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Abstract: Acrylamide, a II A carcinogen, widely exists in fried and baked foods. L-asparaginase can
inhibit acrylamide formation in foods, and enzymatic stability is the key to its application. In this
study, the Escherichia coli L-asparaginase (ECA) stable variant, D60W/L211R/L310R, was obtained
with molecular dynamics (MD) simulation, saturation mutation, and combinatorial mutation, the half-
life of which increased to 110 min from 60 min at 50 ◦C. Furthermore, the working temperature
(maintaining the activity above 80%) of mutation expanded from 31 ◦C–43 ◦C to 35 ◦C–55 ◦C,
and the relative activity of mutation increased to 82% from 65% at a pH range of 6–10. On treating
60 U/mL and 100 U/g flour L-asparaginase stable mutant (D60W/L211R/L310R) under uncontrolled
temperature and pH, the acrylamide content of potato chips and bread was reduced by 66.9% and
51.7%, which was 27% and 49.9% higher than that of the wild type, respectively. These results
demonstrated that the mutation could be of great potential to reduce food acrylamide formation in
practical applications.

Keywords: L-asparaginase; stability; mutation; acrylamide; food safety

1. Introduction

Potatoes and flour, two of the most important staple foods, are rich in carbohydrates.
However, while these high-carbohydrate foods are processed at high temperatures (above
120 ◦C), a large amount of acrylamide is formed due to the Maillard reaction between
reducing sugars and amino acids [1]. The acrylamide content in microwaved snacks and
French fries, respectively, reached 20,336 µg/kg and 10,712 µg/kg [2,3], which far exceeded
the limit of acrylamide in daily drinking water set by the World Health Organization by
0.5 µg/L, triggering international health alerts.

Some strategies such as raw material selection, processing optimization, addition of
plant extracts, and enzymatic treatment were researched to reduce the acrylamide content in
food [4–7]. Among these, L-asparaginase (EC 3.5.1.1), which was found to effectively inhibit
the acrylamide formation in food by removing the acrylamide precursor (L-asparagine)
without changing the food senses [8–11], has attracted extensive attention. On a laboratory
scale, different sources of L-asparaginase have been used to inhibit acrylamide formation
under restricted reaction conditions [2,12–14]. Wang et al. (2021) pretreated French fries
with 10 U/mL Palaeococcus ferrophilus L-asparaginase at 85 ◦C for 10 min to reduce the
acrylamide content by 80% [2]. Farahat et al. (2020) reduced acrylamide in French fries by
82% using 20 U/mL Cobetia amphilecti L-asparaginase at 40 ◦C for 30 min [15]. Ran et al.
(2017) used Paenibacillus barengoltzii L-asparaginase to pretreat French fries and mooncake
at 45 ◦C for 20 and 60 min, and found that the acrylamide content was lowered by 86% and
52%, respectively [13]. Commercial L-asparaginase (10 U/mL; Acrylaway® L-asparaginase)
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was used to pretreat French fries at 75 ◦C for 10 min to reduce the acrylamide content
by 60% [16].

Many investigations have been conducted to inhibit acrylamide formation in food
with L-asparaginase on a laboratory scale, but few have been performed on an industrial
scale [9]. Operational temperature, pH, and time are the crucial parameters for the success-
ful application of L-asparaginase on an industrial scale. Hence, L-asparaginase, with better
stability, wider action temperature, and pH, has more industrial application potential.
In this study, the key residues of E. coli L-asparaginase (ECA) were identified by molecular
dynamics (MD) simulation. Then, the stability of ECA was improved through saturation
and compound mutations, and its application temperature and pH were expanded. Finally,
we evaluated its application effect in inhibiting acrylamide formation in potato chips and
bread under restricted and non-restricted reaction conditions.

2. Materials and Methods
2.1. Strains, Plasmids, and Chemicals

E. coli BL21 was used as the host strain for gene cloning and expression. The shuttle ex-
pression plasmid pET-28a was used for expression and mutagenesis studies. All strains and
plasmids were preserved in our laboratory. The restriction enzymes, PrimeSTAR® HS DNA
Polymerase and T4 DNA ligase, were purchased from TaKaRa Bio Co. (Dalian, China),
and the Mini Plasmid Rapid Isolation Kit and Mini DNA Rapid Purification Kit were
obtained from Sangon Biotech Co., Ltd. (Shanghai, China). A HisTrapTM HP column was
purchased from GE Healthcare, Inc. (Little Chalfont, Buckinghamshire, UK). All other
high-grade chemicals were commercially sourced.

2.2. Construction of Recombinant Strains

The plasmid pET-28a-ansE harboring the ECA gene, obtained from our lab stock [17],
was used as the template for cloning mutation genes. With overlap extension PCR, site-
saturation mutagenesis was introduced using corresponding primers (Table S1). Using pET-
28a-D60W (constructing with site-saturation mutagenesis and harboring the ECA asparagi-
nase mutation D60W gene) as the template, a combinatorial mutant D60W/L211R/L310R
gene was constructed by two rounds of PCR using primer pairs F4 and R4 and F5 and R5.
All mutations were linked to linearized pET-28a and transferred into E. coli BL21 for gene
cloning expression. All recombinant plasmids were sequenced by Sangon Biotech Co., Ltd.
(Shanghai, China).

2.3. Expression, Purification, and Activity Assay

The expression of ECA and its mutations in E.coli BL21 were performed as described by
Zhang [18]. Recombinant E. coli BL21 were cultured at 37 ◦C to OD = 1.0 (approximately 3 h)
and were induced with 1 mM IPTG, after which time the culture was incubated for 10 h at
16 ◦C. The cell paste was suspended in Tris-HCl buffer (pH 8.0) and disrupted on ice by
sonication to obtain the intracellular proteins (crude enzyme).

The purification and property determination of all proteins were carried out as
described in our previous study [17,19]. Ni2+-affinity chromatography and an AKTA
purifier system (GE Healthcare, Danderyd, Sweden) were used to purify the crude en-
zyme. The crude enzyme was loaded onto a 1-mL HisTrapTM HP column with Binding
Buffer (0.02 M Tris-HCl buffer and 0.5 M NaCl, pH 7.4) with a 0.5 mL/min loading rate.
L-asparaginase was eluted at 1 mL/min with a linear gradient of imidazole concentrations
ranging from 0 to 0.5 M. Then, the purified enzyme was dialyzed with Tris-HCl buffer
(0.05 M, pH 7.0) to remove imidazole and recycled for SDS-PAGE analysis. The enzyme
with only a single SDS-PAGE target band was the purified enzyme at the end of the process.

The activity of ECA II and its mutations were assayed as described by Li [17,20]. The re-
action mixture (1 mL) containing L-asparagine (25 mM) and Tris-HCl (50 mM, pH 8.0) was
preheated at optimum temperature. Then, 100 µL of enzyme solution was added and re-
acted with the substrate for 10 min. One hundred µL of 15% trichloroacetic acid (TCA) was
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used to stop the reaction. The reaction mixture was centrifuged at 20,000× g, mixed gently
with 200 µL of the clear supernatant, 4.8 mL of deionized water and 200 µL of Nessler’s
reagent, and the amount of ammonia released was measured. All measurements were
performed spectrophotometrically at 450 nm. TCA and enzyme solution were successively
added to the reaction mixture and were used as a blank during the spectrophotometric
enzyme activity assays. One unit of L-asparaginase activity was defined as the amount of
enzyme required to release 1 µmol of ammonia per minute under assay conditions.

2.4. Determination of Optimum Temperature, Optimum pH, and Thermal Stability

The optimum temperature of L-asparaginase was examined using 50 mM Tris-HCl
buffer (pH 7.5) with temperatures ranging from 20 to 60 ◦C. The optimum pH was
measured by assaying the enzyme activity at various pH values (0.05 M acetate buffer,
pH 4.0–6.0; 0.05 M phosphate buffer, pH 6.0–7.0; 0.05 M Tris-HCl buffer, pH 7.0–9.0;
and 0.05 M glycine-NaOH buffer, pH 9.0–10.0) at optimum temperature. The thermal
stability of L-asparaginase was determined by incubating the enzyme in Tris-HCl buffer
(50 mM, pH 7.0) for 15–120 min at 50 ◦C. After incubation, the protein was refolded on ice
for 15 min, and the residual enzyme activity was measured at optimum temperature and pH.

2.5. Structure Modeling and MD Simulation

The ECA crystal conformation (PDB ID: 6PAB) as a template [21] and ECA mutation
model were acquired by homology modeling using SWISS-MODEL (http://swissmodel.
expasy.org/, accessed on 20 March 2022). The molecular structures of all proteins were
analyzed using the Program PyMOL [22].

MD simulations were conducted using GROMACS software in a similar manner as in
our previous study, to analyze the stability of protein structures [17]. The protein model
was immersed in a dodecahedron box, and the distance between any protein atom and the
edge of the box was set at >1.2 nm. Following the addition of Na+ (0.15 M) to balance the
negative charges, the system was minimized using the steepest descent method. After MD
simulations of ECA conducted at 310 K and 323 K reference temperatures for 30 ns, the root
mean square fluctuation (RMSF) values of residues were calculated.

2.6. Application of ECA in French Fries and Bread

The treatment of potatoes was modified based on the study of Farahat et al. [15].
Potatoes (Fovorita, pH 7.3) and bread flour (pH 6.4) were purchased from the local su-
permarket in Shihezi, Xinjiang Province. The potatoes were peeled and cut into strips
(0.5 × 0.5 × 10 cm3), and then the strips were immersed in distilled water for 2 min to
remove the starch from the surface. To investigate the effect of enzyme on the acrylamide
formation in French fries under different conditions, the raw fries were submerged in an
enzyme solution (50 mM, pH 7.5 Tris-HCl buffer or tap water, with enzyme concentrations
of 10, 20, 40, 60, and 80 U/mL) at 37 ◦C, 45 ◦C, and uncontrolled temperature for 20 min
each, while the control group was submerged in a similar solution (50 mM, pH 7.5 Tris-HCl
buffer or tap water) without the enzyme for 20 min. All samples were fried at 160 ◦C for
10 min in an electric fryer. After frying, the fries were cooled on a paper at an ambient
temperature, and then the acrylamide was extracted for analysis.

The bread dough was prepared using flour (300 g), yeast (3 g), and an enzyme solution
(200 g, 50 mM, pH 7.5 Tris-HCl buffer or tap water, with enzyme concentrations of 40, 60,
80, 100, and 120 U/g flour enzyme, and without enzyme as the control group). The dough
was kneaded and allowed to rest for 60 min at different temperatures (37 ◦C, 45 ◦C,
or room temperature). Finally, the bread dough was baked in an oven at 180 ◦C for 20 min.
The bread was cooled at an ambient temperature, and then the acrylamide was extracted
for analysis.

http://swissmodel.expasy.org/
http://swissmodel.expasy.org/
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2.7. Assay of Concentration Assay

The acrylamide in French fries and bread was extracted by the method described
by Wang et al. [2]. One gram of the crushed sample (French fries or bread) was accu-
rately weighed in a 50-mL centrifuge tube, vortexed with 10 mL of hexane for 1 min and
centrifuged at 10,000 g for 5 min at 4 ◦C, and the hexane layer was removed. The aforemen-
tioned operation was repeated thrice to get rid of the long-chain fatty acids from the sample.
Thereafter, 10 mL of methanol, 500 µL of Carrez I (3.6 g potassium ferricyanide/100 mL
ultrapure water), and 500 µL of Carrez II (7.2 g zinc sulfate/100 mL ultrapure water) were
added to the centrifuge tube and shaken at 30 ◦C for 30 min. The homogenates were
centrifuged at 10,000 g for 30 min at 4 ◦C, and the supernatant was filtered through 0.22-µm
Millipore filters. The extracted samples were detected by high-performance liquid chro-
matography (HPLC) using a C18 chromatographic column (Atlantis TM, 150 × 2.1 mm2)
and a UV detector. The HPLC operating conditions included a mobile phase of 70% (v/v)
methanol, UV wavelength set at 210 nm, injection volume of 20 µL, and a column tem-
perature of 30 ◦C. Different concentrations of acrylamide (50–4000 g/L) were used as the
reference for HPLC detection.

3. Results and Discussion
3.1. Identification of ECA Stability Key Domains

In our previous study, ECA was expressed by E. coli BL21, with a half-life of 6.2 h and
1 h at 37 ◦C and 50 ◦C, respectively [17]. The half-life of the enzyme was shortened by 5.2 h
when the temperature increased by only 13 ◦C, which attracted our attention. MD software
imparted significant guidance in analyzing enzyme’s structural characteristics and rational
design [23–26]. The GROMACS software effectively calculated the RMSF of protein amino
acids at a simulated temperature and then showed the flexibility of the residue domain
at different temperatures [27–30]. To find out why ECA was unstable at higher tempera-
tures at a protein structure level, the RMSF of ECA residues were calculated at 37 ◦C and
50 ◦C based on the ECA crystal conformation (PDB ID: 6PAB) [21]. The RMSF of domains
G57-T80, P202-K213, and N298-T311 increased by 1.01 nm, 1.00 nm, and 1.08 nm, respec-
tively, which was much higher than the average RMSF increase of 0.60 nm (Supplementary
Data and Figure 1A), indicating that these regions fluctuated greatly at higher temperatures.

Fermentation 2022, 8, x FOR PEER REVIEW 5 of 12 
 

 

 

Figure 1. Molecular dynamics simulation and structural analysis of ECA. (A) RMSF value of ECA 

at 37 °C and 50 °C. (B) Stability key domains in ECA tertiary structure. G57-T80: the α-helix in red-

dashed box; P202-K213: the loop in blue-dashed box; N298-T311: the α-helix in purple-dashed box. 

(C) ECA RMFS with “alanine scanning”. 

The subunit of L-asparaginase is composed of a large N-terminal and a small C-ter-

minal, and the dimer assembly of the N- and C-terminals “head-to-tail” constitutes the 

basic functional unit [31–33]. As found in the ECA model (Figure 1B), at the interface of 

L-asparaginase subunit N- and C-terminals, domains G57-T80 and N298-T311 were, re-

spectively, located as α-helix, and P202-K213 located as the link loop connecting the N- 

and C-terminals. These interface function domains (G57-T80, P202-K213, and N298-T311) 

fluctuated at 50 °C, which might be the reason for the sharp shortening of the protein’s 

half-life at 50 °C than that at 37 °C, and were the key domains of thermal stability [29,34]. 

3.2. Identification of Stability Key Residues and Construction of Stability Mutation 

To determine the unstable key residues in the three domains, these domains’ residues 

(except for alanine) were computationally substituted with alanine (alanine scanning; if 

the original residue was alanine, it was replaced with glycine) at 50 °C [35]. As shown in 

the results (Supplementary Data and Figure 1C), the RMSF of the mutations D60A, L211A, 

and L310A showed a maximum rise in the domains G57-T80, P202-K213, and N298-T311, 

respectively. The results showed that D60, L211, and L310 might be the key residues for 

the ECA stability. 

Saturation mutations were carried out to further verify the effect of these residues 

(D60, L211, and L310) on the ECA stability and improve the stability (Table S2). The ther-

mal stability of mutations D60W, L211R, and L310R were improved, the half-life of the 

combinatorial mutant (D60W/L211R/L310R) was extended from 60 to 110 min at 50 °C, 

while other enzyme characteristics showed no significant changes (Table 1). 

  

Figure 1. Molecular dynamics simulation and structural analysis of ECA. (A) RMSF value of ECA
at 37 ◦C and 50 ◦C. (B) Stability key domains in ECA tertiary structure. G57-T80: the α-helix in
red-dashed box; P202-K213: the loop in blue-dashed box; N298-T311: the α-helix in purple-dashed
box. (C) ECA RMFS with “alanine scanning”.
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The subunit of L-asparaginase is composed of a large N-terminal and a small C-terminal,
and the dimer assembly of the N- and C-terminals “head-to-tail” constitutes the basic
functional unit [31–33]. As found in the ECA model (Figure 1B), at the interface of
L-asparaginase subunit N- and C-terminals, domains G57-T80 and N298-T311 were,
respectively, located as α-helix, and P202-K213 located as the link loop connecting the
N- and C-terminals. These interface function domains (G57-T80, P202-K213, and N298-
T311) fluctuated at 50 ◦C, which might be the reason for the sharp shortening of the protein’s
half-life at 50 ◦C than that at 37 ◦C, and were the key domains of thermal stability [29,34].

3.2. Identification of Stability Key Residues and Construction of Stability Mutation

To determine the unstable key residues in the three domains, these domains’ residues
(except for alanine) were computationally substituted with alanine (alanine scanning;
if the original residue was alanine, it was replaced with glycine) at 50 ◦C [35]. As shown in
the results (Supplementary Data and Figure 1C), the RMSF of the mutations D60A, L211A,
and L310A showed a maximum rise in the domains G57-T80, P202-K213, and N298-T311,
respectively. The results showed that D60, L211, and L310 might be the key residues for the
ECA stability.

Saturation mutations were carried out to further verify the effect of these residues
(D60, L211, and L310) on the ECA stability and improve the stability (Table 1). The thermal
stability of mutations D60W, L211R, and L310R were improved, the half-life of the combi-
natorial mutant (D60W/L211R/L310R) was extended from 60 to 110 min at 50 ◦C, while
other enzyme characteristics showed no significant changes (Table 1).

Table 1. The enzyme characteristics of ECAII and its mutations.

Enzyme Optimum
Temperature (◦C) T(1/2, 50 ◦C) (Min) Optimum pH Km (µM) Specific

Activity (U/mg)

ECA II 37 60 ± 5 7.5 18 ± 5 235 ± 21
D60W 40 85 ± 5 7.0 15 ± 6 245 ± 31
L211R 42 95 ± 5 7.5 24 ± 8 290 ± 33
L310R 40 80 ± 5 8.0 14 ± 6 217 ± 20

D60W/L211R/L310R 45 110 ± 10 7.5 26 ± 6 281 ± 29
D60A 35 40 ± 5 7.0 28 271 ± 29
D60I 37 50 ± 5 7.0 41 301 ± 41
D60V 37 60 ± 5 7.0 56 223 ± 21
D60F 40 75 ± 5 7.0 32 189 ± 31
D60M 37 60 ± 5 7.5 15 233 ± 33
D60Q 40 75 ± 5 7.5 66 199 ± 24
D60T 37 55 ± 5 7.0 90 211 ± 17
D60N 37 45 ± 5 7.0 55 273 ± 19
D60Y 40 70 ± 5 7.5 24 248 ± 24
D60E 37 60 ± 5 7.0 33 221 ± 44
L211G 35 40 ± 5 7.5 77 281 ± 37
L211A 35 45 ± 5 7.5 63 277 ± 21
L211I 37 55 ± 5 7.5 69 249 ± 11
L211V 37 45 ± 5 7.5 93 211 ± 18
L211P 40 75 ± 5 7.0 45 198 ± 55
L211F 40 65 ± 5 7.5 51 255 ± 23
L211W 37 65 ± 5 7.0 101 294 ± 36
L211S 40 60 ± 5 7.0 67 211 ± 19
L211T 37 45 ± 5 7.5 32 234 ± 12
L211N 37 55 ± 5 8.0 55 189 ± 11
L211D 40 65 ± 5 8.0 41 243 ± 28
L211E 40 70 ± 5 7.5 27 257 ± 31
L211K 40 70 ± 5 7.5 91 231 ± 37
L310A 37 45 7.5 33 221 ± 41
L310I 37 55 7.5 48 232 ± 21
L310P 40 70 7.5 19 203 ± 19
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Table 1. Cont.

Enzyme Optimum
Temperature (◦C) T(1/2, 50 ◦C) (Min) Optimum pH Km (µM) Specific

Activity (U/mg)

L310F 40 75 8.0 36 199 ± 23
L310M 37 60 8.0 52 198 ± 41
L310W 40 65 8.0 20 188 ± 28
L310Q 37 50 7.5 13 236 ± 23
L310T 37 55 7.5 54 210 ± 31
L310C 37 50 7.5 33 179 ± 51
L310N 37 55 7.5 64 198 ± 31
L310Y 40 65 7.5 88 204 ± 42
L310K 37 60 7.5 91 218 ± 16
L310H 37 65 7.5 31 221 ± 12

To fully understand how the residue mutations D60W, L211R, and L310R affected the
thermostability, the combinatorial mutant (D60W/L211R/L310R) was modeled using the
crystal structure of ECA (PDB ID: 6PAB). As shown in Figure 2A, the 60th, 211th, and 310th
residues were located in the key domains G57-T80, P202-K213, and N298-T311, respectively.
After the 60th residue Asp was mutated into Trp, an additional hydrogen bond was formed
with the 249th residue Leu on the adjacent subunit. Compared with L211, L211R formed
additional hydrogen with Asp63 and Gln307 on G57-T80 and N298-T311, respectively.
After the 310th residue, Leu mutated into Arg. Although the connection with the 307th
residue was lost, an additional hydrogen bond was formed with the 306th residue Leu and
237th residue Asp. Meanwhile, the RMSF of site-mutations (D60W, L211R, and L310R) and
combinatorial mutant (D60W/L211R/L310R) were calculated at 50 ◦C (Supplementary
Data and Figure 2B). The RMSF of site-mutations D60, L211R, and L310R decreased by
0.15 nm, 0.20 nm, and 0.21 nm and the RMSF of their respective regions (G57-T80, P202-
K213, and N298-T311) were, respectively, reduced by 0.19 nm, 0.32 nm, and 0.27 nm
compared with the wild type. Furthermore, compared with the wild type, the RMSF of the
combinatorial mutant (D60W/L211R/L310R) decreased by 0.21 nm, and its RMSF of G57-
T80, P202-K213, and N298-T311 decreased by 0.28 nm, 0.26 nm, and 0.25 nm, respectively.
These results suggested that all the three residue mutations formed more hydrogen bonds
with nearby residues after mutation, which made the connection between the N- and
C-terminals of ECA and the connection between the subunits more inseparable, and in turn
made the protein structure more difficult to be destroyed. Hence, the thermostability of the
combinatorial mutant was improved.

Considering that the extensive application without controlling the treatment temper-
ature and pH was more favorable, we measured the relative activity in the temperature
range of 10 ◦C–70 ◦C and pH range of 6–10 before and after mutation (Figure 3). Compared
with the wild type, the working temperature (the temperature of relative activity > 80%)
range of D60W/L211R/L310F was expanded from 31 ◦C–43 ◦C to 35 ◦C–55 ◦C. Meanwhile,
at a pH range of 6–10, the relative activity of D60W/L211R/L310F remained above 82%,
while that of the wild type was only 65%. The mutant D60W/L211R/L310F had more
hydrogen bonds in the key domains and better stability [36–39], so it could remain stable
under adverse conditions (such as high temperature or highly acidic alkaline conditions),
which also indirectly widened its working conditions.
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3.3. Effect of the Enzyme on Acrylamide Formation in French Fries and Bread under
Controlled Conditions

Potatoes and flour are two staple foods used to produce fried potatoes and bakery
products. In Europe, fried potatoes and bakery products contribute 50% and 20% of
humanity’s ingestion of acrylamide, respectively [9,11,40,41]. Hence, the degradation
of acrylamide content in fried potatoes and bakery products can effectively reduce the
daily intake of acrylamide, which is of great significance to a healthy diet. In this study,
we investigated the mitigation effect of L-asparaginase on acrylamide formation in common
fried potatoes (French fries) and bakery products (bread).

Without enzyme treatment, the acrylamide content in French fries reached 3223 µg/kg.
With different concentrations (10, 20, 40, 60, and 80 U/mL) of ECA and its mutant
D60W/L211R/L310F, potatoes were, respectively, treated at pH 7.5 and optimum temper-
atures (ECA 37 ◦C and D60W/L211R/L310F 45 ◦C) for 20 min. The mitigation effect on
acrylamide formation of French fries is shown in Figure 4A. After treating potatoes with
60 U/mL ECA and its mutant, the acrylamide content in potato chips decreased by 75.5%
and 84.1%, respectively; also, the acrylamide content did not further decrease significantly
when the enzyme amount was increased to 80 U/mL. For the sake of the production cost,
60 U/mL L-asparaginase was used for the subsequent research.
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Figure 4. Effect of ECA and its mutation D60W/L211R/L310F on acrylamide formation in French
fries and bread. (A,B) Effect of different concentrations of the enzyme on acrylamide formation in
French fries (A) and bread (B) under optimum conditions. (C) Effect of the enzyme on acrylamide
formation in French fries and bread under uncontrolled conditions.

To complete the enzyme treatment of the flour, Tris-HCl (50 mM, pH 7.5) containing
different concentrations (40, 60, 80, 100, and 120 U/g) of L-asparaginase were used for
kneading the dough, and the optimum temperatures (ECA 37 ◦C and D60W/L211R/L310F
45 ◦C) of the dough and fermentation were maintained in an incubator. The mitigation
effect on acrylamide formation of bread is shown in Figure 4B. Without enzyme treatment,
the acrylamide content in the bread reached 931 µg/kg. After treatment with 100 U/g flour
ECA and D60W/L211R/L310F, the acrylamide content in the bread decreased by 54.5%
and 65.1%, respectively, while the acrylamide content did not further decrease significantly
when the enzyme concentration was increased. Hence, in the subsequent research, 100 U/g
flour L-asparaginase was used to inhibit acrylamide formation in bread.

Furthermore, compared with the same dose of ECA, the acrylamide content of potato
chips and bread treated with D60W/L211R/L310F was further reduced, showing a better
application effect, which might be due to the better stability of the mutant and reduced
loss of enzyme activity in the pretreatment time. In addition, when the amount of enzyme
reached a certain level (60 U/mL in potatoes and 100 U/g in flour), further increasing
the enzyme concentration did not reduce the acrylamide content significantly in food
(Figure 4A,B). It might be because L-asparagine, which can be contacted with enzymes,
was already degraded. Thus, increasing the enzyme amount hardly increased the reaction
between enzyme and L-asparagine further and hence did not reduce the subsequent
formation of acrylamide. For reducing the formation of acrylamide in food using the
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enzyme in the future, the treatment effect may be strengthened by increasing the contact
between the enzyme and food raw materials.

3.4. Effect of the Enzyme on Acrylamide Formation in French Fries and Bread under
Uncontrolled Conditions

In practical application, it is difficult to strictly control the reaction temperature and
pH as in the laboratory; extensive experiments are more consistent with reality. Therefore,
we studied the treatment of potatoes and flour with the enzyme in tap water without
controlling the reaction temperature and pH to verify its effect on the degradation of
acrylamide in potato chips and bread.

In raw materials, the pH of tap water, potatoes, and flour was 6.5, 7.3, and 6.4,
respectively. Potatoes and flour were treated with 60 U/mL and 100 U/g flour, respectively,
and the residual acrylamide content of French fries and bread was measured (Figure 4C).
Compared with the treatment under constant-temperature and constant-pH conditions
(Figure 4A,B), the effect of enzyme treatment decreased due to the lack of the optimal
conditions. The acrylamide in French fries and bread treated with D60W/L211R/L310F
decreased by 69.9% and 51.7%, respectively, which was 27% and 49.9% higher than that of
the wild type. Due to the lack of a buffer solution and temperature control, the temperature
and pH of the treatment were not constant, while the working temperature and pH of
the mutant were wider and more stable, meeting the application requirements, so the
mutation had a better application effect than that of the wild type and exhibited a great
application potential.

4. Conclusions

Through MD simulation and mutation of E. coli L-asparagine, we obtained a mutant
with wider application temperature and pH and better stability, verifying the effect of
acrylamide control in French fries and bread. Without controlled treatment temperature
and pH, the mutant could reduce the acrylamide content in French fries and bread by
69.9% and 51.7%, respectively, with 60 U/mL and 100 U/g flour enzyme, and showed the
potential to reduce food acrylamide formation in practical applications.
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