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Abstract: The ecological uniqueness of the Great Bitter Lake ecosystem makes its bacterial population
interesting for investigation. Here, we present the first trial to evaluate the biosynthetic capacity of
the bacterial population at the lake as a source of novel antimicrobials. We collected different samples
from various locations throughout the lake including the oxic sediment, anoxic sediment, shore water,
and off-shore water. We modified a molecular approach to compare and choose the samples with
the highest bacterial biosynthetic capacity by quantifying the polyketide synthase gene clusters in
their total community DNA. Furthermore, we screened the bacterial isolates recovered from these
samples and their metabolic extracts for antimicrobial activity. We tried to tentatively investigate the
identity of the active metabolites by PCR screening and LC–MS. The bacterial population in the oxic
sediment had the highest biosynthetic capacity compared to other sample types. Four active Bacillus
isolates were identified. The isolated Bacillus species were expected to produce numerous probable
bioactive metabolites encoded by biosynthetic gene clusters related to the polyketide synthases
(either individual or hybrid with non-ribosomal peptide synthetase), such as Bacillomycin D, Iturin
A, Bacilosarcin B, Bacillcoumacin G and Macrolactin (N and G). These results suggest that the under-
explored bacterial community of the Great Bitter Lake has a prospective biosynthetic capacity and
can be a promising source for novel antibiotics.

Keywords: antimicrobial metabolites; Bacillus; Iturin lipopeptides; marine bacteria; polyketide synthases

1. Introduction

The serious health and economic impacts of antimicrobial resistance (AMR) introduce
a major concern and global threat facing humans [1]. Therefore, it is more necessary than
ever to find novel antibiotics [2,3].

In recent decades, natural products have played a vital role in drug discovery [4]. In
addition to animals and plants, microorganisms including bacteria, fungi, and algae are a
huge resource for secondary metabolites [5,6]. Over 22,000 bioactive microbial secondary
metabolites were identified, and many played a role in drug discovery [7].

These metabolites are synthesized by a wide range of gene clusters called biosynthetic
gene clusters (BGCs). The most popular BGCs are the ones coding for polyketide synthases
(PKSs) including PKS-I, and PKS-II gene clusters [8,9]. Bacteria, in particular those from the
phylum of Actinobacteria and the family Bacillaceae, were described to produce numerous
polyketides that have antimicrobial activities [9,10].

With more than two-thirds of Earth’s surface covered with water, where the most
primitive forms of life originated, marine microorganisms and their bioactive metabo-
lites have attracted researchers during their active search for new drugs [11,12]. Marine
microorganisms are major producers of bioactive compounds that exhibit a wide range

Fermentation 2022, 8, 309. https://doi.org/10.3390/fermentation8070309 https://www.mdpi.com/journal/fermentation

https://doi.org/10.3390/fermentation8070309
https://doi.org/10.3390/fermentation8070309
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fermentation
https://www.mdpi.com
https://orcid.org/0000-0002-2802-2901
https://orcid.org/0000-0002-8988-2702
https://doi.org/10.3390/fermentation8070309
https://www.mdpi.com/journal/fermentation
https://www.mdpi.com/article/10.3390/fermentation8070309?type=check_update&version=1


Fermentation 2022, 8, 309 2 of 14

of activities such as antimicrobial, antioxidant, antitumor, anti-inflammatory, antivirus,
antihypertensive, and anti-diabetic activity [6].

Egypt has a variable collection of water bodies: the Red Sea in the east, and the
Mediterranean Sea in the north, in addition to several lakes. The Great Bitter Lake, in
the northeast of Egypt, is a saltwater lake. What makes this lake interesting is that it is
considered as a live bridge between two seas—the Red and the Mediterranean Seas, each
with a remarkably different ecosystem. The two ecosystems were connected by the Suez
Canal and through the Great Bitter Lake in 1869.

Currently, the salinity level of the lake is between 41.1 and 44.6%, which is higher than
the salinity level of the sea when the canal is open and much higher when it is closed. The
salinity of the lake is affected by the water flow from both the Red and the Mediterranean
seas and the season, as the salinity is higher in summer than in winter [13,14].

Different culture-dependent and culture-independent approaches were adopted by
microbiologists to investigate marine microbial metabolites [15,16].

This study aimed to determine the ability of the marine microbial community in
the Great Bitter Lake to be a promising source for novel antimicrobial metabolites by
measuring the levels of the bacterial PKSs and BGCs in the samples’ total community DNA
and screening the antimicrobial activity of some bacterial isolates recovered from the lake.

2. Materials and Methods
2.1. Samples Collection

Samples were collected on the 5th of April 2020 from the Great Bitter Lake, Fayed,
Ismailia, Egypt, at three different locations: L1, L2, and L3 (Figure 1a). Four types of
samples were collected from the three locations: shore water (SW) and muddy anoxic
sediment (MS) from L1 (2 m depth), sandy oxic sediment (SS) from L2 (6 m depth), and off-
shore water (OSW) from L3 (Figure 1b). Each sample was collected in triplicate and stored
in sterile falcons with a volume of 50 mL. We started working on these samples within 8 h.
A step-wise scheme was followed to evaluate the bacterial population biosynthetic capacity
and antimicrobial activity potential.
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32◦18′25′′ E, L2: 30◦19′31′′ N 32◦19′38′′ E and L3: 30◦21′52′′ N 32◦19′48′′ E. (b) Difference in the
physical appearance between the collected sediment types. MS: muddy sediment. SS: sandy sediment.

2.2. Quantification of PKSs Gene Clusters in Samples’ Total Community DNA

Total community DNA was extracted from samples using the DNeasy PowerSoil kit
(Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Extracted DNA
was stored at −20 ◦C for further use.

Polyketide synthases (PKS-I and PKS-II), Firmicutes 16S rRNA, and total bacterial
16S rRNA genes were quantified by qPCR using StepOne PlusTM Real-Time PCR System
(Thermo Fisher Scientific, Waltham, MA, USA) and sets of degenerate primers. The total
bacterial 16S rRNA gene was amplified using Eub338 (forward) and Eub518 (reverse)
primers. The Firmicutes 16S rRNA gene was amplified using Firm352F (forward) and
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Firm525R (reverse) primers. PKS-I was amplified using PKS1-F (forward) and PKS1-R
(reverse) primers. PKS-II was amplified using PF6 (forward) and PR6 (reverse) primers.
All primers used in this study were obtained from (Invitrogen, Thermo Fisher Scientific,
USA). Primers’ sequences are illustrated in (Table 1).

Table 1. List of primers used in the quantitative PCR.

Primer Sequence (5′–3′) Target Ref.

PKS1-F
PKS1-R

CGGGGCACCGCCATSAACMASGRCG
CGCCCAGCGGGGTGSCSGTNCCGTG PKS-I [17]

PF6
PR6

TSGCSTGCTTGGAYGCSATC
TGGAANCCGCCGAABCCGCT PKS-II [18]

Eub338
Eub518

ACTCCTACGGGAGGCAGCAG
ATTACCGCGGCTGCTGG

Total bacterial 16S
rRNA [19]

Firm352F
Firm525R

CAGCAGTAGGGAATCTTC
ACCTACGTATTACCGCGG Firmicutes, 16S rRNA [20]

The qPCR was performed in a 20 µL reaction mixture containing 4 µL of 5× Hot
FIREPol® EvaGreen® qPCR Mix Plus (ROX) (Solis BioDyne, Tartu, Estonia), 0.5 µL forward
primer (10 pmol·µL−1), 0.5 µL reverse primer (10 pmol·µL−1) and 1 µL from TcDNA. For
all, the PCR conditions were carried out as follows: 95 ◦C for 12 min; 40 cycles with a
denaturation step of 95 ◦C for 15 s, annealing for 30 s at 58 ◦C; elongation at 72 ◦C for 30 s;
and a final step of 72 ◦C for 8 min. The purity of the PCR products was checked with the
melting curve plots. A standard curve was drawn using ten-fold serial dilutions of the
bacterial 16S rRNA gene. The absolute quantity of the total bacterial 16S rRNA and the
relative abundance of Firmicutes 16S rRNA and PKSs genes were calculated in the same
way as described in Yang et al. [21]. In brief, a standard curve was drawn using ten-fold
serial dilutions of the standard bacterial 16S rRNA gene. The absolute of total bacterial
16S rRNA was derived from the curve automatically by the thermocycler. The relative
abundance was calculated using the following equation:

x = 〚(Eff.Univ)〛ˆ(Ct.univ)/〚(Eff.Spec)〛ˆ(Ct.spec) × 100 (1)

where x is the relative abundance. The Eff.Univ and Eff.Spec are the efficacy of the universal
and specific primers, respectively. The Ct.univ and Ct.spec are the threshold cycles of
universal and specific primers, respectively.

The statistical analysis of data was performed using one-way ANOVA and Tukey’s
test for multiple comparisons. Significance was considered at a p-value of <0.05. Pearson’s
correlation analysis was performed between PKS-I and PKS-II.

2.3. Isolation and Purification of Culturable Bacteria

For sediment samples, 1.0 g of each was vortexed with 10 mL of filtered, sterilized
seawater for 2 min. For the water ones, they were vortexed for 1 min. A volume of 1 mL
of each sample was ten-fold serially diluted with sterile pre-filtered seawater. A volume
of 100 µL from each dilution was placed and carefully spread with a sterile glass spreader
onto plates of nutrient agar (NA) (Oxoid TM, Basingstoke, UK), Reasoner’s 2A agar (R2A)
(DifcoTM, Detroit, MI, USA), Actinomycete isolation agar (AIA) (Oxoid TM, UK), and
starch casein agar (SCA) (Sigma-Aldrich, St. Louis, MO, USA). The plates were incubated
at 30 ◦C for 24–72 h, and then colonies were isolated based on the difference in colony
morphology. The plates were re-incubated for a longer time (2 to 3 weeks) to observe any
new slow-growing strain.

All media were constituted and prepared in filtered, pre-sterilized seawater obtained
from the Great Bitter Lakes area, except the R2A, and supplied with 0.001% nystatin to
inhibit fungal growth. The total aerobic viable count on nutrient agar was calculated. After
that, isolates were purified by repetitive sub-culturing on the corresponding relevant media
and then on the R2A medium.
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2.4. Standard Indicator Microorganisms

Five different standard microbial strains were used for screening the antimicrobial
activity: Escherichia coli ATCC 5087 (E.C), Staphylococcus aureus ATCC 6538 (S.A), Bacillus
cereus ATCC 33018 (B.C), Pseudomonas aeurginosa ATCC 27853 (P.A), and Candida albicans
ATCC 60193 (C.A).

2.5. Evaluation of the Antimicrobial Activity

Isolates from samples with higher PKS levels were evaluated for their antimicro-
bial activity. We have followed two levels for screening the antimicrobial activity of the
bacterial isolates. First, we screened the antagonistic behavior of isolates. Second, the
cell-free extract of isolates, which showed positive microbial antagonism, was screened for
antimicrobial activity.

2.5.1. Screening the Antagonistic Behavior of the Bacteria Isolates

The antimicrobial activity of the bacterial isolates was determined by the drop-plate
technique as described in Ismail et al. [22] with some modifications. In brief, the tested
isolate was inoculated into semisolid nutrient agar and incubated at 30 ◦C for 48–72 h, then
spotted onto agar plates seeded with 500 µL of 0.5 McFarland of the standard microbial
strains and incubated at 37 ◦C for 24 h, except for the standard C. albicans which was
incubated at 30 ◦C for 48 h. The results of microbial antagonism were divided into a clear
inhibition zone, attenuated growth, or no inhibition.

2.5.2. Screening the Antimicrobial Activity of the Cell-Free Bacterial Metabolic Extract

The metabolic extract of bacterial isolates that showed positive antagonistic activity
was prepared as follows: a fresh colony was inoculated into 100 mL nutrient broth (Oxoid
TM, UK) and then incubated with shaking at 160 rpm (C25KC incubator shaker, New
Brunswick Scientific, Enfield, CT, USA) at 30 ◦C for 5–7 days.

The broth culture was centrifuged at 3000 rpm for 10 min (Biobase 800 Centrifuge)
and filtered using a 0.22 µm syringe filter.

The cell-free supernatant was then extracted with an equal volume of ethyl acetate
(HIMEDIA, AS051-500ML, INDIA) by incubating at room temperature while shaking at
240 rpm for 24 h.

Ethyl acetate was then separated using a separating funnel and evaporated to dryness
using a rotavap device (BUCHI 011, Uster, Switzerland) at 45 ◦C. The residual material was
dissolved into 10% dimethyl sulfoxide (DMSO) with a concentration of 20 mg·mL−1. The
antimicrobial activity of the extract was assayed by the standard well-diffusion method. A
well of 6 mm in a Muller–Hinton agar plate seeded with 500 µL of 0.5 McFarland of the
standard microbial strains was filled with 100 µL of the 20 mg·mL−1 of the extract then
incubated at 30 ◦C for 24 h except for C.A, which was incubated for 48 h. A negative control
of 10% DMSO was used. For positive control, gentamicin (20 µg·mL−1) was used as an
antibacterial and Itraconazol (20 µg·mL−1) was used as an antifungal.

2.6. Isolates Identification and Phylogenetic Analysis
2.6.1. Genomic DNA Extraction and Amplification and Sequencing of 16S rRNA Gene
PCR Products

Genomic DNA was extracted from bacterial isolates using the GeneJET Genomic DNA
Purification kit (Thermo Fisher Scientific, USA) according to the manufacturer’s instructions.
The 16S rRNA gene was partially amplified using primers U8-27 (AGAGTTTGATC(AC)TG-
GCTCAG) and L1494–1514 (CTA CGG (AG)TACCT TGT TAC GAC) [23]. PCR reactions
were performed in BIO-RAD T100TM Thermal cycler, U.S. The annealing temperature was
56 ◦C. PCR amplicons were visualized using gel electrophoresis. The PCR products of
the partially amplified 16S rRNA gene were sent for Sanger sequencing (Macrogen, Inc.,
Seoul, Korea). All sequences were analyzed using the blastn tool at NCBI against the 16S
ribosomal RNA (Bacteria and Archaea type strains).
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2.6.2. Phylogenetic Analysis

For the construction of a phylogenetic tree, the most related type strains’ 16S rRNA
sequences were aligned using MUSCLE [24], and then the tree was constructed using
Molecular Evolutionary Genetics Analysis MEGA X [25] using the Maximum Likelihood
method and the Kimura 2-parameter model [26]. A Bootstrap test (for 1000 replicates)
was performed.

2.7. Screening of Bacillus Iturin Family Lipopeptides

Bacillus species are known to produce several high-molecular-weight lipopeptides
(>1000 daltons) with antibacterial and antifungal properties. Most of them are encoded
by non-ribosomal peptide synthases (NRPS) BGCs except for the Iturin family which
is encoded by a hybrid PKS-I/NRPS system [27]. The isolated active Bacillus species
were screened for the presence of two of the most common Iturin family lipopeptides
(Iturin A and Bacillomycin D). Iturin A coding gene (ituD) was amplified using ItuD1F
(GATGCGATCTCCTTGGATGT) and ItuD1R (ATCGTCATGTGCTGCTTGAG) primers.
Bacillomycin D coding gene (bamC) was amplified using Bacc1F (GAAGGACACGGAGA-
GAGTC) and Bacc1R (CGCTGATGACTGTTCATGCT) primers [28]. The PCR conditions
for both reactions were carried out as follows: 95 ◦C for 5 min; 35 cycles with a denaturation
step of 94 ◦C for 1 min, annealing for 1 min at 58 ◦C; elongation at 72 ◦C for 1 min; and a
final step of 72 ◦C for 10 min.

2.8. Liquid Chromatography–Mass Spectroscopy Analysis of the Metabolic Extracts

LC–MS was used for the tentative investigation of the low-molecular-weight metabo-
lites (<1000 daltons) in the isolates’ extracts. The dried ethyl acetate metabolic extracts of
the four active Bacillus isolates were dissolved in 5 mL of methanol and then left to dry
at room temperature. The residual materials were dissolved in HPLC grade water and
purified through ultra-filtration using Vivaspin® (SARTORIUS, Gottingen, Germany) with
a molecular weight cut-off of 10,000 daltons. The Acquity® LC–MS System (Waters®, Mil-
ford, MA, USA) equipped with the ACQUITY UPLC® BEH C18 1.7 m column in positive
ion mode was used for separation and mass spectrometry analysis. The injected volume
was 6 µL, the average column temperature was 40 ◦C, and the run time was 32 min. The
elution was carried out by a component solvent system in which solvent A was water, and
solvent B was methanol. Both were injected with 0.1% formic acid.

The natural products atlas database (NPAtlas) [29] was searched for the probable
identity of each detected compound using the exact mass in daltons (±0.02 daltons). The
search parameters were limited to the bacterial metabolites of the Bacillus genus to improve
the accuracy.

3. Results
3.1. Biosynthetic Genes Abundance in Total Community-DNA (TC-DNA)

Shore water (SW), off-shore water (OSW), muddy anoxic sediments (MS), and sandy
oxic sediment (SS) samples have shown variable levels of the total bacterial 16S rRNA gene,
the Firmicutes 16S rRNA gene, NRPSs, and PKSs.

The total bacterial 16S rRNA gene showed an average of 12.702 × 106 copies.g−1,
3.485 × 106, 35.171 × 106 and 3.948 × 106 copies.g−1 of SW, OSW, MS, and SS samples,
respectively. The number of 16S rRNA gene copies per gram MS samples was significantly
higher than other samples. SW samples were significantly higher than both OSW and SS
samples. There was no statistically significant difference between OSW and SS samples
(Figure 2a).

The relative abundance of the Firmicutes 16S rRNA gene was in an average of 2.769%,
0.232%, 0.462%, and 0.778% for SW, OSW, MS, and SS samples, respectively.

SW samples significantly had the highest relative abundance in Firmicutes 16S rRNA
gene copies followed by SS samples. There was no significant difference between MS and
OSW samples (Figure 2b).
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PKS-I was higher in all samples than PKS-II by approximately 6.2 fold on average. SS
samples showed the highest relative abundance for both BGCs encoding PKS-I and PKS-II
among all samples (Figure 2c,d).

There was a linear correlation between the relative abundance of PKS-I and PKS-II in
our samples (Figure 2e). A similar correlation was described in a terrestrial ecosystem [17].
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abundance of polyketide synthase type II in each sample type—SW: shore water, OSW: off-shore
water, MS: muddy anoxic sediment and SS: sandy oxic sediment. (e) Correlation between the relative
abundance of PKS-I gene and PKS-II gene. The statistical analysis of data was performed using
one-way ANOVA and Tukey’s test for multiple comparisons. Significance was considered at a p-value
of <0.05, p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****); non-significant (ns).

3.2. Isolation of Marine Bacteria

A total of 64 bacterial isolates were recovered from all the samples. A total of 52% of
the isolates were recovered by R2A medium, 31% were recovered by nutrient agar (NA),
and only 17% were recovered by both AIA and SCA media (Figure 3).
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The average total aerobic viable count recovered by NA medium after 72 h of incubation
was 12 × 105 CFU·mL−1, 84 × 105 CFU·mL−1, 165 × 105 CFU·g−1, and 147 × 107 CFU·g−1

for OSW, SW, SS, and MS samples, respectively. Although MS was the highest in the viable
count, it has shown a lower diversity in colony morphology in comparison to SS.

3.3. The Antagonistic Behavior and Antimicrobial Activity of the Bacterial Isolates and Their
Metabolic Extracts

A total of ten isolates have shown antagonism against at least one of the indicator
microbes using the drop-plate method (Table 2). Seven out of the ten active isolates were
found to be active only against the Gram-positive bacteria.

Table 2. Results of the positive microbial antagonism isolates.

Isolate I.D
Recovery
Medium

Standard Strain

E.C S.A B.C P.A C.A

R-1 R2A +/− + + − +/−
R-4 R2A + + + + +
N-5 N.A − − − − +
R-11 R2A +/− + + − +
N-13 N.A − + + − −
R-19 R2A − + + − −
R-20 R2A − + + − −
S-30 SCA − +/− − − −
N-34 N.A − + +/− − −
S-41 SCA − − − − +/−

(+), clear zone of inhibition; (+/−), attenuated growth; (−), no inhibition. E.C: Escherichia coli, S.A: Staphylococcus
aureus, B.C: Bacillus cereus, P.A: Pseudomonas aeurginosa and C.A: Candida albicans. NA: nutrient agar, R2A:
Reasoner’s 2A agar, and SCA: starch casein agar.

R-4 isolate showed the highest antimicrobial activity against all tested indicator strains,
including both Gram-positive and Gram-negative organisms in addition to the yeast strain.
Isolates S-41 and S-30 showed only attenuated growth against one of the indicator strains,
C. albicans and S. aureus, respectively. In addition to the production of antimicrobial sec-
ondary metabolites, bacterial antagonistic behavior can be mediated by other mechanisms,
such as the production of lactic acid as observed in the case of Lactobacilli or the release of
bacteriocins and lysozymes [30]. To only focus on the isolates with antimicrobial secondary
metabolites, we further screened the antimicrobial activity of the cell-free ethyl acetate
filtrates of these ten bacterial isolates.

Four cell-free ethyl acetate filtrates have shown antimicrobial activity against more
than one of the tested standard strains using the well-diffusion assay (Figure 4). The
cell-free ethyl acetate filtrates of isolates R-4 and R-11 showed broad activity against both
tested Gram-positive strains (Staphylococcus aureus and Bacillus cereus) and Gram-negative
strain (Escherichia coli). For the positive controls, the average inhibition zones were 20, 19,
20, 18, and 17 mm, for E.C, S.A, B.C, P.A, and C.A, respectively.
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3.4. Phylogenetic Analysis

The analysis of the partial 16S rRNA sequences of the active bacterial isolates has indicated
these isolates belong to the phylum Firmicutes. They were identified as Bacillus licheniformis,
Bacillus pumilus, Bacillus subtilis, and Bacillus haynesii for isolates R-1, R-4, R-11, and R-19,
respectively. The NCBI blastn search results are illustrated in Table 3. The phylogenetic
tree is represented in Figure 5.

Table 3. Results of the NCBI Blast search.

Isolate I.D Sequence Size Most Related Strain (Accession Number)

Sc
or

e

Q
ue

ry
C

ov
er

ag
e

Pe
rc

en
tI

de
nt

it
y

R-1 1030 Bacillus licheniformis ATCC 14580 (NR_074923.1) 1864 100% 99.32%
R-4 1050 Bacillus pumilus ATCC 7061 (NR_043242.1) 1906 100% 99.43%
R-11 1001 Bacillus subtilis DSM 10 (NR_027552.1) 1838 100% 99.80%
R-19 1002 Bacillus haynesii NRRL B-41327 (NR_157609.1) 1796 100% 99.00%
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3.5. Amplification of Iturin Family Lipopeptides Coding Genes

Bacillus species are known to produce a diverse collection of bioactive secondary
metabolites [31]. Among these metabolites are Bacillus lipopeptides.

By conventional PCR, the isolated B. subtilis strain R-11 has shown sharp bands for ituD
and bamC (Figure 6). By the presence of these two genes, B. subtilis strain R-11 is expected
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to produce both Iturin A and Bacillomycin D lipopeptides. Iturin A and Bacillomycin D are
known for their antifungal properties [32].
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Figure 6. Bacillus subtilis strain R-11 shows sharp bands for ItuD and BamC genes in gel elec-
trophoresis at 647 and 875, respectively. Lanes 1, 2, 3, 4 and 5 represent Bacillus licheniformis strain R-1,
Bacillus pumilus strain R-4, Bacillus subtilis strain R-11, Bacillus haynesii strain R-19 and negative control,
respectively; the molecular marker used is (GeneRuler 1 kb DNA Ladder, Thermo Fisher Scientific).

3.6. Liquid Chromatography–Mass Spectroscopy Analysis of the Metabolic Extracts

The numbers of detected masses were 31, 37, 39 and 42 (<1000 daltons) for the cell-free
ethyl acetate extracts of isolates R-1, R-4, R-11, and R-19, respectively (see supplementary
material). A total of 2, 2, 3, and 2 probable active metabolites for the metabolic extracts of
isolates R-1, R-4, R-11 and R-19, respectively, were obtained from the NPAtlas database. The
activity of these metabolites ranged between antimicrobial, cytotoxic, antioxidant, plant
growth inhibitor and nitrogen monoxide (NO) production inhibitor (Table 4).

Table 4. The probable metabolite for each exact mass detected in the metabolic extracts of the active
isolated strains from the Natural Products Atlas.

Isolate Exact Mass
(Daltons)

Probable
Metabolite

Reported
Bioactivity Origin BGC Ref.

R-1
882.2382 Tribenglthin A Antioxidant Soil Bacillus subtilis NRPS [33]
184.1250 Ieodomycin D Antimicrobial Marine Bacillus sp. FAS [34]

R-4
493.2298 Bacilosarcin B Plant growth inhibitor Marine Bacillus subtilis PKS-I/NRPS [35]
184.1288 Ieodomycin D Antimicrobial Marine Bacillus sp. FAS [34]

R-11
376.2092 Limnazine - Bacillus sp. GW90 - [36]
310.2435 Bacillamidin C Antibacterial, cytotoxic Marine Bacillus pumilus - [37]
386.2461 Macrolactin N Antibacterial Soil Bacillus subtilis PKS-I [38]

R-19
372.1529 Bacillcoumacin G NO production inhibitor Marine Bacillus sp. PKS-I/NRPS [39,40]
402.2349 Macrolactin G Antibacterial Marine Bacillus sp. PP19-H3 PKS-I [41]

4. Discussion

In this study, we modified the method used before by Peng et al. [42] in investigating
the antibiotic-related BGCs levels in a newly explored ecosystem, to compare the biosyn-
thetic capacity of different types of samples taken from our study area, and choose the most
promising ones. This method secures a time-saving approach and increases the success
rates to isolate active microbial strains.

D’hondt et al. reported that the total microbial count is usually higher in the organic-
rich anoxic sediment than in the organic-poor oxic sediment [43]. This agrees with our



Fermentation 2022, 8, 309 11 of 14

findings that both the total 16S rRNA gene copies and the total aerobic viable count were
higher in the MS than in SS samples.

The relative abundance and diversity of PKSs BGCs in total community DNAs can
provide a picture of the ability of a system to produce new bioactive compounds [15,42].

We have found that the oxic sediment had the greatest levels of both PKS-I and
PKS-II BGCs.

Generally, it is well observed that bacteria, especially the spore-forming ones such
as the phylum of Actinobacteria and the family Bacillaceae, present in a higher relative
abundance in the marine sediment than in the water column. This can be explained by
the static nature of marine sediment that facilitates the accumulation of these bacteria and
their spores and the higher availability of organic matters in the marine sediment than in
the water column [44,45]. This explains our observation that both PKS-I and PKS-II were
significantly higher in SS samples than in water samples. The higher relative abundance
of PKS-I and PKS-II in SS samples than in MS samples may be explained by the aerobic
nature of these bacterial families.

R2A was the most efficient of the four used media in recovering a diverse collection
of isolates. This may be attributed to the low nutrient composition of the medium that
controls the growth of the fast-growing bacteria, thus preventing them from suppressing
the slow growers and allowing the growth of oligotrophs [46].

All the identified active strains were from the genus Bacillus. Although Actinobacteria
are known to be the primary producers of bioactive compounds possessing antimicrobial
activity, Firmicutes, especially the genus Bacillus, are the most involved in the research
for antimicrobials from bacteria isolated from the marine environment. This may be
due to the special and, most of the time, challenging culture requirements of marine
actinobacteria [47].

B. licheniformis was reported to have antimicrobial activity against Gram-positive
bacteria and a few Gram-negative bacteria [48,49]. In addition to the antimicrobial activity
of marine B. licheniformis’ metabolites, other activities such as antiviral and immune-
regulatory activities have also been reported [50]. The antimicrobial protein BLDZ1
from marine B. licheniformis inhibits the biofilm formation of microbial pathogens such as
P. aeurginosa [51]. The genome mining of a marine B. pumilus strain showed at least twelve
BGCs, including PKS-I, PKS-II, and NRPS which indicates a high bioactivity potential [52].
Marine B. pumilus was reported to produce an active non-ribosomal lipopeptide Pumi-
lacidin (~3 KD) with anti-Staphylococcus aureus activity [53]. The Marine B. pumilus was also
reported as a source of antitrypanosomal active metabolites [54]. Exopolysaccharide of ma-
rine B. haynesii has many applications in food industries as an antioxidant and emulsifying
agent [55].

In addition, B. subtilis and B. pumilus were reported for their broad-spectrum antibacterial
and antifungal properties [56–60]. This partly agrees with the results of our study, where only
B. pumilus and B. subtilis showed broad antimicrobial activity, while B. licheniformis possessed
only a narrow spectrum activity against the tested standard indicator microorganisms.

Marine bacteria are active producers of secondary metabolites. They produce these
metabolites as a response to the marine extreme conditions, such as pressure, temperature,
salinity, and depletion of micronutrients [61].

Originally, these lipopeptides are produced by some marine Bacillus as biosurfactants
to aid in the transport of hydrophobic low water-soluble substrates and enhance their
bioavailability [29]. Applications such as food preservation (control of spoilage yeast),
and plant disease biocontrol (against fungal infections) are possible applications for our
B. subtilis strain R-11.

Macrolactins are lactone, natural polyketides mainly derived from marine bacte-
ria. They are biosynthesized through the PKS-I system. Many bioactivities were re-
ported regarding macrolactins including, antibacterial, antifungal, antiviral, anticancer,
anti-inflammatory, anti-angiogenic, and other activities [62]. Macrolactin N produced
by B. subtilis was reported for its antimicrobial activity against S. aureus and E. coli as it
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inhibits the peptide deformylase enzyme [38]. The marine Bacillus antimicrobial fatty acids
(Ieodomycins) were reported for antibacterial and anti-yeast properties [34]. Bacillamidins
are a group of marine natural products, originally derived from marine Bacillus pumilus.
They were reported for their potent antimicrobial activity against Gram-negative bacteria
through the inhibition of the citrate synthase type II enzyme [37].

It is well observed that the majority of the detected active metabolites are encoded by
either individual PKS-I or hybrid PKS-I/NRPS systems, which was expected based on the
used approach.

Based on the findings of this study, we suggest that this approach can be modified to
target microbial strains with specific biosynthetic systems. It is also observed that most
of the low-molecular-weight metabolites detected by the LC–MS originated from marine
Bacillus strains, which proves the uniqueness of the marine environment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fermentation8070309/s1, All LC–MS spectra are provided as a
supplementary material.
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