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Abstract: γ-Aminobutyric acid (GABA) is a ubiquitous nonprotein amino acid that has multiple
physiological functions and has received significant attention in the pharmaceutical and food indus-
tries. Although there are many GABA-producing bacteria, the high cost of strain cultivation limits its
food additive and pharmaceutical raw material application. In our study, Lactobacillus hilgardii GZ2,
a novel GABA-producing strain, was investigated. We attempted to replace nitrogen sources with
silkworm pupae, the waste resource of the silk reeling industry, in GYP complex medium. The GABA
titer reached 33.2 g/L by using 10 g/L silkworm pupae meal instead of tryptone. Meanwhile, the pH
of fermentation was automatically controlled by adjusting the addition of glucose and monosodium
glutamate. Finally, the highest GABA yield and productivity were 229.3 g/L and 3.2 g/L/h in
L. hilgardii when silkworm pupae meal was replaced with tryptone combined with glucose and
monosodium glutamate feeding. By utilizing the waste resource to reduce the cost of the nitrogen
source and automatically controlling the pH in L. hilgardii, a hyper titer and productivity of GABA
was generated for applications in the food and pharmaceutical industries.

Keywords: γ-aminobutyric acid (GABA); automatic control; fermentation; glucose; silkworm pupae

1. Introduction

γ-Aminobutyric acid (GABA) is an amino acid that does not participate in protein
building. It is a neurosuppressive transmitter that plays a role in the human/animal
central nervous system. It has multiple physiological activities, such as antihypertensive,
antidiabetic, antioxidant, anti-inflammatory and antianxiety activities, and improves the
functions of the brain, liver, and kidneys [1–5]. In the field of medicine, GABA can be used
as a precursor of antiepileptic, sleep-inducing drugs. For the food industry, GABA can be
used as an additive or can be enriched by fermentation to develop a variety of functional
foods. The European Food Safety (EFSA) and the U.S. Food and Drug Administration
(FDA) recognize GABA produced through lactic acid bacteria fermentation as a natural food
additive. The EFSA allows the addition of GABA to food, with a maximum recommended
dietary intake of 550 mg/day [1]. The FDA states that the addition of GABA to food is safe,
and its usage includes beverages, coffee, tea, and chewing gum, but it is not permitted in
baby food, meat products, or products containing meat. In 2001, Japan included GABA
in its range of food products. In 2009, the Chinese Ministry of Health approved GABA
produced through lactic acid fermentation as a new resource food. It stipulates that GABA
intake should not exceed 500 mg/day, and its usage includes beverages, cocoa products,
chocolate and its products, candy, baked goods, and puffed snacks, but it cannot be added
to baby food. The use of the chemical synthesis of GABA in food and medicine is thought
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to be unhealthy and ineffective. Biocatalytic synthesis of GABA is the main production
method used in the food and medicine industries. Therefore, it is crucial to find an efficient
biocatalytic synthesis method for GABA.

GABA is formed by glutamate decarboxylase (GAD, EC: 4.1.1.15) catalyzing the de-
carboxylation of glutamate [6]. This decarboxylase is widely distributed among bacteria,
fungi, and yeast [7–10]. Lactic acid bacteria, such as GRAS (generally considered to be safe)
strains, are often used as starters for functional food fermentation and in pharmaceutical
fields. Therefore, lactic acid bacteria that produce GABA efficiently are the main focus
of GABA-producing bacteria at present [11–15]. The lactic acid bacteria with GABA syn-
thesis identified thus far mainly include Lactobacillus (L.) brevis, L. buchneri, Streptococcus
thermophilus, L. paracasei, Lactococcus lactis, and L. plantarum [11,14,16–20]. Lactobacillus sp.
is the most common species among the highly efficient GABA-producing strains isolated
from traditional fermented foods. After fermentation optimization, the maximum GABA
production capacity of L. brevis NCL91 was 103 g/L with 1.43 g/L/h productivity. The
strain was isolated from Chinese paocai [21]. L. plantarum EJ2014 was isolated from rice
bran, and 19.8 g/L GABA was produced in a simple medium [22]. With xylose as a car-
bon source, the productivity of GABA produced by L. buchneri WPZ001 was 0.97 g/L/h.
This xylose-using strain was isolated from Chinese fermented sausages [11]. Although
the GABA yield can be increased by screening high-yielding strains and optimizing the
composition of the fermentation medium and culture conditions, the fermentation cost
is still a limiting factor in the cultivation of lactic acid bacteria and the industrialization
of GABA.

Lactic acid bacteria are commonly found in food and the gastrointestinal tract, and their
growth requires rich nutrients, including peptides, amino acids, vitamins, fatty acids, and
inorganic salts [23]. The most important source is nitrogen, generally an organic compound
nitrogen source. Organic nitrogen sources are commonly extracted substrates from yeast,
plants and animals, and peptone hydrolyzed from plant and animal proteins, which are rich
in proteins, peptides, and amino acids [24,25]. Commercial MRS and GYP media commonly
used for cultivating lactic acid bacteria include 22 g/L and 15 g/L organic nitrogen source
mixtures, respectively. These mixtures consist of peptone (protein hydrolysate) and meat
and yeast extracts [25,26]. Considering the cost of composite nitrogen sources, finding
alternative low-cost nitrogen sources is the key to reducing the production cost of GABA.

Silkworm pupae (Lepidopyera, Bombycidae, Bombyx mori L.) are a byproduct of the
silk reeling industry. They are rich in lipids (30%), protein (60%), and ash (10%) [27]. The
lipids of silkworm pupae (China) include saturated fatty acids (22.04% C16:0 and 6.84%
C18:0), monounsaturated fatty acids (0.92% C16:1 and 33.91% C18:1), and polyunsaturated
fatty acids (5.48% C18:2 and 30.81% C18:3) [28]. Silkworm pupae protein is rich in eighteen
different amino acids, of which eight are essential amino acids for human beings, accounting
for over 42% of the total amino acid content [29]. Silkworm pupae also contain 3–4%
chitosan and other necessary trace elements (Cu, Zn, Fe, Se). These trace elements include
iron (9.54 mg), zinc (17.75 mg), potassium (1826.59 mg), sodium (274.57 mg), calcium (102.31
mg), phosphorus (1369.94 mg), magnesium (287.96 mg), and manganese (2.49 mg) [30].
Silkworm pupae are abundant in vitamins A, E, D, B1, B2, and B3 [31]. Silkworm pupae
are an excellent source for animal feed, crop fertilizer, and raw materials for use in drug
development and food rich in nutrients [32–34]. Researchers use silkworm pupae meal or
defatted silkworm pupae to culture Cordyceps militaris, Phellinus baumii, Yarrowia lipolytica,
and so on [35–37]. Silkworm pupae can be used as a high-quality nitrogen source for
cultured fungi, but GABA production in cultures of lactic acid bacteria is scarce.

In this study, silkworm pupae were first used as a substitute nitrogen source to attempt
to produce culture cells and GABA produced by L. hilgardii. The optimal alternative
concentration was optimized to produce GABA. Meanwhile, the best GABA production
strategy was obtained by developing a strategy of automatically controlling the pH. The
production cost of the cell culture and GABA synthesis was reduced, and a fermentation
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strategy to produce GABA efficiently was obtained by L. hilgardii. This will help with the
reuse of waste resources and the realization of the industrialization expansion of GABA.

2. Materials and Methods
2.1. Materials

Silkworm pupae (B. mori L.) were obtained from the Sericultural Research Institute,
Chinese Academy of Agricultural Sciences. The silkworm pupae meal was dried at 60 ◦C
for 4 h and crushed and sifted to make a 1~2 mm powder. Dried silkworm pupae meal is
light brown in color with a consistent appearance (Supplementary Figure S1). It does not
have any mold and has a distinct odor. It partially dissolves in water, ethanol, chloroform,
and ether. The crude protein content of silkworm pupae meal is between 65% and 70%, the
crude fat content is between 20% and 30%, the crude ash content is 4% to 5%, the crude
fiber content is 4% to 5%, and the moisture content is less than 12%. Silkworm pupae meal
can lead to acidification and oxidation at high temperatures or room temperature with
prolonged storage. It is recommended that it is stored at low (<4 ◦C) temperatures.

Yeast extract and tryptone were purchased from OXOID Co., Ltd. (Basingstoke, Eng-
land), and the catalog numbers were LP0021 and LP0042B. Glucose and monosodium
glutamate were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
Magnesium sulfate, manganese sulfate, ferrous sulfate, and sodium chloride were pur-
chased from Sangon Biotech Co., Ltd. (Shanghai, China). Standard power (GABA) was
purchased from Sigma–Aldrich. O-phthaldialdehyde was purchased from Agilent Tech-
nologies Inc. (Santa Clara, CA, USA), and the catalog number was 5061-3335. Boric acid,
methanol, and acetonitrile were purchased from Sigma–Aldrich (CA, USA). L. hilgardii
was preserved in our laboratory and isolated from the fermented system of the Chinese
traditional liquor Baijiu.

2.2. Growth Conditions

The GYP complex medium was composed of the nitrogen source (1% (w/v) yeast
extract and 0.5% (w/v) tryptone), carbon source (1% (w/v) glucose), buffer salt (0.2%
(w/v) sodium acetate anhydrous), and mineral salt (0.02% (w/v) MgSO4, 0.01% (w/v)
MnSO4·H2O, 0.01% (w/v) FeSO4·7H2O and 0.01% (w/v) NaCl). Glucose and other com-
ponents were separately sterilized and mixed after sterilization to reduce the Maillard
reactions. The fermentation medium contained monosodium glutamate in GYP complex
medium. The silkworm pupae were used as a nitrogen source by replacing the nitrogen
source in GYP complex medium.

A single colony of L. hilgardii was selected from the GYP plate. Then, the colony was
inoculated in GYP liquid medium at 37 ◦C and cultured for 15 h. Finally, this culture
solution was used as a seed and inoculated into fresh fermentation medium at a dosage of
10%. The fermentation culture was incubated for 72 h at 37 ◦C and 200 rpm.

2.3. Fed-Batch Fermentation

The fed-batch fermentation of GABA production by L. hilgardii was performed using
the best alternative medium with 5% (w/v) glucose as the carbon source and 5% (w/v)
monosodium glutamate. The cultured seeds were inoculated into a 6 L fermenter at a rate
of 10% (v/v). The fermentation conditions were 37 ◦C and 150 rpm without injecting gas
for 72 h. Monosodium glutamate was supplemented at 60 mL into the fermenter every
hour from 24 h to 54 h by feeding with a solution of monosodium glutamate (300 g/L) for
batch fermentation. Glucose (60 mL) was added by feeding with a solution of glucose (20 g/L)
every hour from 24 h to 54 h. Each experiment was biologically repeated three times. The
final result is expressed as the mean and standard deviation (±SD) of three repetitions.

2.4. Detection of Cell Growth, pH, and GABA Content

The cell growth of L. hilgardii was characterized by the optical density at 600 nm using
a multimode reader (Spectra Mas i3 R-3, BUCHI).
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The fermentation solution was centrifuged to remove the cells. The pH of the super-
natant was detected by a pH meter (METTLER TOLEDO).

The GABA detection method used high-performance liquid chromatography (HPLC)
after derivatization by o-phthaldialdehyde [38]. The supernatant was cleared by an 0.22 µm
ultrafiltration membrane and then derivatized. The derivatization procedure is shown in
Table 1. Ten microliters of the sample was injected after derivatization. Mobile phase A
was 4.52 g/L anhydrous sodium acetate at pH 7.2. Mobile phase B was 22.6 g/L anhydrous
sodium acetate at pH 7.2, and then 40% acetonitrile and 40% methanol were added. The
chromatography column was performed on a C18 column (Agilent, Santa Clara, CA, USA).
The analysis temperature was 40 ◦C, and the analysis time was 30 min. The standard curve
of the GABA concentration and peak area was constructed by the GABA standard. The
GABA concentration was obtained by calculating the peak area of the sample.

Table 1. Precolumn derivatization procedure.

Procedure Operation

1 Five microliters of 0.4 mol/L boric acid buffer (pH 10.2) was drawn.
2 One microliter of the fermentation supernatant was taken.
3 The six microliters was thoroughly mixed in air.
4 One microliter of o-phthaldialdehyde was added to the mixture.
5 The sample was thoroughly mixed 15 times in air.
6 Thirty-two microliters of ultrapure water was added to the mixture.
7 The sample was thoroughly mixed five times in air.

2.5. Real-Time Quantitative PCR

The relative gene expression levels (gadR, gadC and gadB) were detected by reverse
transcription real-time quantitative PCR.

2.5.1. Extraction of Whole Cell RNA

L. hilgardii cells were separately grown in GYP complex medium with yeast ex-
tract/tryptone and yeast extract/silkworm pupae used as nitrogen sources. Cells were
cultured for different times, centrifuged at 8000 rpm and 4 ◦C for 5 min, and then the cells
were obtained and immediately stored in liquid nitrogen. The frozen cells were ground
with liquid nitrogen, and 1 mL TRIZOL (Takara, Dalian, China) was added and mixed for
15 s. Two hundred microliters of trichloromethane was added, violently shaken for 15 s,
and then placed on ice for 10 min. The colorless liquid from the upper layer was carefully
removed after centrifugation at 12,000 rpm and 4 ◦C for 15 min. Two precooled isopropyl
alcohol samples were added to the upper liquid, mixed five times, and precipitated at
−20 ◦C for 30 min. The supernatant was removed after centrifugation at 12,000 rpm and
4 ◦C for 15 min. One microliter of 75% ethanol was added and gently mixed five times.
Finally, the supernatant was removed after centrifugation at 12,000 rpm and 4 ◦C for 5 min
and then dried at room temperature. The precipitate was the cell’s total RNA.

2.5.2. RNA Reverse Transcription and Real-Time Quantitative PCR

One microgram of RNA was taken, and the DNA was removed and converted to
cDNA using the PrimeScript TM RT Reagent Kit with the gDNA Eraser (Takara, Dalian,
China). cDNA samples were taken and diluted to the appropriate concentration. The
real-time PCR system consisted of 2.5 µL cDNA, 0.5 µL primer (Table 2), 5 µL SYBR-Green-I
(Takara, Dalian, China) dye, and 1.5 µL ultra-pure water. Real-time quantitative PCR
analysis was performed with Applied Biosystem StepOne Plus (Thermo Fisher, Waltham,
MA, USA). The PCR conditions were predenaturation at 95 ◦C for 1 min, denaturation at
95 ◦C for 10 s, annealing at 50 ◦C for 30 s, and extension at 72 ◦C for 30 s for 40 cycles. The
phases of the dissolution curve condition were, firstly, 95 ◦C for 15 s, then 72 ◦C for 2 min,
and then an increase to 95 ◦C for 15 s with an increasing gradient of 0.5 ◦C. 16S rDNA was
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the internal reference gene. The relative expression levels of gadR, gadC, and gadB were
analyzed by the 2−∆∆CT method.

Table 2. Primers used in this study.

Primers Sequence (5′-3′)

qF-gadR ATGAGTCGAGTGCTTCCAGTC
qR-gadR TTCCTCCCCGAAACCAACTC
qF-gadC CTTGCACCTTCAGCACAACG
qR-gadC TCCTTGGAAAGCTCCTGTGC
qF-gadB AAGCATGGTTGGCAAGTACC
qR-gadB TTTGTGGTGCTGGGTGTTCT
qF-16S AACCAGAAAGCCACGGCTAA
qR-16S AAGTCTCCCGGTTTCCGATG

2.6. Statistical Analysis

Each experiment was carried out with three biological replicates. Statistical analysis of
the samples was performed at intervals of 12 h. At the same time, an analysis of variance
(ANOVA) was conducted with multiple culture conditions as the main factor. This analysis
was performed to determine whether the silkworm pupae replaced the nitrogen source, and
the concentrations of silkworm pupae, glucose, and monosodium glutamate had significant
effects on the cell growth, fermentation pH, and GABA production in L. hilgardii at each
time point. The significant differences in gene (gadR, gadC and gadB) expression levels were
analyzed by an independent sample T test at the same time. The control group used yeast
extract and tryptone as nitrogen sources. The data were analyzed using SPSS software,
version 26. ANOVA and T test analyses were conducted with a confidence level of 95%.
p < 0.05 was considered a significant difference. Figures were exported from GraphPad
Prism 9, and data are expressed as the mean and standard deviation of three biological
repetitions. Error bars represent the standard deviation of the mean.

3. Results and Discussion
3.1. Effect of Silkworm Pupae on Cell Growth and GABA Production

Lactic acid bacteria are nutrient-starved microorganisms, and the nutrients needed
for cell growth are mainly absorbed from the complex medium. These nutrients include
various carbohydrates, peptides, amino acids, vitamins, and mineral salts. The various
components must be balanced to achieve the best cell growth in the complex medium [39].
However, the nitrogen sources in this complex medium are generally yeast extract and
peptone, and the production cost of lactic acid bacteria and its related products is high
because of its nitrogen source cost.

To investigate whether silkworm pupae meal can be used as a nitrogen source to
culture lactic acid bacteria and produce GABA, the nitrogen sources in a complex (GYP)
medium were replaced by silkworm pupae meal. When silkworm pupae meal replaced
peptone, the cell growth of the GABA-producing strain L. hilgardii GZ2 was significantly
higher than that in the GYP complex medium (Figure 1a). In particular, the difference be-
tween these two samples was extremely significant at 72 h (p = 0.000002 < 0.001, F = 607.439,
df = 16). However, cell growth was lower than that in the GYP complex medium when
silkworm and tryptone were used as nitrogen sources, especially when silkworm pupae
were used to replace all nitrogen sources (Figure 1a). The pH of the fermentation su-
pernatant showed a similar pattern to the cell growth (Figure 1b). When the silkworm
pupae replaced tryptone, the pH was higher than that when the silkworm pupae replaced
yeast extract or all nitrogen sources (Figure 1b). Moreover, the yield of GABA was also
the highest when silkworm pupae meal replaced tryptone in the GYP complex medium
(Figure 1c). The maximum GABA concentration was 14.48 ± 0.347 g/L (Figure 1c). The
use of silkworm pupae meal as a nitrogen source could inhibit cell growth and GABA
production in L. hilgardii GZ2. These results show that yeast extract is more important
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than tryptone for L. hilgardii cell growth and GABA production, similar to L. plantarum [22].
Therefore, cell growth and GABA production can be improved by using silkworm pupae
to replace tryptone in L. hilgardii GZ2.
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In L. brevis, there is a positive regulatory factor GadR that regulates the transcription
of gadC (encoding glutamate/GABA antiporter) and gadB (encoding glutamate decar-
boxylase) [26]. We studied the related expression levels of gadR (encoding a potential
transcriptional regulator upstream of gadCB), gadC, and gadB in L. hilgardii GZ2 to explore
how silkworm pupa promote GABA synthesis. As shown in Figure 2, regardless of whether
yeast extract/tryptone or yeast extract/silkworm pupae meal was used as the nitrogen
source, the expression levels of gadR, gadC, and gadB increased gradually with the extension
of the fermentation time (Figure 2). In particular, the increases in gadC and gadB were
more obvious (Figure 2), indicating that GadR may be a potential regulator in L. hilgardii
GZ2. The relative expression levels of gadR, gadC, and gadB were significantly higher
when yeast extract/silkworm pupae meal was used as the nitrogen source than when
yeast extract/tryptone was used as the nitrogen source (Figure 2). These results indicate
that silkworm pupae meal could improve the synthesis ability of GABA by promoting the
gene transcription levels of gadR, gadC, and gadB in L. hilgardii GZ2. However, how GadR
regulates the expression of glutamate decarboxylase-related genes in L. hilgardii remains to
be further explored.

3.2. Effects of the Concentration of Silkworm on Cell Growth and GABA Production

To study the effects of the concentration of silkworm pupae meal on cell growth
and GABA production, tryptone in GYP complex medium was replaced by silkworm
pupae meal in concentrations of 1, 5, 10, 15, and 20 g/L. The OD600 was improved with
the increase in silkworm pupae meal (Figure 3a). Cell growth was inhibited by 20 g/L
silkworm pupae meal after 36 h (Figure 3a). High concentrations of silkworm pupae meal
were detrimental to the cell viability. The highest cell density (OD600) was 3.5 ± 0.109
when 15 g/L silkworm pupae meal was used (Figure 3a). The trend of the pH was
basically consistent at the different concentrations of silkworm pupae meal replacing
tryptone (Figure 3b). The pH ultimately increased to approximately 8.6, indicating that
hydrogen ions dissociated from organic acids were utilized in the fermentation broth. When
the silkworm pupae meal concentration was below 10 g/L, the concentration of GABA
increased with an increasing silkworm pupae meal concentration (Figure 3c). However, the
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specific components of silkworm pupae that enhance GABA synthesis need to be further
analyzed. Excessive silkworm pupae meal could inhibit GABA synthesis in L. hilgardii. The
optimal concentration for adding silkworm pupae powder was 1% (w/v), while the GABA
yield reached 18.8 ± 0.911 g/L after 72 h.
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3.3. Glucose Control pH Enhances GABA Production

Glucose is a common carbon source for culturing lactic acid bacteria, which can main-
tain cell viability for a long time [40]. We investigated whether GABA production could
be further improved by controlling the availability of a carbon source (glucose). Different
concentrations of glucose were used as the carbon source in a fermentation medium with
50 g/L monosodium glutamate and 10 g/L silkworm pupae meal replacing tryptone. By
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increasing the concentration of glucose, cell growth increased (Figure 4a). The cell density
(OD600) reached 4.9 ± 0.311, a 28.6% increase compared with the use of 10 g/L glucose
as a carbon source (Figures 3a and 4a). However, the pH of the fermented supernatant
significantly changed (Figure 4b). For example, the p value of the significant difference
was 1.37 × 10−10 when glucose at concentrations of between 10 g/L and 20 g/L was used
as a carbon source at 72 h (F = 128, df = 16). When glucose at concentrations of 10 g/L
and 20 g/L was used as a carbon source, the pH was continuously elevated (Figure 4b).
The pH reached 8.3, indicating that there was no excessive hydrogen ion concentration
after 72 h in the fermentation system (Figure 4b). When glucose (30 g/L) was used as the
carbon source, the final pH remained at 6.4 ± 0.056. The pH was maintained at 5.4 ± 0.057
with glucose (40 g/L) as the carbon source, and the pH was maintained at 5.0 ± 0.007 with
50 g/L glucose as the carbon source. After 72 h, the titer of GABA reached 31.2 ± 0.976 g/L,
which was 40.0% higher than that of 10 g/L glucose (Figures 3c and 4c). Lactic acid bacteria
use glucose to produce organic acids, especially lactic acid [41]. Glutamate decarboxyla-
tion generates the same molar amount of GABA, which requires the same molar mass of
hydrogen ions [42]. The optimal pH for maintaining the GAD activity of most lactic acid
bacteria is between 4.0 and 5.0 [9,10]. Therefore, the pH of the fermentation broth could be
controlled to increase GABA production by controlling the glucose concentration.
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Figure 4. Effects of the glucose concentration on (a) cell growth, (b) pH, and (c) GABA production.
The strain was grown in GYP medium containing 50 g/L monosodium glutamate and 10 g/L silk-
worm pupae meal with different concentrations of glucose used as carbon sources. Each experiment
was biologically repeated three times. The final results are expressed as the mean and standard
deviation of the three repetitions. Error bars represent the standard deviation of the mean. Values
followed by different small letters at the same time indicate significant differences at p < 0.05.

3.4. Effects of Glucose and Monosodium Glutamate Concentrations on Cell Growth and
GABA Production

Monosodium glutamate has been shown to be the most widely used and economical
substrate for efficient GABA synthesis in lactic acid bacteria [22,42]. However, the hydrogen
ions in the cell are reduced after glutamate decarboxylation, and the intracellular pH is
close to neutral, which affects the activity of glutamate decarboxylase [42]. To find a simple
and effective way to control intracellular pH, we also evaluated the optimal concentrations
of glucose and monosodium glutamate to control the pH and enhance GABA production.

As the concentrations of glucose and monosodium glutamate increased by 10~50 g/L,
both cell growth and GABA production increased (Figure 5a,c). After 72 h, the cell density
(OD600) increased from 3.3 ± 0.106 to 4.9 ± 0.311, and the GABA titer increased from
6.7 ± 0.976 g/L to 31.2 ± 0. 976 g/L (Figure 5a,c). However, the final pH was maintained
at approximately 5.0 after 36 h. Appropriate concentrations of monosodium glutamate and
glucose could control the pH. Monosodium glutamate and glucose concentrations ranged
from 10 to 50 g/L, and the pH was maintained at between 5.0 ± 0.028 and 5.2 ± 0.021
after 36 h of fermentation (Figure 5b). Thus, to obtain the optical cell density and GABA
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production, glucose and monosodium glutamate were both used at concentrations of
50 g/L for efficient GABA production by L. hilgardii GZ2.

Fermentation 2023, 9, x FOR PEER REVIEW 9 of 13 
 

 

3.4. Effects of Glucose and Monosodium Glutamate Concentrations on Cell Growth and GABA 
Production 

Monosodium glutamate has been shown to be the most widely used and economical 
substrate for efficient GABA synthesis in lactic acid bacteria [22,42]. However, the hydro-
gen ions in the cell are reduced after glutamate decarboxylation, and the intracellular pH 
is close to neutral, which affects the activity of glutamate decarboxylase [42]. To find a 
simple and effective way to control intracellular pH, we also evaluated the optimal con-
centrations of glucose and monosodium glutamate to control the pH and enhance GABA 
production. 

As the concentrations of glucose and monosodium glutamate increased by 10~50 g/L, 
both cell growth and GABA production increased (Figure 5a,c). After 72 h, the cell density 
(OD600) increased from 3.3 ± 0.106 to 4.9 ± 0.311, and the GABA titer increased from 6.7 ± 
0.976 g/L to 31.2 ± 0. 976 g/L (Figure 5a,c). However, the final pH was maintained at ap-
proximately 5.0 after 36 h. Appropriate concentrations of monosodium glutamate and 
glucose could control the pH. Monosodium glutamate and glucose concentrations ranged 
from 10 to 50 g/L, and the pH was maintained at between 5.0 ± 0.028 and 5.2 ± 0.021 after 
36 h of fermentation (Figure 5b). Thus, to obtain the optical cell density and GABA pro-
duction, glucose and monosodium glutamate were both used at concentrations of 50 g/L 
for efficient GABA production by L. hilgardii GZ2. 

 
Figure 5. Effects of glucose and monosodium glutamate concentrations on (a) cell growth, (b) pH, 
and (c) GABA production. The strain was grown in GYP medium containing 10~50 g/L monoso-
dium glutamate and 10~50 g/L glucose as carbon sources with 10 g/L silkworm pupae meal. Each 
experiment was biologically repeated three times. The final results are expressed as the mean and 
standard deviation of the three repetitions. Error bars represent the standard deviation of the mean. 
Values followed by different small letters at the same time indicate significant differences at p < 0.05. 

3.5. Fed-Batch GABA Production via Silkworm Pupae Meal Replaces Tryptone Coupled with 
Glucose to the Control pH 

L. hilgardii GZ2 was fermented for 72 h by fed-batch fermentation for GABA produc-
tion (Figure 6). GABA production occurs simultaneously with cell growth. After 24 h, by 
feeding glucose and monosodium glutamate, the pH decreased from 6.2 ± 0.028 to 5.0 ± 
0.007 during the growth period, creating a suitable environment for GAD activity (Figure 
6). The OD600 of L. hilgardii GZ2 rapidly increased with a pH controlled at 5.0 (Figure 6). 
Accordingly, the GABA concentration increased within 36 h and then moderately in-
creased after 42 h (Figure 6). Finally, the GABA titer was 229.3 ± 6.846 g/L, and the produc-
tivity reached 3.2 g/L/h after 72 h of fermentation (Figure 6), which was 7.3 times higher 
than that of nonfed-batch fermentation. 

The nitrogen source in complex (GYP) medium is expensive. We successfully used 
silkworm pupae meal (approximately $0.5 per kg) instead of tryptone (over $140 per kg) 
to reduce GABA production costs. Furthermore, since silkworm pupae are used as a food 
source enriched in protein (60%), fatty acids (30%), chitosan (3–4%), and trace elements, 

Figure 5. Effects of glucose and monosodium glutamate concentrations on (a) cell growth, (b) pH,
and (c) GABA production. The strain was grown in GYP medium containing 10~50 g/L monosodium
glutamate and 10~50 g/L glucose as carbon sources with 10 g/L silkworm pupae meal. Each
experiment was biologically repeated three times. The final results are expressed as the mean and
standard deviation of the three repetitions. Error bars represent the standard deviation of the mean.
Values followed by different small letters at the same time indicate significant differences at p < 0.05.

3.5. Fed-Batch GABA Production via Silkworm Pupae Meal Replaces Tryptone Coupled with
Glucose to the Control pH

L. hilgardii GZ2 was fermented for 72 h by fed-batch fermentation for GABA production
(Figure 6). GABA production occurs simultaneously with cell growth. After 24 h, by feeding
glucose and monosodium glutamate, the pH decreased from 6.2 ± 0.028 to 5.0 ± 0.007
during the growth period, creating a suitable environment for GAD activity (Figure 6).
The OD600 of L. hilgardii GZ2 rapidly increased with a pH controlled at 5.0 (Figure 6).
Accordingly, the GABA concentration increased within 36 h and then moderately increased
after 42 h (Figure 6). Finally, the GABA titer was 229.3 ± 6.846 g/L, and the productivity
reached 3.2 g/L/h after 72 h of fermentation (Figure 6), which was 7.3 times higher than
that of nonfed-batch fermentation.

The nitrogen source in complex (GYP) medium is expensive. We successfully used
silkworm pupae meal (approximately $0.5 per kg) instead of tryptone (over $140 per kg)
to reduce GABA production costs. Furthermore, since silkworm pupae are used as a food
source enriched in protein (60%), fatty acids (30%), chitosan (3–4%), and trace elements,
they can be used as raw materials for food and medicine [43]. However, it is not clear
which component enhances GABA synthesis and the regulatory mechanism of silkworm
pupae in L. hilgardii. Meanwhile, the production of GABA requires a larger amount of H+,
and the optimal reaction conditions for glutamate decarboxylase are acidic [9]. When H+

is restricted, glutamate decarboxylase is not sufficient to guarantee the high conversion
rate of GABA. Researchers used glutamic acid ($2.76 per kg) to adjust the fermentation
pH in L. brevis [44]. Although the GABA yield was 321.9 g/L in the 3 L fermenter, there
was little increase compared to flask fermentation (approximately 320 g/L). The cost of
glutamic acid was high, which is not conducive to industrial implementation. In this
study, we attempted pH control combined with an inexpensive glucose ($0.08 per kg)
and monosodium glutamate ($1.37 per kg) fed-batch fermentation strategy. Indeed, these
fermentation control strategies greatly elevated the GABA conversion rate in the L. hilgardii
GZ2 strain. However, GABA production was also enhanced by adding pyridoxal-5′-
phosphate, a factor of glutamate decarboxylase, to maintain enzyme activity and two-stage
pH/temperature control [21,45,46]. Our study indicates that the use of silkworm pupae
meal instead of tryptone combined with feeding glucose and monosodium glutamate is
sufficient to activate high titers and high productivity for GABA industrial production.
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Figure 6. Fermentation profile for GABA production using L. hilgardii GZ2 by fed-batch fermentation.
Fermentation was performed at 37 ◦Cand 150 rpm for 72 h in the optimized GYP medium consisting
of 10 g/L silkworm pupae meal to replace tryptone, 50 g/L glucose, and 50 g/L (w/v) monosodium
glutamate. Monosodium glutamate was continuously supplemented into the fermenter from 24 h to
54 h at 18 g/h. A solution of glucose (20 g/L) was continuously added at a rate of 1.2 g/h between
24 h and 54 h. Each experiment was biologically repeated three times. The final results are expressed
as the mean and standard deviation of three repetitions. Error bars represent the standard deviation
of the mean.

4. Conclusions

L. hilgardii is a common probiotic used in silage and fermented food. It is important
to use L. hilgardii to obtain GABA production. To reduce the cost of GABA production,
silkworm pupae were used to replace the nitrogen source in the complex medium. By using
10 g/L silkworm pupae meal instead of tryptone in GYP medium combined with feeding
glucose and monosodium glutamate to maintain the pH, the highest yield obtained was
229.3 g/L. These results indicate the possibility of using low-cost and safe fermentation
strategies to efficiently produce GABA by L. hilgadii, providing an alternative option for the
development of GABA industrial expansion.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/fermentation9070691/s1. Figure S1: Picture of dried silk-
worm pupae meal.
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