆Cf comprised 12 capacitance measurement differences (∆C0.12, ∆C0.16,
∆C0.19, . . . , ∆C1.40), i.e., capacitance measurement differences corresponding to the
range of main frequencies fL from 0.12 to 1.40 MHz, for which high values of R2 were
attained in relation to off-line concentrations in the regression analyzes described in
Section 3.1. Thus, there were a total of 14 on-line variables at the input of these type 2
soft sensors–COC, CCP, and 12 ∆Cf.
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All proposed soft sensors were calibrated on the basis of the available historical
experimental data using cross-validation. The data for the PLS and PCR-based sensors
were additionally preprocessed using mean-centering. In the case of both multivariate
methods, two latent variables (PLS) or principal components (PCR) were used, following
findings from preliminary calculations in which this number of latent variables or principal
components captured over 98% of variance.

Specifically, the variant of the cross-validation method used in this study was three-
fold cross-validation. The dataset was hence randomly divided into three equal-sized
subsamples. Of the three subsamples, a single subsample was retained as the validation
data for testing, and the remaining two subsamples were used as training data. The
cross-validation process was then repeated three times, with each of the three subsamples
used just once as the validation data. For each round, a root-mean-square error of cross-
validation (RMSE-CV) was calculated. The results were then averaged to produce a single
estimation. The so obtained estimation of the sensor error are summarized in Table 2.

Table 2. Results of cross-validation.

Sensor Types
RMSE-CV (% of Measurement Range)

Biomass Concentration
Estimation

Biopolymer Concentration
Estimation

Type 1 (COC as input) 3.64% 4.63%
Type 1 (CCP as input) 4.15% 4.64%

Type 1 (∆C0.24 as input) – 5.53%
Type 1 (∆C0.58 as input) 3.42% –

Type 2 (PLS-based) 2.78% 4.46%
Type 2 (PCR-based) 2.85% 4.47%

From the summary of the results in Table 2, it is evident that in the case of sensors
for estimating the biopolymer concentration, the results obtained by the two proposed
types of soft sensors are practically comparable. A simple type of sensor with one input
(type 1) based on a simple linear regression thus provides similar estimation accuracy, in
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comparison to a considerably more computationally complex sensor (type 2) based on
multivariate statistical methods (PLS, PCR).

On the other hand, in the case of sensors for estimating biomass concentration, the
results obtained by more complex types of sensors are slightly better (type 2 vs. type 1),
but the differences are not very significant. From the comparison of the results obtained by
the type 2 sensors based on multivariate statistical methods, the obtained results for PLS
and PCR-based sensors are practically identical.

Special attention should be paid to the mutual comparison of simple soft sensors
type 1 depending on the used input variable. From the perspective of data preprocessing,
sensors using COC or CCP input are easier to design and use, as COC and CCP are
cumulative quantities in the calculation of which integration is used (see Equations (3)
and (4)). Hence, the measurement noise is significantly reduced to a satisfactory level,
and no additional filtering is needed. On the other hand, soft sensors using capacitance
measurement differences ∆Cf as their input are more complicated in that the capacitance
measurement is usually marked by considerable noise (e.g., as a result of bioreactor aeration
and other factors). The measured data must therefore be filtered by a combination of
several digital filters before use in a soft sensor (see Section 2.2). However, sensors based on
capacitance measurement differences are better able to capture the end of the biopolymer
production phase at the end of cultivation, which is a key feature in terms of production
monitoring (see Figures 5 and 6).
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Subsequently, five selected specific examples of soft sensors were tested—four soft
sensors of the type 1 (two sensors for biomass with COC or ∆C0.58 as input; and two
for biopolymer with COC or ∆C0.24 as input) and one complex soft sensor of the type 2
(PLS-based). On-line measured data from a typical biopolymer production cultivation
with characteristic time course were used for testing (see Figures 5–7). From the output
data obtained for the tested examples of soft sensors (Figures 6 and 7), it is clear that the
differences between the tested sensors are minimal for most of the cultivation time. Larger
differences are apparent towards the end phase of the production cultivation, when there
is a significant slowing down of the cell culture growth and biopolymer production. In
the case of both monitored concentrations (biomass and biopolymer), the final stagnation
of growth, or even a decrease, is most evident from the outputs of the simple type 1 soft
sensors, which have capacitance measurement differences at their input. It is therefore
apparent also from this model example that soft sensors based on capacitance measurement
can be very useful for early detection of the end of the production phase.
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Figure 6. Model test cultivation-biopolymer concentration-comparison of off-line measurements and
estimates using selected variants of soft sensors.
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4. Conclusions

This paper presented a selection of soft sensors for estimating the concentrations of
biomass and biopolymer in the mcl-PHAs biopolymer production process—from simple
sensors based on linear regression to sensors based on statistical multivariate methods,
such as PLS and PCR—which used on-line measurement of off-gas composition and
capacitance measurement of the fermentation broth as input data. All types of the designed
soft sensors were able to relatively accurately estimate both monitored concentrations
during the growth phase of the process. Significant differences between the performance
of individual soft sensors were apparent only in the final phase of the process. This phase
is characterized by a significant slowing down of the microbial growth and biopolymer
production. Only soft sensors based on capacitance measurement detected this important
change in the trend of the cultivation process. On the other hand, this measurement is
significantly affected by noise and must therefore be filtered in a complex way. For the
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growth phase of the process, monitoring by soft sensors based on measurement of the
composition of the off-gases (cumulative variables COC or CCP) is hence more suitable.

Further research will therefore be focused on the development of adaptive soft sensors
that will be able to evaluate the quality of their estimation during the estimation process
and continuously adjust the composition of their data inputs. The specific goal will be to
design soft sensors that will use a different on-line measured variable or set of variables for
each individual phase of the process.

Finally, a few more remarks on the limitations of the proposed approach to the design
of soft sensors. The designed soft sensors were primarily intended for the monitoring of a
specific bioprocess for the production of medium-chain-length biopolymers. However, the
possibilities of using the proposed approach are wider. In general, this approach can find
application in soft sensor design for the monitoring of all aerobic production bioprocesses
where product formation is closely linked to biomass growth.
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15. Hrnčiřík, P. Software sensors for Monitoring of Biopolymer Production. In Proceedings of the 23rd International Conference on

Process Control (PC), Virtual Event, Štrbské Pleso, Slovakia, 1–4 June 2021; pp. 308–312.
16. Maskow, T.; Röllich, A.; Fetzer, I.; Ackermann, J.U.; Harms, H. On-line monitoring of lipid storage in yeasts using impedance

spectroscopy. J. Biotechnol. 2008, 135, 64–70. [CrossRef] [PubMed]

http://doi.org/10.1016/j.lwt.2011.05.014
http://doi.org/10.1021/jf201792u
http://doi.org/10.1002/bit.10258
http://doi.org/10.1002/biot.201100506
http://doi.org/10.1016/j.bej.2014.02.007
http://doi.org/10.1016/j.compchemeng.2008.12.012
http://doi.org/10.1016/0032-9592(94)87009-8
http://doi.org/10.1016/j.jbiotec.2009.08.018
http://www.ncbi.nlm.nih.gov/pubmed/19735680
http://doi.org/10.1007/s10529-011-0686-5
http://doi.org/10.1016/S0168-1656(96)01644-6
http://doi.org/10.1016/0168-1656(92)90114-O
http://doi.org/10.1177/014233129701900507
http://doi.org/10.1021/bp00020a009
http://doi.org/10.1002/bit.10738
http://doi.org/10.1016/j.jbiotec.2008.02.014
http://www.ncbi.nlm.nih.gov/pubmed/18395924


Fermentation 2021, 7, 318 13 of 13

17. Maskow, T.; Röllich, A.; Fetzer, I.; Yao, J.; Harms, H. Observation of non-linear biomass-capacitance correlations: Reasons and
implications for bioprocess control. Biosens. Bioelectron. 2008, 24, 123–128. [CrossRef]

18. Kedia, G.; Passanha, P.; Dinsdale, R.M.; Guwya, A.J.; Lee, M.; Esteves, S.R. Addressing the challenge of optimum polyhy-
droxyalkanoate harvesting: Monitoring real time process kinetics and biopolymer accumulation using dielectric spectroscopy.
Bioresour. Technol. 2013, 134, 143–150. [CrossRef] [PubMed]

19. Li, L.; Wang, Z.J.; Chen, X.J.; Chu, J.; Zhuang, Y.P.; Zhang, S.L. Optimization of polyhydroxyalkanoates fermentations with on-line
capacitance measurement. Bioresour. Technol. 2014, 156, 216–221. [CrossRef]

20. Jenzsch, M.; Simutis, R.; Eisbrenner, G.; Stückrath, I.; Lübbert, A. Estimation of biomass concentrations in fermentation processes
for recombinant protein production. Bioprocess Biosyst. Eng. 2006, 29, 19–27. [CrossRef]

21. Sundström, H.; Enfors, S. Software sensors for fermentation processes. Bioprocess Biosyst. Eng. 2005, 31, 145–152. [CrossRef]
22. Rønnest, N.P.; Stocks, S.M.; Eliasson Lantz, A.; Gernaey, K.V. Introducing process analytical technology (PAT) in filamentous

cultivation process development: Comparison of advanced online sensors for biomass measurement. J. Ind. Microbiol. Biotechnol.
2011, 38, 1679–1690. [CrossRef] [PubMed]

23. Liu, D.; Zhang, X.T.; Zhang, D.J.; Zeng, S.W.; Lu, P.L. Polyhydroxyalkanoate (PHA) Synthesis by Glycerol-Based Mixed Culture
and Its Relation with Oxygen Uptake Rate (OUR). Huan Jing Ke Xue 2016, 37, 3518–3523. [PubMed]

24. Zeng, S.W.; Wang, Z.Y.; Gao, J.; Liu, D.; Zhang, D.J.; Lu, P.L. On-Line Estimation for the Amount of Stored PHA in Activated
Sludge Based on OUR-HPR Measurements. Huan Jing Ke Xue 2015, 36, 1713–1719. [PubMed]

25. Jolliffe, I.T. A Note on the Use of Principal Components in Regression. J. R. Stat. Soc. Ser. C Appl. Stat. 1982, 31, 300–303.
[CrossRef]

26. Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130.
[CrossRef]

http://doi.org/10.1016/j.bios.2008.03.024
http://doi.org/10.1016/j.biortech.2013.01.136
http://www.ncbi.nlm.nih.gov/pubmed/23500571
http://doi.org/10.1016/j.biortech.2014.01.042
http://doi.org/10.1007/s00449-006-0051-6
http://doi.org/10.1007/s00449-007-0157-5
http://doi.org/10.1007/s10295-011-0957-0
http://www.ncbi.nlm.nih.gov/pubmed/21461747
http://www.ncbi.nlm.nih.gov/pubmed/29964788
http://www.ncbi.nlm.nih.gov/pubmed/26314121
http://doi.org/10.2307/2348005
http://doi.org/10.1016/S0169-7439(01)00155-1

	Introduction 
	Materials and Methods 
	Process Description 
	Process Data Measurement and Analytical Methods 
	Soft Sensors Based on Off-Gas Analysis 
	Soft Sensors Based on Capacitance Measurement 

	Results and Discussion 
	Regression Analysis of the Relationship between the On-Line Process Data and Off-Line Concentrations Measurements 
	Design of Soft Sensors for Biomass and Biopolymer Concentration Estimation 

	Conclusions 
	References

