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Abstract: Root rot diseases remain a major global threat to the productivity of agricultural crops.
They are usually caused by more than one type of pathogen and are thus often referred to as a
root rot complex. Fungal and oomycete species are the predominant participants in the complex,
while bacteria and viruses are also known to cause root rot. Incorporating genetic resistance in
cultivated crops is considered the most efficient and sustainable solution to counter root rot, however,
resistance is often quantitative in nature. Several genetics studies in various crops have identified the
quantitative trait loci associated with resistance. With access to whole genome sequences, the identity
of the genes within the reported loci is becoming available. Several of the identified genes have
been implicated in pathogen responses. However, it is becoming apparent that at the molecular
level, each pathogen engages a unique set of proteins to either infest the host successfully or be
defeated or contained in attempting so. In this review, a comprehensive summary of the genes and
the potential mechanisms underlying resistance or susceptibility against the most investigated root
rots of important agricultural crops is presented.

Keywords: fungi; oomycetes; resistance; susceptibility; molecular mechanisms; quantitative trait
loci; mapping

1. Introduction

Root rots have a significant impact on global crop production [1]. Depending on the
causal agent, host susceptibility, and the environmental conditions, crop losses can range
from slightly above the economic threshold to losing complete fields [2–4]. Interestingly,
legumes seem to be the most common host for these pathogens [3,5,6]. However, monocots
and dicots, cereals and legumes, fruit trees, and tubers also fall prey to root rots.

Fungi and oomycetes most commonly cause root rot disease. However, bacteria and
even viruses can be the causal agents [4,7–12]. Due to more than one pathogen’s involve-
ment, the disease is commonly referred to as a root rot complex. Some classic examples
include the black root rot of strawberry attributed to Pythium (oomycete), Fusarium (fun-
gus), and Rhizoctonia (fungus) pathogens [13–15], and the pea root rot complex caused by
A. euteiches (oomycete), F. oxysporum, F. solani, F. avenaceum, Mycosphaerella pinodes (fungus),
Pythium spp., R. solani, and Phytophthora spp. (oomycete) [16–19].

Unless the root rot complex affects seed germination, the root-specific symptoms go
unnoticed or are not visible. If symptoms appear aboveground, the plants usually fail to
recover. Some of the symptoms associated with root rots include browning and softening
of root tips, root lesions that vary in size and color (reddish, brown, and black), yellowing
and wilting of leaves, stunted plant growth, reduced yield, and loss of crop [1,3,4,20–22].
Selected root rot pathogens can also cause post-harvest rots in beets, potato, and sweet
potato. The proliferation of root rot pathogens is favored by moderate to high soil mois-
ture, poor drainage conditions, soil compaction, the optimal temperature for pathogen
growth, mono-cropping, and other factors that contribute to plant stress [1,23–25]. The
unpredictable climatic conditions portend an increase in mean temperatures and other
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natural calamities such as droughts, floods, and storms. These conditions are expected to
inflict constant stress on crops, which is expected to favor the increased activity of root rot
pathogens [26–28].

Cultural, physical, biological, and chemical control methods have been used as man-
agement strategies to control root rot disease. However, to date, these strategies have
only been partially successful. Most of the root rot pathogens are distributed globally, and
some species can survive up to 10 years in the soil [29]. Several root rot pathogens are
host-specific, however, some have a wide range of hosts. Therefore, crop rotation may not
be fully effective as a control method [3,29]. Chemical control is often inefficient due to
these pathogens’ soilborne nature and is not the most sustainable option as it also impacts
beneficial microbes. Furthermore, there is high likelihood of cross contamination between
contiguous plots and when using shared field equipment [30,31].

There is a critical need to understand the genetic basis of root rots and incorporate
the information in breeding strategies to develop root rot-resistant crops. The current
understanding of plant molecular defense responses is derived primarily from studies
using foliar pathosystems [32]. Specific and unique genetic and molecular aspects of the
host-pathogen interactions in the roots have been unraveled in the past few decades. This
review summarizes the different groups of root rot species that affect crops, instances of
host resistance and susceptibility, and the genes and proposed molecular mechanisms
underlying host-pathogen interactions.

2. Common Causal Agents of Root Rots
2.1. Fungi

Fungi represent one of the most predominant root rot causing agents. The most studied
and problematic fungal root rots are the Rhizoctonia root rot, Fusarium root rot, Phoma
root rot, and Black root rot. They account for incalculable yield losses across agricultural
and horticultural crops. These fungal pathogens also impact the wood industry.

Rhizoctonia root rot is caused by the soilborne fungus Rhizoctonia solani (Table 1).
R. solani is a species complex because of the many related but genetically distant isolates.
Isolates are classified into 12 anastomosis groups (AG) based on their hyphal incompatibil-
ity and their host specificity (Table 1) [33]. For instance, AG2-1 and AG4 are associated with
stem and root rot diseases in dicots such as Brassicaceae species, while AG8 causes root rot
in monocots [22,34]. In general, the first four AGs (AG-1, -2, -3, and -4) cause important
diseases in plants worldwide, whereas the remaining AGs (AG-5, -6, -7, -8, -9, -10, -11, -12)
are less destructive and generally have a restricted geographic distribution (Table 1) [21].

Symptoms of R. solani vary among species, but it primarily affects underground
tissues (seeds, hypocotyls, and roots); however, it can also infect above-ground plant parts
such as pods, fruits, leaves, and stems. Pre- and post-emergence damping off is the most
common symptom of R. solani. Surviving seedlings can often develop reddish-brown
lesions (cankers) on stems and roots. This pathogen can occasionally infect fruit and leaf
tissue near or on the soil surface [21,22,35]. R. solani is responsible for high yield losses in
many crops, and some of the noteworthy examples are highlighted in Table 1.
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Table 1. Crop species affected by Rhizoctonia solani root rot.

Crops spp. Disease Name AG Resistance References

Barley (Hordeum vulgare) Root rot

5 No reports
[36–39]

8 Moderate and high levels of resistance. High
resistant transgenic lines

Bean (Phaseolus vulgaris) Root rot

2 Moderate and high levels of resistance

[40–43]4 Moderate and high levels of resistance

5 Moderate levels of resistance

Cabbage (Brassica oleracea
var. capitata L.) Wirestem

2 Moderate levels of resistance
[44–46]

4 Moderate levels of resistance

Carrot (Daucus carota) Crown and brace root
rot

1 Moderate levels of resistance

[47–49]2 Moderate levels of resistance

4 Moderate levels of resistance. Moderately
resistant transgenic line

Faba bean (Vicia faba) Root rot and stem
canker

2 Moderate levels of resistance

[50–52]4 Moderate and high levels of resistance

5 Moderate levels of resistance

Lettuce (Lactuca sativa) Bottom rot 1 No reports [53]

Maize (Zea mays) Banded leaf and sheath
blight disease

1 Moderate and high levels of resistance
[52,54–57]

2 Moderate levels of resistance

Oat (Avena sativa) Root rot, Bare patch 8 Moderate levels of resistance [38]

Oilseed rape (Brassica
napus)

Root rot and
damping-off

2 Moderate levels of resistance
[58–60]

4 No reports

Onion (Allium cepa) Stunting
4 No reports

[61,62]
8 Moderate levels of resistance

Pea (Pisum sativum) Root rot 4 Moderate levels of resistance [63,64]

Potato (Solanum tuberosum) Black scurf and Stem
canker

2 Moderate levels of resistance
[65–68]

3 Moderate and high levels of resistance

Rice (Oryza sativa) Sheath blight 1 Moderate levels of resistance. Moderate levels
of resistant transgenic lines. [69–72]

Rye (Secale cereale) Root rot, Bare patch 8 Moderate levels of resistance [38,73]

Soybean (Glycine max) Root rot

1 Moderate levels of resistance

[74–77]2 Moderate and high levels of resistance

4 Moderate and high levels of resistance

Sugar beet (Beta vulgaris) Root rot 2 Moderate levels of resistance [78–80]

Tomato (Solanum
lycopersicum)

Foot and Root rot 3 Moderate levels of resistance
[81–83]

Foot and Root rot 4 Moderate levels of resistance

Triticale (Triticale
hexaploide) Root rot, Bare patch 8 Moderate levels of resistance [38]

Wheat (Triticum aestivum) Root rot, Bare patch 8 Moderate levels of resistance [38,39,84,85]

The genus Fusarium constitutes a sizeable monophyletic group of several hundred
species that includes agriculturally important plant pathogens, endophytes, saprophytes,
and emerging pathogens of clinical importance [86]. The most important Fusarium species
causing root rot is F. solani (Table 2). Other Fusarium spp. that can cause root rot are
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F. avenaceum, F. graminearum, F. culmorum, F. verticillioides, and F. pseudograminearum (Table 2).
However, the latter five are mainly associated with head blight or ear mold in different
small-grain cereals [87].

F. solani (sexual morph Nectria haematococca) is a filamentous fungus of significant
agricultural importance. This species is classified as F. solani species complex (FSSC)
because it contains 60 phylogenetically distinct species [86,88]. Most of the studies on
FSSC have been carried out while investigating host-pathogen interactions. Therefore,
the group has been subdivided into formae speciales (f. sp.) based on host specificity [86].
Phytopathogenic FSSC species include some of the most economically significant plant
pathogens associated with root rots and vascular wilts in over 100 crops [89]. Some of the
most important F. solani that cause problems in agriculture are presented in Table 2.

FSSC causes foot or root rot of the infected host plant, and the degree of necrosis
correlates with the severity of the disease [86]. Symptoms on above-ground portions may
manifest as wilting, stunting, and chlorosis or lesions on the stem or leaves. However,
symptoms vary depending on the specific FSSC pathogen and plant host involved [86].

Other Fusarium species that cause root rots of minor economic importance are
F. chlamydosporum, which infects coleus and other ornamentals [90,91]. F. oxysporum can
cause root rot in the Cactaceae family members [92], as well as stem and root rot in mel-
ons [93].
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Table 2. A summary of the main crop species affected by Fusarium root rot.

Fungi spp. Crop spp. Disease Name Resistance Reported in the
Literature Host Range Distribution References

Fusarium avenaceum

Alfalfa (Medicago sativa) Root and crown rot Moderate levels of resistance

Wide range with over 200 species,
including pulses, cereals, canola (Brassica

napus), flax (Linum spp.), and alfalfa
(Medicago truncatula)

Worldwide

[94]

Barley (Hordeum vulgare) Head blight Moderate levels of resistance [95,96]

Clover (Trifolium
subterraneum) Root rot Moderate levels of resistance [97]

Pea (Pisum sativum) Root rot Moderate levels of resistance [98–100]

Wheat (Triticum aestivum) Head blight Moderate levels of resistance [101–103]

F. culmorum

Barley (Hordeum vulgare) Head blight Moderate levels of resistance Wide range of host plants, including rye
(Secale cereale), corn (Zea mays), sorghum

(Sorghum spp.), various grasses, sugar beet
(Beta vulgaris), bean (Phaseolus spp.), pea

(Pisum sativum), asparagus (Asparagus
spp.), hop (Humulus lupulus), strawberry

(Fragaria × ananassa), and potato
(Solanum tuberosum)

Worldwide

[104,105]

Oat (Avena sativa) Head blight Moderate levels of resistance [106]

Wheat (Triticum aestivum) Root rot and head
blight

Moderate levels of resistance [101,102,107–109]

F. graminearum

Barley (Hordeum vulgare) Head blight Moderate levels of resistance Wide range, especially many species of
cereals and grasses such as oat (Avena

sativa), rice (Oryza), cucumber (Cucumis
sativus), soy (Glycine max), tomato

(Lycopersicon spp.), alfalfa (Medicago
truncatula), sorghum (Sorghum spp.)

Worldwide

[104,110–112]

Maize (Zea mays) Ear mold and root rot Moderate levels of resistance [113–117]

Soybean (Glycine max) Pod blight and root
rot High levels of resistance [118–120]

Wheat (Triticum aestivum) Head blight Moderate levels of resistance [104,121–125]

F. pseudograminearum
Barley (Hordeum vulgare) Crown rot Moderate levels of resistance

All major winter cereals barley (Hordeum
vulgare), oats (Avena sativa) and grass

genera, such as Phalaris, Agropyron
and Bromus

All areas
cultivated with

wheat and
barley

[126,127]

Wheat (Triticum aestivum) Crown rot Moderate levels of resistance [128,129]

F. solani f sp. batatas Sweetpotato (Ipomoea
batatas) Storage root Moderate levels of resistance Not well known China [130]
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Table 2. Cont.

Fungi spp. Crop spp. Disease Name Resistance Reported in the
Literature Host Range Distribution References

F. solani f. sp. glycines Soybean (Glycine max) Sudden death
syndrome Moderate levels of resistance

Broad range including bean
(Phaseolus spp.),

Soybean (Glycine max), alfalfa (Medicago
truncatula), clover (Trifolium spp.), pea
(Pisum sativum), corn (Zea mays), wheat
(Triticum spp.), ryegrass (Lolium spp.),

pigweed (Amaranthus spp.), and
lambsquarters (Chenopodium album)

All areas
cultivated with

soybean in
America, Asia,

and Africa

[131–133]

F. solani f. sp. phaseoli Bean (Phaseolus vulgaris) Root rot Moderate and high levels of
resistance Pea (Pisum sativum)

Areas
cultivated with

bean in all
continents

except
Australia

[134–136]

F. solani f. sp. pisi Pea (Pisum sativum) Root rot Moderate levels of resistance

Chickpea (Cicer arietinum), clover, soybean,
as well as several other non-legume hosts,

such as ryegrass (Lolium spp.), potato
(Solanum tuberosum) ginseng (Panax ginseng)

and mulberry tree (Morus alba)

Worldwide [137,138]

F. verticillioides Maize (Zea mays) Root and ear rot Moderate levels of resistance

Wide range of hosts such as rice (Oryza
sativa), sorghum (Sorghum spp.), soybean
(Glycine max), alfalfa (Medicago truncatula),
bean (Phaseolus spp.), wheat (Triticum spp.),

ryegrass (Lolium spp.)

Worldwide [139]
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Some species belonging to the genus Phoma are known to cause root rots [140]
(Table 3). Although their economic impact is not as significant as the root rots caused by
the fungi species mentioned above, considerable yield losses have been reported in alfalfa,
sugar beet, corn, and onion (Table 3). Thielaviopsis basicola is another global soil-borne
fungus that causes black root rot disease. This disease is characterized by necrotic lesions
on various parts of the host roots [141–143]. Most reports highlighted the effect of this
root rot in cotton (Table 3). Crops such as legumes, tobacco, carrot, citrus, groundnut, and
chicory have also been reported to be impacted.

Some other fungal root rot pathogens affect crops with less frequency. These pathogens
include Aspergillus spp., Alternaria spp., Curvularia spp., Rhizopus spp., and Penicillium
spp., in fruit trees [144]; Rigidoporus lignosus and Phellinus noxius in rubber trees [145];
and Macrophomina phaseolina in chickpeas [146]. Armillaria root rot is a threat in apples,
walnuts, kiwi, and grapes [147,148]. The ascomycete Rosellinia necatrix is known to cause
white root rot in trees such as apple in the Kashmir valley [149] and avocado in the
Mediterranean [150].

Table 3. Main crop species affected by fungus Phoma and Thielaviopsis basicola root rot.

Fungi spp. Crop spp. Disease
Name

Resistance
Reported in

the Literature
Host Range Distribution References

Phoma betae
Sugar beet

(Beta
vulgaris)

Crown and
root rot

Moderate levels
of resistance

Different varieties of Beta
vulgaris such as table beet,

sugar beet, Swiss chard

World-wide
distribution,
found in all

beet-growing
areas.

[151]

P. terrestris
(Setophoma
terrestris)

Corn (Zea
mays) Red root rot Moderate levels

of resistance
45 genera including cereals,

vegetables and grasses such as
soybean (Glycine max), pea
(Pisum sativum), sugarcane

(Saccharum spp.), oats (Avena
sativa), barley (Hordeum

vulgare), wheat (Triticum spp.),
cucumber (Cucumis sativus),
tomato (Lycopersicon spp.),
pepper (Capsicum annuum)

World-wide
distribution

[152]

Onion
(Allium cepa)

Pink root
rot

Moderate levels
of resistance [153,154]

P.
sclerotioides

Alfalfa
(Medicago

sativa)

Brown root
rot

Moderate levels
of resistance

Wheat (Triticum spp.), barley
(Hordeum vulgare), and oat

(Avena sativa).

All areas
cultivated with
alfalfa in North

America and
Australia

[155,156]

Thielaviopsis
basicola

Cotton
(Gossypium
herbaceum)

Black root
rot

Moderate levels
of resistance.

Moderate levels
of resistance in
transgenic lines

Wide range of hosts, plants
from at least 15 families
including horseradish

(Armoracia rusticana), carrot
(Daucus carota), strawberry

(Fragaria × ananassa), tomato
(Lycopersicon spp.), bean

(Phaseolus spp), pea
(Pisum sativum)

World-wide
distribution

[157–160]

Tobacco
(Nicotiana

spp.)

Black root
rot

Moderate levels
of resistance [161,162]

2.2. Oomycetes

Oomycetes resemble fungi in their growth habits and nutritional strategies. However,
they are evolutionarily distant from fungi and belong to the kingdom Stramenopiles [163].
Oomycetes are a large group of terrestrial and aquatic eukaryotic organisms. They are
dispersed via zoospores, generate thick-walled sexual oospores, possess cellulose in their
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cell walls, are vegetatively diploid, have heterokont flagellae (one tinsel and one whiplash),
and have tubular mitochondrial cristae [164].

The terrestrial oomycetes are mainly parasites of the vascular plants and include
several important pathogens such as Aphanomyces spp., Pythium spp., and Phytophthora
spp. that cause root rot (Table 4). These oomycetes appear to have extraordinary genetic
flexibility, enabling them to adapt rapidly and overcome chemical control measures and
genetic resistance in host plant [165–167].

Among Aphanomyces spp. that cause root rots, A. cochlioides and A. euteiches cause
significant agricultural concerns (Table 4). A. cochlioides causes damping off and chronic
root rot in sugar beet, spinach, cockscomb, among other species of Chenopodiaceae and
Amaranthaceae [168,169] (Table 4). Due to the extended prevalence of the disease in soil
and severity in the field, outbreaks of A. cochlioides root rot have become a severe problem
in many sugar beet growing areas [170]. A. cochlioides root rot, when severe, can lead to
death and drastically reduced recoverable sugar per ton [171]. Little is known about the
genetic basis of resistance to A. cochlioides root rot. Still, several sugar beet genotypes have
been released and also used in the development of molecular markers that have been found
associated with disease resistance genes [170,172,173] (Table 4).
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Table 4. Main oomycete species that cause root rot disease in crop species.

Oomycetes spp. Crop spp. Reported Symptoms Resistance Reported in
the Literature Host Range Distribution References

Aphanomyces cochlioides Sugar beet (Beta
vulgaris)

Root rot and damping off.
Infected hypocotyl and root

rapidly turn black. Undersized
plants with yellowed lower

leaves. Severely infected plants
die. Postharvest reduction in

sugar yield

High levels of resistance

Spinach (Spinacia oleracea), and
several wild species of Beta,
including B. maritima and

B. patellaris

Across all sugar beet
plantations [170–174]

Aphanomyces euteiches

Alfalfa (Medicago
sativa)

Damping off and root rot. Root
tissue becomes honey-brown or

blackish-brown. Chlorosis,
necrosis, and wilting of the
foliage. Severely infected

plants die.

High levels of resistance
Faba bean (Vicia faba), red clover
(Trifolium pratense), white clover

(Trifolium repens), Medicago
truncatula, lentil (Lens culinaris)

All areas cultivated
with alfalfa, bean,
and pea in Asia,
Europe, Oceania,
North America

[6,135,175–178]Bean (Phaseolus
vulgaris)

Levels of partial and
complete resistance

Pea (Pisum sativum) High levels of partial
resistance

Phytophthora
citrophthora Citrus spp.

Serious gummosis of citrus trees,
root rot, stem necrosis, canker,

fruit rot, twig blight, and
seedling blight.

Tolerant transgenic C.
sinensis. Partial levels of

resistance in citrus
rootstocks. High levels

of resistant citrus
rootstocks

88 genera including: kiwifruit
(Actinidia deliciosa), watermelon

(Citrullus lanatus)
strawberry (Fragaria ananassa),

walnut
(Juglans regia), apricot

(Prunus armeniaca), sweet cherry
(P. avium), almond

(P. dulcis), potato (Solanum
tuberosum), cocoa

(Theobroma cacao), blueberries
(Vaccinium)

Worldwide [179–184]

Phytophthora nicotianae

Citrus spp.
Symptoms vary per host.

Damping-off, crown rot, leaf
blight, fruit rot. Occasionally, it
attacks aerial parts of the plant

and can cause brown rot of fruit.

Tolerant transgenic C.
limonia. Partial levels of

resistance in citrus
rootstocks

255 genera in 90 families.
including tobacco, citrus, cotton,

and orchids
Worldwide [180,181,185–189]

Tomato (Solanum
lycopersicum)

Partial levels of
resistance
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Table 4. Cont.

Oomycetes spp. Crop spp. Reported Symptoms Resistance Reported in
the Literature Host Range Distribution References

Phytophthora cactorum

Apple (Malus
domestica) Damping off of seedlings, fruit

rot, leaf, stem and root rot, collar
and crown rot, stem canker.

Partial levels of
resistance 154 genera of vascular plants in

54 families
Worldwide [181,190–195]

Strawberry (Fragaria
× ananassa)

Partial levels of
resistance

Phytophthora cinnamomi Avocado (Persea
americana)

Root rot, heart rot, wilt. Primary
infection at the feeder roots,

resulting in a brownish black
and brittle appearance.

Partial levels of
resistance

266 genera in 90 families,
commonly hardwood trees. Worldwide [181,196]

Phytophthora fragariae

Rasberry (Rubus
spp.)

Red stele or red core root rot.
Symptoms also include wilting

of leaves, reduced flowering,
stunting, and bitter fruit

Partial and high levels of
resistance

-

All areas cultivated
with rasberry and
strawberry in Asia,

Australia, New
Zealand, Europe,
North America

[181,197–200]

Strawberry (Fragaria
× ananassa)

Partial levels of
resistance

Phytophthora sojae Soybean (Glycine
max)

Root and stem rot; pre- and
post-emergence damping-off,
seedling wilt, seedling blight.

Plant may turn reddish-orange
to orange-brown in color.

Partial levels of
resistance

Lupine (Lupinus spp.); also
reported in six other genera in

five families

All areas cultivated
with soybean in
Australia, North

America (Canada,
USA)., South

America (Chile), Asia
(Korea, China) and

New Zealand

[181,201,202]

Phytophthora capsici Pepper (Capsicum
annuum)

Fruit, stem, and root rot.,
seedling damping-off, and leaf

wilt. Leaf tissue becomes wilted,
light green or gray-green, and

later tan to white. Fruit rots are
olive green or light green

in color.

Partial levels of
resistance

51 genera in 28 families,
including tomatoes (Lycopersicon

esculentum), other Solanaceae
spp., Macadamia spp., cacao

(Theobroma cacao)

Worldwide [181,203–205]
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Table 4. Cont.

Oomycetes spp. Crop spp. Reported Symptoms Resistance Reported in
the Literature Host Range Distribution References

Phytophthora
medicaginis

Alfalfa (Medicago
sativa)

Root rot, damping-off of
seedlings. Reddish-brown or

black root lesions. Mature plants
exhibit chlorosis, desiccation of
foliage, and reduced growth but

may also collapse.

High levels of resistance

Sainfoin (Onobrychis viciifolia),
chickpea (Cicer arietinum),

cherry (Prunus mahaleb)

Cosmopolitan,
throughout the range

of the host
[181,206–210]Chickpea (Cicer

arietinum)
Partial levels of

resistance

Soybean (Glycine
max)

Partial levels of
resistance

Pythium ultimum

Bean (Phaseolus
vulgaris)

Disease can manifest as seed rot,
preemergence and

postemergence damping-off,
root rot, dark brown or reddish

roots, and sunken lesions on
lower hypocotyls. Plants are

stunted or chlorotic. Root tips of
diseased plants appear

as brown.

High levels of resistance

Cabbage (Brassica oleracea var.
capitata), carrot (Daucus carota),
melon (Cucumis melon), wheat

(Triticum aestivum)

Worldwide [211–215]

Cucumber (Cucumis
sativus) No records

Sorghum (Sorghum
bicolor) No records

Soybean (Glycine
max)

Partial levels of
resistance

Sugar beet (Beta
vulgaris)

Partial levels of
resistance

Tomato (Solanum
lycopersicum) No records
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Table 4. Cont.

Oomycetes spp. Crop spp. Reported Symptoms Resistance Reported in
the Literature Host Range Distribution References

Pythium irregulare

Clover (Trifolium
subterraneum)

Pre- and post-emergence
damping off of seedlings

(greenhouse) and root rot (field)
of older plants. Contaminated

seeds and seedlings will quickly
turn brown and soft before

decomposing. Foliage may turn
chlorotic or a greenish-grey

and wilt.

Moderate resistance Over 200 host species including
pineapple (Ananas comosus),

cereals, grasses, celery (Apium
graveolens), pepper (Capsicum
annuum), pecan trees (Carya

illinoinensis), Citrus spp,
strawberries (Fragaria ×

ananassa), lentils (Lens culinaris),
corn (Zea mays), soybean
(Glycine max), cucumber

(Cucumis sativus), onion (Allium
cepa), carrot (Daucus carota) and
a number of floricultural crops

Cosmopolitan in
greenhouses and

field systems
[97,216–218]Soybean (Glycine

max)
Moderate to high levels

of resistance

Pythium
aphanidermatum

Cucumber (Cucumis
sativus)

Causes root and stem rots, as
well as pre- and post- emergence
damping off. It causes blights of

grasses and fruit. Roots are
blackened, mushy and rotten. It

causes wilting, loss of vigor,
stunting, chlorosis and leaf drop.

Beets and other fleshy plant
organs are susceptible to rot in

the field and during storage.

No reports

Broad host range, including
cotton (Gossypium spp.),

grasses, papaya (Carica papaya),
cereals, Brassica species and

beans (Phaseolus vulgaris)

Cosmopolitan in
greenhouses and

field systems
[219–223]

Lettuce (Lactuca
sativa) No reports

Pepper (Capsicum
annuum)

Moderate levels of
tolerance

Soybean (Glycine
max) High resistance

Sugar beet (Beta
vulgaris)

Partial levels of
resistance

Tomato (Solanum
lycopersicum) No reports
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A. euteiches causes seedling damping-off and root rot disease in a variety of field crops
worldwide. It first causes softened and water-soaked roots that result in stunted seedlings
and yellow leaves. Then the pathogen spreads rapidly, and the cortical tissue and the
delicate branches of feeding rootlets are destroyed. In severe cases, the plants collapse and
die (Table 4) [3,20].

Main yield losses caused by A. euteiches are observed in legumes. A. euteiches is the
most devastating pathogen of pea in several countries, with yearly losses that average
10 to 80% each year [3,6]. Significant yield losses have also been reported in alfalfa [224],
clover [225], fava beans [226], and lentils [227]. Like A. cochlioides, A. euteiches is a strictly
soil-borne pathogen that may survive up to 10 years in soil [29], and no efficient chemical
control is currently available. The only way to control the disease is to avoid cultivating
legumes in infested fields for 10 years [3,29]. To date, no fully resistant pea cultivars
have been developed. In 2012, eight pea germplasm lines, obtained via selective breeding,
carrying partial resistance to A. euteiches and acceptable agronomic characteristics were
released for fresh, frozen, and dry pea production (Table 4) [177]. Resistant lines of alfalfa
are also available to growers [175,176].

Pythium genus possesses over 200 described species, and at least 10 Pythium spp.
cause Pythium damping-off and root rot in various legumes and monocots (Table 4).
Pythium root rot infection symptoms are similar to other root rots; however, only the
root tips show necrosis during early infection [228]. It is also typical of this pathogen
that the entire primary root’s rapid black rot moves up to the stem [34]. P. ultimum and
P. irregulare have been reported as the most ubiquitous pathogens in this group, regularly
found in the field, sand, pond and stream water, and decomposing vegetation [34,228]. In
the greenhouse industry, the three most commonly encountered root rot Pythium species
are P. ultimum, P. irregulare, and P. aphanidermatum [228].

P. ultimum is a principal causal agent of seed decay and pre- and post-emergence
damping-off in beans [215,229]. A study found that only cream-seeded beans exhibited high
resistance levels, while all the white-seeded accessions were susceptible [215]. P. irregulare
is often the most common pathogenic species of Pythium in soybean farms [230,231].
These studies found that P. irregulare, compared to other Pythium spp., had the highest
pathogenicity levels in soybean. A total of 65 soybean genotypes were evaluated for
resistance to P. irregulare, and about a third showed moderate to high levels of resistance
(Table 4) [216].

Pythium aphanidermatum is the predominant pathogen in greenhouse-grown cucum-
ber. It can rapidly spread through zoospores in a recirculating nutrient film culture
system [232–234]. P. aphanidermatum is also one of the most critical sugar beet diseases in
temperate areas with high soil moisture levels. In addition to direct damage to plants in
the fields, this pathogen also causes root rot in storage [235]. Several sugar beet genotypes
have been found to be partially resistant to P. aphanidermatum root rot (Table 4) [220,235].
Other economically important plant species affected by Pythium spp. are parsnip and
parsley [236], wheat [237], and sugarcane [238]. P. aphanidermatum and P. ultimum mediated
root rot has been reported in ornamental plants [239].

Phytophthora spp. represent more than 100 species, and most of them have been
classified as aggressive plant pathogens that cause extensive losses in agricultural and
horticultural crops [240]. Phytophthora means “plant destroyer,” a name coined in the 19th
century when the potato disease caused by Phytophthora infestans (causal agent of potato late
blight) set the stage for the Great Irish Famine [241]. Phytophthora causes extensive tuber
damage and also impacts above-ground parts of the plant in potato. General symptoms of
Phytophthora infection include wilting, yellow or sparse foliage, and branch dieback [4].

P. citrophthora is the most wide-spread oomycete pathogen in citrus growing areas
accounting for millions of dollars in crop losses annually [242,243]. In citrus, P. citrophthora
causes gummosis, root rot, and during winter, it causes brown rot of the fruit. P. nicotianae
also causes foot rot and root rot in citrus. This pathogen is more commonly found in
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subtropical areas of the world [243,244]. Nursery- and large-trees can be rapidly girdled
and killed by both pathogens [243].

P. cactorum is another pathogen capable of producing high yield losses in fruit trees. In
Canada and certain US regions, it has been identified as the most important cause of crown
rot of apple [190]. The use of rootstocks resistant to P. cactorum and other Phytophthora spp.
has been considered a good management practice. Sources with different resistance levels
have been identified since 1959; however, no highly resistant rootstocks have been found
(Table 4) [190,192,194,195]. In strawberry, P. cactorum crown rot is also considered a disease
of commercial importance worldwide. Several strawberry lines with partial resistance to
the disease have been identified recently (Table 4) [191,193].

P. cinnamomic is another Phytophthora pathogen that affects fruit trees. This disease
causes problems mainly in avocado. On average, this disease leads to an annual loss of
10% of the world’s avocado crop [245]. This disease has eliminated commercial avocado
production in many Latin American regions and is the major limiting factor of production
in Australia, South Africa, and California [196]. Therefore, the development of resistant
P. cinnamomic rootstocks is currently one of the most important goals for the avocado
industry. P. cinnamomi is also a problem for pineapple production in Australia since it
reduces plant growth and yield. P. cinnamomi root rot may result in total loss of this crop,
especially for the new pineapple hybrids, which are susceptible to P. cinnamomic [246].
Other Phytophthora species that significantly affect agriculturally important crops are
P. fragariae, P. sojae, P. capsici, and P. medicaginis (Table 4).

2.3. Bacteria and Viruses

Bacteria are not a significant root rot causing agent. However, these root rots can
cause substantial economic damage. Main yield losses occur in potato and sweet potato.
Considerable losses have also been reported for green peppers and Chinese cabbages
(Brassica campestris subsp. pekinensis) [4,7–10,247].

Bacteria commonly gain entry into the host through wounds in the roots [4,248]. They
may also be able to gain access through the leaves, where bacteria develop under aerobic
conditions in the aerial parts or migrate to the bulb, rhizome, or directly infect the storage
organ [4,247]. These bacteria are characterized by the production of large quantities of
extracellular enzymes that include pectinases, cellulases, proteases, and xylanases, which
digest the host cell walls and cause disease [249,250]. From this set of enzymes, the
pectinases are believed to be the most important in pathogenesis, causing tissue maceration
and cell death [247]. The ability to produce a broader range of enzymes more rapidly and
larger quantities than pectolytic saprophytic microorganisms enables bacterial root rots to
invade living plants more readily [247,251].

The number of identified bacterial root rot pathogens belong to two genera, Pec-
tobacterium and Dickeya. Overall, four pathogens, Pectobacterium carotovorum subsp.
Carotovorum (formerly Erwinia carotovora subsp. Carotovora), P. atrosepticum (formerly E. caro-
tovora subsp. Atroseptica), Dickeya dianthicola, and D. solani (both previously known as
E. chrysanthemi), cause wilt and rot diseases in monocot and dicot plants worldwide. Of
these pathogens, P. carotovorum subsp. Carotovorum has the broadest host range world-
wide. P. atrosepticum is restricted to potato. D. dianthicola and D. solani are pathogenic to
many plants in the tropical and subtropical regions, and affect maize and dahlia in the
temperate regions.

Symptoms of bacterial root rot, mainly characterized in potato and sweet potato,
include chlorosis of leaf tissue and a black, water-soaked decay at the bottom of the stems
that gradually extends to the top. In severe cases, the entire plant collapses [252]. Fibrous
roots have localized lesions with a characteristic black appearance. In storage roots, sunken
brown lesions with black margins can be observed at the surface [253].

The information regarding viruses as the causal agents of root rot is limited. Some
studies have reported the effect of Cassava brown streak virus (CBSV) [11,12] and Ugandan
cassava brown streak virus (UCBSV) [254] in root rot development. Several scions of elite
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breeding lines have been identified as resistant to both viruses [255,256]. However, sparse
or no evidence is available in yield losses and molecular mechanisms of resistance within
the host. Transgenic cassava lines expressing interfering RNAs against the sequence of the
CBSV and UCBSV have increased the level of resistance against these two viruses [257–259].
These transgenic lines provided proof of principle for the control of CBSV and UCBSV.
Information regarding these non-traditional root rot agents is expected to increase as
detection methods evolve [4].

3. Molecular Mechanisms of Resistance Against Root Rot Pathogens

When a pathogen attacks a plant, several molecular mechanisms are activated. Plants
first respond to pathogen infection via pathogen-associated molecular pattern (PAMP)
triggered immunity (PTI) [260]. Pathogens respond with a variety of effector proteins to
counter the PTI [261]. Plants can sometimes detect these effectors and respond with the
commonly known effector-triggered immunity (ETI).

Most plant–pathogen interactions characterized so far fall under the gene-for-gene
interaction model. According to this model, a dominant or semi-dominant resistant (R)
gene from the host and a corresponding avirulence (AVR) gene from the pathogen interact
and activate further downstream reactions (PTI or ETI). The R–AVR interaction concludes
with an incompatible response in which no disease symptoms are produced [262]. The most
abundant R genes code for the plant nucleotide binding site leucine-rich repeat (NBS-LRR)
proteins that are responsible for detecting potential pathogens and triggering a defense
response [263].

Lack of corresponding R–ARV interactions leads to a compatible response leading to
pathogenesis. Both compatible and incompatible interactions result in the recruitment of
different sets of proteins that determine total and partial resistance or susceptibility.

The molecular mechanisms of root rot pathogens-mediated interactions are very di-
verse. The variations in plant–pathogen interaction are dependent on the species and
race of the pathogen and the specific host genotype involved. The following sections de-
scribe validated and proposed molecular defense mechanisms against fungal—Rhizoctonia,
Fusarium, Phoma, and Thielaviopsis basicola; and oomycete—Aphanomyces, Pythium, and
Phytophthora, root rot pathogens.

4. Common Causal Agents of Root Rots
4.1. Fungal Root Rot
4.1.1. Rhizoctonia Solani

Rhizoctonia solani is a pathogen with a broad host range. Resistance to R. solani has
been studied mainly in sugar beet and rice with additional reports in potato and model
organisms, such as Arabidopsis and tobacco.

In sugar beet, the genetic basis for Rhizoctonia resistance is considerably narrow.
The GWS 359-52R genotype is the universal parental line for essentially all resistant cul-
tivars [264–266]. An early study suggested that the resistance to R. solani is associated
with at least two loci with two or three alleles [267]. This hypothesis was supported by
a recent quantitative trait locus (QTL) analysis, which localized the resistance loci on
chromosomes 4, 5, and 7. These QTLs collectively explain 71% of the total phenotypic
variation [266]. Genes involved in pathogen recognition and responses downstream of
R-genes co-segregated with the resistance QTL located on chromosomes 4 and 7, respec-
tively [266]. Genes that show similarity with the Xa21 and Pto were found to co-segregate
with the QTL on chromosome 5. Xa21 is a well-characterized cell membrane receptor
that, through phosphorylation and cleavage of its intracellular kinase domain, perceives
the presence of pathogens [268]. Xa21 relays the signal to the nucleus through multi-step
signal cascades, involving mitogen-activated protein kinase (MAPK) and WRKY signal-
ing [269,270]. Xa21 is known to trigger hormone signaling, especially cytokinins [268]. The
role of cytokinins in defense response remains elusive, however, studies have reported
that cytokinins prompt salicylic acid (SA) accumulation [271,272]. The Pto gene encodes
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a cytoplasmic serine-threonine kinase that interacts with avirulence proteins and confers
HR-mediated resistance [273]. Pto has been considered an important candidate gene for
broad-spectrum resistance in molecular breeding approaches [274,275].

Metabolomic profiling aided in characterizing the changes in sugar beet 0 and 7 days
after inoculation (dai) with R. solani [276]. N1-caffeoyl-N10-feruloylspermidine and codono-
carpine, both alkaloids, showed higher levels in resistant germplasm roots than susceptible
germplasm at 0 dai. The role of alkaloids has been suggested to be a conserved defense
response to R. solani and other necrotrophic fungal pathogens [276,277]. N1-caffeoyl-
N10-feruloylspermidine and codonocarpine alkaloids have multiple and complex roles,
therefore, it is difficult to predict their specific function against R. solani. Furthermore, two
oleanic acid-like compounds (saponins) were found in the resistant germplasm, and their
abundance continued to increase after infection with R. solani. Saponins are known to have
antifungal activity [278,279]. Thus, three metabolites, N1-caffeoyl-N10-feruloylspermidine,
codonocarpine, and oleanic acid-like compounds, are important candidates for follow-up
studies on the interaction between sugar beet and R. solani.

No rice cultivar shows complete resistance, but partial resistance to R. solani has been
reported. These studies have proposed that different defense mechanisms are activated in
the partially resistant rice genotypes. A summary of changes detectable following R. solani
inoculations in the partially resistant rice genotypes is presented in Figure 1.

In total, 25 genes were found to be differentially expressed in rice after infection
with R. solani [280]. These same genes were also differentially expressed when rice was
challenged with Magnaporthe grisea and Xanthomonas oryzae, suggesting a conserved defense
response to different pathogens. This analysis showed that Pathogenesis-Related (PR) 1b
and probenazole-inducible protein 1 (PBZ1) genes were detected at 12 h post-infection (hpi)
when the R. solani mycelium started to grow on the surface of the plant [280]. The expression
of PR1b increased gradually from 12 to 72 hpi. A few lesions began to develop at 36 hpi,
and typical lesions developed at 48 hpi. Meanwhile, the expression of PBZ1 increased to
its maximum level at 48 hpi. PR1b gene is induced by pathogens commonly associated
with SA-related systemic acquired resistance (Figure 1) [281,282]. Further downstream
function or signaling effects of the PR1b protein remain unknown. The PBZ1 gene, a
PR10 family protein, has been shown to induce cell death in rice, Nicotiana tabacum, and
Arabidopsis lines [283]. Cell death is caused by PBZ1-RNase activity inside the plant cell
(Figure 1) [283,284]. On the other hand, the gene glutathione peroxidase 1 (GP1), which
protects cells against both oxidative stresses and inhibits oxidative stress-induced cell
death, was found to be induced at 4 hpi, reaching a maximum at 24 hpi upon R. solani
infection (Figure 1) [285]. Feedback signaling potentially provides an equilibrium between
the antagonistic action of PR1b and PBZ1 versus GP1 during the defense response against
R. solani.
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resistance (F). The specific cell receptors participating in recognition of PAMPs are still unknown. SA participates directly 
in cell death and systemic acquired resistance (SAR) activation, which are triggered by the PBZ1-RNAse and PR1b en-
zymes, respectively. ROS scavenging is performed by the glutathione peroxidase 1 (GP1), which protects cells against both 
oxidative stresses and inhibits oxidative stress-induced cell death. JA triggers the activation of the phenylpropanoid path-
way for the lignification of the host cell walls. Chitinases are synthesized and released to combat R. solani. Defense against 
R. solani is best achieved by early action against the young hyphae. Model derived from the results presented in S. Chen 
et al., (2004); Shrestha et al., (2008); Taheri and Tarighi, (2010); C.-J. Zhao et al., (2008) [280,285–287]. 
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Figure 1. A model representing a resistance response following inoculation with Rhizoctonia solani in rice. Events include the
recognition of pathogen-associated molecular patterns (PAMPs) by the host (A); cell signaling induced by both jasmonate
(JA) and salicylic acid (SA) hormones (B); cell death (C); Reactive oxygen species (ROS) scavenging (D); synthesis and
action of enzymes that attack the pathogen, as well as prepare the host for the attack (E); and systemic acquired resistance
(F). The specific cell receptors participating in recognition of PAMPs are still unknown. SA participates directly in cell death
and systemic acquired resistance (SAR) activation, which are triggered by the PBZ1-RNAse and PR1b enzymes, respectively.
ROS scavenging is performed by the glutathione peroxidase 1 (GP1), which protects cells against both oxidative stresses and
inhibits oxidative stress-induced cell death. JA triggers the activation of the phenylpropanoid pathway for the lignification
of the host cell walls. Chitinases are synthesized and released to combat R. solani. Defense against R. solani is best achieved
by early action against the young hyphae. Model derived from the results presented in S. Chen et al., (2004); Shrestha et al.,
(2008); Taheri and Tarighi, (2010); C.-J. Zhao et al., (2008) [280,285–287].

Another study demonstrated that chitinase levels correlated with resistance to R. solani
in rice cultivars (Figure 1) [286]. Chitinase activity was detected 24 h after inoculation of
seven moderately resistant cultivars. However, in a susceptible genotype, chitinase activity
was delayed and was seen only after 36 h post-inoculation. Moderately resistant rice
cultivars had higher levels of chitinase activity and lower disease severity and number of
infection cushions formed than the susceptible genotype [286]. Resistance to R. solani in rice
has also been associated with the jasmonate (JA) mediated priming of the phenylpropanoid
pathway and the resultant enhanced lignification (Figure 1) [287]. A gene that rapidly
accumulated to high, sustained levels in rice after R. solani challenge was the disease
resistance response protein 206 [280]. This gene participates in the production of active
lignans, thus playing a central role in plant secondary metabolism. It was proposed
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that it be worth evaluating this protein’s role in defense against R. solani in rice [280].
Studies indicate that protection in potatoes against R. solani is enhanced by co-expression
of chitinases, 1,3-β-glucanases, and osmotin proteins [288,289]. It has been hypothesized
previously that co-expression of these enzymes is needed to speed up the destruction of R.
solani hyphae [289,290]. Newly synthesized chitin in cell walls of young hyphae is more
sensitive to enzymatic degradation [291]. Therefore, the defense against R. solani is best
achieved by early action against the young hyphae.

Resistance response in potato, bean, and cowpea seems to be dependent on SA [289,292,293].
On the other hand, a screening of 36 Arabidopsis thaliana ecotypes with differences in auxin,
camalexin, SA, abscisic acid (ABA), and Jasmonic acid (JA_–ethylene pathways did not
reveal any variation in response to R. solani. It demonstrated that resistance to R. solani
was independent of these metabolic pathways [294]. In A. thaliana, it has been shown that
NADPH oxidases mediate the resistance to Rhizoctonia solani [294]. The NADPH oxidase
double mutant resulted in an almost complete loss of resistance. This last observation
highlights a unique target to be evaluated or incorporated in crop plants such as sugar beet
and rice.

4.1.2. Transgenic Approach to Combat Rhizoctonia solani

A polygalacturonase-inhibiting protein (PGIP) from sugar beet introduced into Nico-
tiana benthamiana resulted in enhanced resistance to R. solani [295]. Crude PGIP protein
extracts from transgenic N. benthamiana plants significantly inhibited R. solani polygalactur-
onase. The crude extracts also inhibited polygalacturonase from Fusarium solani and Botrytis
cinerea. Transgenic plants were also significantly more resistant to these three fungi [295].
Similarly, the expression of a common bean-PGIP also conferred strong resistance against
R. solani in tobacco [296]. Transgenic tobacco expressing the bean PGIP also expressed
enhanced resistance against Phytophthora parasitica and Peronospora hyoscyami [296]. Trans-
genic sugar beet expressing the bean PGIP gene showed only minor quantitative effects in
enhancing resistance against R. solani [297].

Transgenic rice expressing 1-aminocyclopropane-1-carboxylic acid synthase (ACS2, a
key enzyme of Ethylene biosynthesis) gene exhibited increased resistance to a field isolate
of R. solani, as well as different races of M. oryzae [298]. This study showed an increased
expression of PR1b (10 to 60-fold) and PR5 (2.0 to 7.9-fold) genes in the transgenic lines,
as well as no negative impact on crop productivity [298]. Rice transgenic lines expressing
broad-spectrum resistance 2 (BSR2) [299], thaumatin-like proteins [69], and a chitinase [300]
have also exhibited enhanced resistance against R. solani as well.

4.1.3. Fusarium solani Root Rot: The Case of Pea and Similitudes with Soybean

One of the predominant causal agent of root rots in P. sativum is Fusarium solani f. sp.
pisi (Fsp). The molecular responses to Fsp infection have been reported in pea since the
late 1970s. A model of partially resistant and susceptible reactions against Fsp in pea is
presented in Figure 2. Some of these studies have reported the association between pea and
its non-host pathogen F. solani f. sp. phaseoli (Fsph). Generally, non-host resistance is more
durable due to the involvement of multiple mechanisms making it an important model to
study [301].

Experiments examining the interaction between pea-Fsph and pea-Fsp showed that
Fsph and Fsp elicitors such as chitosan and DNase are released and directly affect the
chromatin structure of the plant host (Figure 2) [302–305]. In turn, chromatin structure
changes result in the alteration of gene expression patterns (Figure 2). Changes in chro-
matin structure, such as the decrease in the expression of High-Mobility Group (HMG) A
transcription factor and modification of histones H2A and H2B, have been temporarily
associated with the onset of PR gene activation (Isaac et al. 2009) (Figure 2). Pretreatment
of pea tissue with chitosan and Fsph DNase has been shown to enhance protection against
Fsp [306,307].



Horticulturae 2021, 7, 33 19 of 43Horticulturae 2021, 7, x FOR PEER REVIEW 20 of 43 
 

 

 
Figure 2. A model representing reported changes detected following Fusarium solani f. sp. pisi (Fsp) inoculation in pea. 
Events include the action of Fsp DNAse, chitosan, and PAMPs and/or their detection by the host. DNase and chitosan are 
associated with nuclear fragmentation in the plant nucleus affecting chromatin structure. These changes, along with the 
host’s detection of PAMPs, trigger defense responses such as the accumulation of pathogenesis-related (PR) genes. Specific 
responses in partially resistant and susceptible pea genotypes are depicted. Upwards and downwards pointing arrows 
represent overexpression and underexpression of genes, respectively. Model developed from the results presented in 
Hadwiger, (2008); B. A. Williamson-Benavides et al., (2020) [304,308]. 

The accumulation of PR RNA seems crucial to acquiring resistance against Fsph [304]. 
PR proteins, such as the defensins disease-resistance response 230 (DRR230) and DRR39, 
and the RNAse PR-10 have a direct antifungal effect [305,309]. Other PR proteins, such as 
PR-1, a homolog of PR1b in Arabidopsis, act as positive regulators of plant immunity 
[305]. Chitinase and β-glucanase are constitutively expressed, but their basal expression 
increases 10 h post-inoculation with Fsph [310]. These PR proteins’ expression occurs 
within the crucial period for developing a resistance response against Fsph [303]. Similar 
mechanisms of resistance are triggered in pea to halt F. oxysporum pv. pisi infection 
[304,311]. 

There are significant similarities in the biochemical responses induced by the non-
host pathogen Fsph and the host-pathogen Fsp in pea. In both cases, there is a nearly com-
plete suppression of the phosphorylation of chromatin proteins, which leads to the elimi-
nation of HMG A from the cell nuclei and alteration of the histone biochemical structure 
[302–305]. Additionally, the same PR genes, such as DRR230, DRR39, RNase PR-10, and 
PR-1, seem to be upregulated when challenged with the two pathogens. The major differ-
ence in the biochemical responses induced by Fsph and Fsp is the speed at which the plants 
react. The type of response exhibited by pea varies with the rate of induction of PR genes 
and other associated biochemical pathways. In case of either the Fsph or Fsp infection, the 
fungus releases DNAses extracellularly, which localize to the host nuclei and degrades 
the nuclear DNA (Figure 2) [304,305,312]. Fungal DNases can also impact the nuclei in the 
fungal mycelia and trigger their deterioration [304]. In case of a compatible interaction 
between Fsp and a pea genotype, the host’s slower reaction rate allows Fsp to protect a 
small number of its nuclei from fungal DNAses, allowing the growth of Fsp to resume 
after 12 h post-inoculation [305,307]. In contrast, the relatively rapid response generated 
in the host against Fsph terminates the fungi’s development at 6 h post-inoculation 
[304,305]. 

In pea, phenylalanine ammonia-lyase and chalcone synthase enzymes are upregu-
lated two hours post-inoculation with Fsph and Fsp. These two enzymes participate in the 

Figure 2. A model representing reported changes detected following Fusarium solani f. sp. pisi (Fsp) inoculation in pea.
Events include the action of Fsp DNAse, chitosan, and PAMPs and/or their detection by the host. DNase and chitosan
are associated with nuclear fragmentation in the plant nucleus affecting chromatin structure. These changes, along with
the host’s detection of PAMPs, trigger defense responses such as the accumulation of pathogenesis-related (PR) genes.
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in Hadwiger, (2008); B. A. Williamson-Benavides et al., (2020) [304,308].

The accumulation of PR RNA seems crucial to acquiring resistance against Fsph [304].
PR proteins, such as the defensins disease-resistance response 230 (DRR230) and DRR39,
and the RNAse PR-10 have a direct antifungal effect [305,309]. Other PR proteins, such as
PR-1, a homolog of PR1b in Arabidopsis, act as positive regulators of plant immunity [305].
Chitinase and β-glucanase are constitutively expressed, but their basal expression increases
10 h post-inoculation with Fsph [310]. These PR proteins’ expression occurs within the
crucial period for developing a resistance response against Fsph [303]. Similar mechanisms
of resistance are triggered in pea to halt F. oxysporum pv. pisi infection [304,311].

There are significant similarities in the biochemical responses induced by the non-host
pathogen Fsph and the host-pathogen Fsp in pea. In both cases, there is a nearly complete
suppression of the phosphorylation of chromatin proteins, which leads to the elimination
of HMG A from the cell nuclei and alteration of the histone biochemical structure [302–305].
Additionally, the same PR genes, such as DRR230, DRR39, RNase PR-10, and PR-1, seem
to be upregulated when challenged with the two pathogens. The major difference in the
biochemical responses induced by Fsph and Fsp is the speed at which the plants react.
The type of response exhibited by pea varies with the rate of induction of PR genes and
other associated biochemical pathways. In case of either the Fsph or Fsp infection, the
fungus releases DNAses extracellularly, which localize to the host nuclei and degrades the
nuclear DNA (Figure 2) [304,305,312]. Fungal DNases can also impact the nuclei in the
fungal mycelia and trigger their deterioration [304]. In case of a compatible interaction
between Fsp and a pea genotype, the host’s slower reaction rate allows Fsp to protect a
small number of its nuclei from fungal DNAses, allowing the growth of Fsp to resume after
12 h post-inoculation [305,307]. In contrast, the relatively rapid response generated in the
host against Fsph terminates the fungi’s development at 6 h post-inoculation [304,305].

In pea, phenylalanine ammonia-lyase and chalcone synthase enzymes are upregu-
lated two hours post-inoculation with Fsph and Fsp. These two enzymes participate in
the phenylpropanoid pathway and play a significant role in producing flavonoids and
isoflavonoids (Figure 2). The phenylpropanoid pathway potentially plays a role in partial
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resistance to Fsp in pea (Figure 2) [308] and partial resistance to Fusarium solani f. sp.
glycines (Fsg) in soybean [313,314].

Pea contains an isoflavone synthase enzyme, which redirects phenylpropanoid pathway in-
termediate naringenin (4′,5,7-trihydroxyflavanone) to synthesize pisatin (Sreevidya et al. 2006).
Pisatin is an extensively studied phytoalexin from pea, and its production increases in the
presence of Fsp, Fsph, and chitosan [302]. Interestingly, Fsp isolates incapable of demethy-
lating pisatin are low in virulence and susceptible to pisatin [304,315]. The phytoalexin
glyceollin levels increased in the Fsp-inoculated roots of two partially resistant soybean
cultivars compared to a susceptible one [313]. The role of these two phytoalexins in the
interaction between plant host and Fusarium remains to be elucidated.

A time-course RNAseq compared the expression of Fsp-responsive genes in four
partially resistant and four susceptible pea genotypes after 0, 6, and 12 h post pathogen
challenge [308]. Fsp challenge produced a more intense and diverse overexpression of genes
in the susceptible genotypes. In contrast, the partially resistant genotypes showed fewer
changes in the expression of defense-related genes and a faster reset to a basal metabolic
state (Figure 2). In the partially resistant genotypes, gene expression and Gene Ontology
(GO) enrichment analyses revealed that genes involved in exocytosis and secretion by cell,
the anthocyanin synthesis pathway, as well as the DRR230 PR gene were overexpressed
(Figure 2) [308]. Genes coding for receptor-mediated endocytosis, sugar transporters, SA
synthesis, and signaling, and cell death were overexpressed in the susceptible genotypes
(Figure 2).

A total of five recombinant inbred line (RIL) populations have been analyzed to iden-
tify QTLs in response to Fsp challenge [316–319]. A major QTL, named Fsp-Ps2.1, has been
found on chromosome 6 that explains 39.0 to 53.4% of the phenotypic variance [316–318].
The A (pigmented flower and anthocyanin pigmentation) gene was mapped within the
interval of Fsp-Ps2.1. However, Fsp-Ps2.1 was mapped in a white flower (aa x aa) cross [317].
Therefore, it has been hypothesized that the resistance gene(s) responsible for Fsp-Ps2.1
effect may not necessarily be A since Fsp-Ps2.1 was initially identified in a white (a) flow-
ered cross. Fsp-Ps2.1 co-located with the Aphanomyces root rot partial resistance QTL
Ae-Ps2.1 [316,317]. A second QTL, Fsp-Ps6.1, explained 17.3% of the phenotypic variance.
In total, three defensin family genes, pI39 and DRR230-A and DRR230-B, were mapped
near Fsp-Ps3.1 [317]. A different subset of parental white-flowered genotypes was crossed
to developed two populations that segregate for Fsp resistance [319]. QTL analysis of these
two populations identified five QTLs that explain 5.26 to 14.76% of the resistance to Fsp.
Overall, three of these are considered newly reported QTLs. The recently identified QTLs
and the absence of a major QTL on chromosome 6, reported in previous studies, reflects
the wide degree of genetic resources of resistance available to combat Fsp in pea [319].

4.1.4. Transgenic Approach to Counter Fusarium solani Root Rot

An antibacterial peptide-encoding gene from alfalfa seeds, alfAFP, was fused to the
C-terminal of the rice chitinase-encoding gene and introduced into tobacco [320]. The
recombinant protein enhanced resistance against F. solani in transgenic tobacco plants.
Transgenic lines did not exhibit wilting symptoms, even 30 days post-inoculation with
F. solani [320]. In a different approach, the Ethylene-responsive factor ERF94 was expressed
in potatoes. The transgenic lines exhibited enhanced resistance to F. solani [321]. Transgenic
potato plants showed a limited production of H2O2 and increased expression of antioxidant
enzymes and PR proteins [321].

4.1.5. Fusarium graminareum Root Rot

As is the case with other root rots, the mechanism of interaction of soybean and
Fusarium graminareum has not been studied in depth. However, several QTL analyses have
identified the potential loci responsible for resistance, and in some cases, several candidate
genes have been mapped to these QTL regions.
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A total of five putative QTLs were identified in a RIL population derived from a cross
between Conrad (resistant) × Sloan (susceptible) parents [119]. These QTLs explained a
small percentage of the phenotypic variance (3.6–9.2%) and were located on chromosomes
8, 13, 15, 16, and 19. These QTLs were not the same as those that confer resistance to
Phytophthora sojae, suggesting that different loci are involved in resistance against these root
rot pathogens [119]. Similar results were obtained from a genome-wide association study
using cultivated and landraces of soybean [322]. This study identified 12 single nucleotide
polymorphisms (SNPs) associated with F. graminareum resistance, which explained only a
small percentage (5.53–14.71%) of the observed phenotypic variation.

A major QTL on chromosome 8 that explained 38.5% of the phenotypic variance was
found in a RIL population derived from a cross between ‘Wyandot’ (partially resistant)
× PI 567301B (highly resistant) [118]. This QTL harbored 39 genes, including the Rhg4
locus for soybean cyst nematode (SCN) resistance [118]. Overall, nine genes coding for
hydroxymethylglutaryl-CoA, a key enzyme in flavonoid biosynthesis pathway, were found
in this QTL. In addition, there were three rapid alkanization factor (RALF) genes that can
initiate a signal transduction pathway and two genes coding for subtilisin-like proteases.
Subtilisin proteases are believed to be secreted into the extracellular matrix and function
to reorganize cell wall components during defense response [118,323]. A subsequent
study identified four differentially expressed genes that mapped to this QTL located on
chromosome 8. These genes included an actin-related protein 2/3 complex subunit, an
unknown protein, a hypothetical protein, and a chalcone synthase 3 [324]. This study
demonstrated that removal of the seed coat of highly resistant soybean lines makes them
susceptible to F. graminareum, indicating that proteins or secondary compounds in the seed
coat may be involved in resistance [324].

4.1.6. Fusarium Root Rot in Cereals

The Fusarium species F. avenaceum, F. graminareum, F. culmorum, F. verticillioides, F. pseu-
dograminareum are ubiquitous soil-borne fungus able to cause foot and root rot and Fusar-
ium head blight or earmold on different small-grain cereals such as wheat, barley, maize,
and oat [325–327]. The emphasis of this review is limited to horticultural crops. For a
comprehensive review of Fusarium disease in cereals, the reader is directed to previous
studies and reviews [104,328–335].

4.1.7. Phoma Root Rot

Studies related to the understanding of the molecular mechanism underlying Phoma
resistance are scarce. A few studies were identified that focused on JA and thiabendazole’s
use to combat postharvest rots caused by Phoma betae and P. sclerotioides [336,337] or on the
assessment of alfalfa cultivars for resistance against P. sclerotioides [156,338].

A recent study in onion utilized different sources of genetic resistance to P. terrestris to
develop segregating families. One segregating family was scored for resistance and suscep-
tibility with the resultant ratio of segregants fitting a single dominant locus. However, in
another segregating family, the resulting segregation ratio did not fit a single dominant or a
recessive locus [339]. The severity of root rot was mapped to a locus on chromosome 4, and
it explained 28 to 35% of the phenotypic variation. Estimates of additive and dominance
effects revealed that this source of resistance is co-dominantly inherited [339].

P. terrestris resistance was also assessed from a different source of resistance, and the
resulting, co-dominantly inherited, QTL mapped to the same region on chromosome 4 and
explained 54% of the phenotypic variation [339]. This study demonstrated that resistance
from different genetic sources mapped to the same chromosome region and showed similar
modes of inheritance [339].

4.1.8. Thielaviopsis basicola Root Rot

A QTL mapping study [340] and a proteomic analysis [143] are the only reports that
provide some insight into the sources of resistance and defense response mechanisms
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against Thielaviopsis basicola in cotton. Phenotypic variation between resistant and suscepti-
ble cotton lines was associated with three QTLs that explained 19.1, 10.3, and 8.5% of the
total phenotypic variation [340]. This study provided a list of 624 candidate genes that
were located within the identified QTL regions. The list included 22 pathogen defense and
36 stress-responsive genes. Fine mapping is required to narrow down this list of candidate
genes for each QTL.

A time-course analysis of cotton root proteomes was performed during a compatible
interaction with T. basicola [143]. Analysis of root extracts was conducted at 1, 3, 5, and 7
days post-inoculation. The study found that more plant proteins were down-regulated,
especially in the early stages of infection, than upregulated. A total of 58 protein clusters
were found to be upregulated across the time-course analysis. According to their putative
biological role, these 58 protein clusters were further identified and classified into five
major categories: defense, stress, primary and secondary metabolism, and diverse function.
A number of the upregulated proteins corresponded to PR, with the majority of them
belonging to the PR-10 family. The function of PR-10 genes is still unknown; however,
the authors suggested that these proteins may be involved in hormone-mediated disease
resistance in cotton [143]. A putative thaumatin protein, another PR protein, was also
upregulated during T. basicola infection. The two additional pathogen defense proteins
corresponded to a Meloidogyne-induced protein MIC-3, which were originally correlated
with the disruption of nematode development in cotton [341]. The molecular function of
the MIC-3 and the MIC family remains unknown, mainly due to the absence of known
functional motifs and domains [342].

4.1.9. A Transgenic Approach to Counter Thielaviopsis basicola Root Rot

Transgenic cotton lines expressing AtNPR1 (nonexpresser of PR1) gene were found
to be significantly tolerant to T. basicola [157]. The roots of the transgenic lines tended
to recover faster after T. basicola infection. Transgenic plants also showed higher shoot
and root mass, longer shoot length, and a greater number of boll-set than wild-type
plants after T. basicola infection. NPR1 is a regulatory protein that participates as a critical
positive regulator of the SA-dependent signaling pathway and systemic acquired resistance.
Transcriptional analysis of transgenic roots exhibited stronger and faster induction of PR
proteins such as PR1, thaumatin, glucanase, lipoxygenase (LOX1), and chitinase [157].

4.2. Oomycete Root Rot
4.2.1. Aphanomyces Root Rot

A. euteiches cause high yield losses in legumes such as pea and alfalfa. It has been
challenging to investigate the genetic basis of resistance in these two plant species due
to their complex and partial genome information, the polygenic inheritance of resistance,
and difficulties in field-based phenotyping. Medicago truncatula, with a much simpler
genome, has been used as a surrogate model to understand the molecular interactions and
resistance mechanism against A. euteiches [343]. The key molecular responses associated
with A. euteiches resistance in Medicago truncatula are presented in Figure 3.
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regulated by a small GTPase, named MtROP9. ABA and ROS signaling result in the overexpression of PR5 gene and
the phenylpropanoid pathway. The lignification and synthesis of 2′-O-methylisoliquiritigenin are positively correlated
with disease resistance against A. euteiches. 2′-O-methylisoliquiritigenin was shown to significantly impede A. euteiches
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Djébali et al., (2009); Leonard M Kiirika et al., (2014); Leonard Muriithi Kiirika et al., (2012); Nyamsuren et al., (2003);
Trapphoff et al., (2009) [344–350].

A monogenic control of resistance against A. euteiches has been reported in several
studies. A QTL named AER1 was mapped to the distal part of chromosome 3 [346,351]. The
genomic region corresponding to the QTL contains a supercluster of nucleotide-binding
site leucine-rich repeat (NBS-LRR) genes [346,351]. This region also included proteasome-
related genes, a cluster of nine F-box protein–encoding genes, and one gene coding for a
ubiquitin-associated enzyme [352]. qRT-PCR data showed that the ubiquitin-associated
enzyme and three F-box-encoding genes were induced in a resistant line (A17) following
pathogen inoculation but not in the susceptible line. F-box proteins are known to be
involved in hormone regulation and in plant immunity [353,354], regulation of pericycle
cell divisions [355], and lateral root production [356].

The highly redundant presence of ABA-responsive proteins indicates that ABA-
mediated signaling is involved in the interaction between M. truncatula and A. euteiches
(Figure 3) [345,349]. ABA production and signaling are known to contribute to JA accu-
mulation, as well as for the activation of resistance against Pythium irregulare in Arabidop-
sis [357,358]. Furthermore, PR10 family proteins, interspersed within the ABA-responsive
genes, increased in M. truncatula after A. euteiches infection. However, a later study reported
that the accumulation of PR10 protein was mainly correlated with A. euteiches proliferation
and not plant resistance [352]. RNAi-mediated suppression of several PR10 genes led to a
reduced A. euteiches colonization, which was linked with a parallel induction of a set of
PR5 proteins (thaumatin-like proteins) (Figure 3) [359]. Therefore, PR10 and PR5 proteins
act antagonistically.
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A significant link has been found between enhanced synthesis and accumulation of
flavonoid compounds and resistance against A. euteiches (Figure 3) [344]. Transcriptome
and proteome analyses revealed a strong induction of chalcone synthase and isoflavone
reductase genes after pathogen challenge [350,352,360,361]. Furthermore, the gene coding
for isoliquiritigenin 2′-O-methyltransferase showed the highest induction after A. euteiches
infection in the most resistant lines [345]. The metabolite 2′-O-methylisoliquiritigenin
was shown to significantly impede A. euteiches development and zoospore germination
(Figure 3) [344].

The accumulation of lignin has also been linked with partial resistance against A. eu-
teiches [344,346]. Furthermore, the higher accumulation of lignin in resistant plants is
associated with more efficient hydrogen peroxide (H2O2) scavenging mechanisms that
are activated due to infection (Figure 3) [362]. ROS are activated following A. euteiches
inoculation and are regulated by a small GTPase, named MtROP9 [347,348,350]. The knock-
down of MtROP9 in M. truncatula resulted in three primary outcomes: (1-) prevented the
detection of respiratory burst oxidase homologs, (2-) led to reduced activity of enzymes
involved in the primary antioxidative processes; and (3-) promoted A. euteiches hyphal root
colonization [347,348].

4.2.2. Role of Nodulation and Mycorrhizas in Aphanomyces Root Rot

The Nod Factor perception (NFP) gene involved in nodulation was reported to confer
resistance against A. euteiches in M. truncatula [360]. NFP knockout mutants were signif-
icantly more susceptible to A. euteiches than wild-type, while NFP overexpressing lines
showed increased resistance. Transcriptome analyses showed that knockout of the NFP
gene led to changes in the expression of more than 500 genes involved in dynamic cell
processes associated with disease response [360].

The NF-YA1 gene, a central transcriptional regulator of symbiotic nodule development,
determined susceptibility to A. euteiches [363]. The Mtnf-ya1-1 mutant plants showed a
better survival rate and reduced symptoms as compared to their wild-type background.
Comparative analysis of the transcriptome of wild-type and Mtnf-ya1-1 mutant lines
resulted in identifying 1509 differentially expressed genes. Among these differentially
expressed genes, 36 defense-related genes were constitutively expressed in Mtnf-ya1-1,
while 20 genes linked to hormonal, notably auxins, Ethylene and ABA, pathways were
repressed [363].

Mycorrhiza seems to impart a bioprotective effect, observed earlier in pea roots against
A. euteiches [364,365]. The increased resistance is postulated to be due to the following
reasons: (I) enhanced physical resistance and damage compensation capability of the plant
due to improved nutritional status, (II) changes in the microbial populations of the mycor-
rhizosphere, (III) competition between invading microorganisms (IV), increased production
of secondary metabolites that have antimicrobial properties (V) activation of plant defense
mechanism via accumulation of defense-related proteins [352,364]. Histochemical analysis
of both microorganisms in the roots revealed a competition for physical space, which likely
reduces A. euteiches hyphae or oospores, resulting in diminished disease symptoms [352].

4.2.3. Pythium Root Rot

The molecular mechanism of resistance to Pythium root rot has been primarily inves-
tigated in soybean and the common bean, however, recently, Pythium-responsive genes
have been reported in apples as well.

In soybean, five QTLs associated with resistance to P. sojae were mapped to chromo-
somes 1, 6, 8, 11, and 13 [216]. Each QTL explained 7.9 to 17.8% of the phenotypic variation.
QTLs associated with resistance to other root rot pathogens colocalize with the QTLs
associated with P. sojae resistance. Chromosome 1 QTL colocalized with a QTL associated
with resistance for Phytophthora sojae [366]. The chromosome 6 QTL was closely located to
a QTL reported for Phytophthora sojae [367] and Fusarium virguliforme [368]. The QTL on
chromosome 8 was found in a region associated with resistance for F. virguliforme [369]. The
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QTL on chromosome 13 was located in an area associated with resistance to several other
soybean pathogens, including Phytophthora sojae [370], F. virguliforme [371], and F. gram-
inareum [119]. The QTLs on chromosomes 6 and 8 also colocalized with two QTLs found
associated with resistance to Pythium ultimum. These QTLs, associated with P. ultimum
resistance, on chromosomes 6 and 8 explain 7.5–13.5% and 6.3–16.8% of the phenotypic
variance, respectively [372].

In common beans, the response of a set of 40 common genotypes to P. ultimum was
investigated [373]. The emergence rate showed a significant association between seed
coat color and response to this pathogen. In total, 11 bean genotypes with colored seeds
exhibited a high percentage of emergence. A major gene (Py-1) controlling the emergence
rate was mapped to the region of the gene P, an essential color gene involved in the control
of seed coat color, located on linkage group (LG) 7. Using a RIL population of colored
seeds, other two QTLs associated with the emergence rate and another with seedling vigor
were identified on LG 3 and 6, respectively. QTL on LG6 was mapped to the gene V region,
which is another gene involved in the genetic control of seed color.

The transcriptomic changes in apple root tissue when infected with P. ultimum were
analyzed using tolerant and susceptible rootstock lines [374,375]. The mechanism of
defense response involving the recognition of PAMPs, hormone signaling, and synthesis of
PR genes was identified. Genes coding for proteins with predicted function of pathogen
detection such as the chitin elicitor receptor kinase (CERK) and wall-associated receptor
kinase (WAK) were among the differentially expressed genes identified in the resistant line.
Genes associated with the biosynthesis and signaling of several phytohormones including
Et, JA, and cytokinins were specifically induced in response to P. ultimum inoculation.
The strong induction of cytokinin hydroxylase encoding genes suggests that cytokinin
signaling may play a unique role in the defense response in apple roots. Furthermore, genes
coding for secondary metabolism enzymes, cell wall fortification, PR proteins, laccase,
mandelonitrile lyase, and cyanogenic beta-glucosidase were consistently up-regulated
in the later stages of infection [374]. Like apple, in Zingiber zerumbet (shampoo ginger
or wild ginger), high differential modulation of genes involved in cell wall fortification,
lignin biosynthesis, and SA/JA hormone indicates that these genes play a central role in
restricting P. myriotylum proliferation [376].

On a global scale, delayed or interrupted activation of multiple defense pathways
seems to underlie susceptibility. This has been observed in various transcriptome analysis
studies against root rots [304,305,308,362]. Similar observations were discernible from
transcriptomic and microscopic data in the susceptible B.9 roots [32,375,377]. Microscopy
data on the pathogen growth progress revealed a swift development of root necrosis in the
most susceptible genotypes, with the entire root system becoming necrotic within a period
of 24 h after initial infection [377]. The necrosis progression could be delayed for several
days without the whole root tissues being engulfed for the most resistant genotypes.

4.2.4. Phytophthora Root Rot

Soybean is the species of choice to understand the molecular interactions between
Phytophthora and the plant host. Phytophthora root rot (PRR) of soybean is the second
leading cause of yield loss in soybean in North America, surpassed only by soybean cyst
nematode [378].

More than 20 dominant genes, known as resistant to P. sojae (RPS) genes, associated
with PRR resistance have been identified in the soybean genome, with most of them
mapping to Chromosome 3 [201,367,368,379–383].

Once incorporated into soybean cultivars, Phytophthora race-specific resistance
genes have a useful life of only 8 to 15 years before new virulent races of the pathogen
evolve [201,380,384]. Intensive use of race-specific genetic resistance for control of P. sojae
has resulted in the emergence of new races that are virulent to the current resistance
genes [385]. Over 50 races of P. sojae have been reported in the literature [386,387]. Currently,
none of the single host-resistance genes can counter all P. sojae races. Several reports have
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highlighted the importance of marker-assisted selection (MAS) to pyramid several QTLs in
soybean cultivars to reduce losses by PRR [367,368,379,380,388]. This approach would help
in reducing the selection pressure for new virulent races of P. sojae. Partial resistance or
tolerance, also called quantitative disease resistance, generates a lower selection pressure
on the pathogen population; therefore, it is expected that partial resistance will be more
durable than general race-specific resistance.

The Rps1k gene in soybean has garnered significant interest because it confers stable
resistance to broad-spectrum P. sojae strains in the USA. The Rps1k gene locus, cloned as
part of a bacterial artificial chromosome (BAC), carries two classes of coiled coil-nucleotide
binding-leucine rich repeat ((CC)-NBS-LRR) genes [389,390]. Rps2 and Rps4 gene loci were
cloned, and they were also characterized as NBS-LRR genes [382,391]. In RpsJS gene locus,
14 predicted genes exist, with three being NBS-LRR type genes [392]. The RpsYD29 gene
was mapped to a region with two NBS-LRR type genes [393]. These two genes showed
high similarity to the NBS-LRR present in the Rps1k gene locus. Rps10 gene has been
mapped to chromosome 17, where eight putative candidate genes were found. In total, two
candidate genes encoding serine/threonine (Ser/Thr) protein kinases were identified [394].
The identity and function of the remaining RPS genes remain unknown.

In soybean roots, a strong correlation between the extent of preformed suberin in
soybean roots and the resistance to P. sojae was observed [395]. As a cell wall component,
suberin is known to constitute a barrier to the pathogen and also acts as a toxin to microbes
due to its high concentration of phenolic compounds [395,396]. To colonize the root, P sojae
hyphae grow through the suberized middle lamellae between epidermal cells. This process
took 2 to 3 h longer in Conrad (resistant genotype) than in OX760-6 (partially resistant
genotype) [384]. Subsequent growth of hyphae through the endodermis was also delayed
in Conrad. The delay in the progression of P. sajoe in the resistant cultivar provides this
genotype with more time to activate and establish its chemical defenses. Additionally,
Conrad had more preformed aliphatic suberin and was induced to form more aliphatic
suberin after initial infection than OX760-6. The authors concluded that suberin’s synthesis
provides a target for the selection and development of new soybean cultivars with higher
levels of partial resistance to P. sojae.

Expression of a number of micro RNAs (miRNAs) was found significantly altered
upon infection with P. sojae in resistant and susceptible genotypes [397]. Further analyses
revealed many reciprocally inverse patterns of the miRNA-gene target pairs upon infection.
These expression patterns propose a feedback circuit between miRNAs and protein-coding
genes. A knock down of miRNA 393 led to enhanced susceptibility of soybean to P. sojae,
as well as to a reduction in the expression of isoflavonoid biosynthetic genes [398]. On
the other hand, overexpression of miRNA gma-miR1510a/b in the hairy roots of soybean
resulted in enhanced susceptibility to P. sojae [399]. Results showed that miR1510 guides
the cleavage of the Glyma.16G135500 gene, which encodes an NBS-LRR gene. These results
suggest a pivotal role of both miRNAs in resistance against P. sojae. As illustrated by
this example, the role of miRNA in plant defense needs to be investigated broadly in
other plants.

4.2.5. Phytophthora Root Rot in Other Crops

P. nicotianae is a major problem in tobacco production. At least six QTLs were mapped
in tobacco that contribute to high level of resistance against P. nicotianae [400]. All six QTLs
explained 64.3% of the phenotypic variation, while the two largest QTLs explained 25.4
and 20.4% of the observed phenotypic variation. The major QTL on linkage group four
was found to co-segregate with Abl, a gene involved in accumulation of cis-abienol [400].
This compound is exuded by trichomes and has been previously associated with roles
in plant defense against insects, plant pathogens, and other microbes [400–402]. Recent
studies have identified resistant and susceptible genes using RNA-seq time-course analy-
ses [403,404]. Some resistance gene candidates include disease-resistance proteins, chiti-



Horticulturae 2021, 7, 33 27 of 43

nases, pathogenesis-related proteins, calcium-dependent and -binding proteins, mitogen-
activated protein kinases, transcription factors, among others.

P. rubiis is one of the most serious and destructive diseases of raspberry [405,406]. The
two major QTLs, located on LG 3 and 6, associated with Phytophthora resistance, have
been identified [406]. Root vigor and disease resistance mapped to the same major QTL
on LG 3. An auxin receptor or germin-like protein mapped to this LG 3 QTL. This QTL is
possibly involved in the initiation of new axes of growth as a defense response. The effect
of the LG 6 QTL has only been identified at the infected site. Therefore, LG 6 QTL may be
better interpreted as a resistance locus rather than a vigor-related gene [406].

In avocado, the transcript levels of defense-related genes were characterized and
compared among five rootstocks with varying resistance to root rot [407]. The results
indicated the involvement of PR-5 and endochitinase in the defense response. However,
neither of the genes could be directly linked to the observed resistance. The difference in
transcript abundance of phenylalanine ammonia-lyase and lipoxygenase genes was also
observed when comparing resistant and less resistant rootstocks, indicating their potential
involvement in the resistance.

In strawberry, five genes for resistance to thirty races of P. fragariae have been identified,
including Rpf1 that was characterized as a dominant monogenic gene that confers resistance
to at least 18 races of P. fragariae [197,408]. However, none of the five genes have been
characterized or associated with any known defense mechanism.

5. Conclusions

Moderate to high levels of resistance have been identified in breeding lines or cultivars
of most crops affected by root rots. Furthermore, significant progress has been made in
identifying genes that respond to fungi and oomycete root rot pathogens. It is evident
that no universal response controls the resistance against this heterogeneous group of
pathogens. The reactions are highly dependent on the host genetics and the pathogen
involved. Resistant responses are governed, mostly, by multiple mechanisms and genes
and, on rare occasions, by a single, independent, dominant gene. Hormones that drive re-
sponses against root rots vary for each individual host-pathogen interaction. The role of SA,
JA, Et, ABA, cytokinins, or any other hormone, should be studied on an individual basis.

Hundreds of studies have opted for the screening of resistance QTLs. In some of these
studies, a major resistance QTL was identified. However, for most of these QTLs, the genes
underlying resistance remain to be elucidated. The identification of these genes might help
confer broad resistance against root rots. The host’s rapid response seems to be a shared
feature that determines resistance against root rot pathogens. Resistant and susceptible
genotypes commonly respond with the same set of defense genes, however, the slower
speed of response in the susceptible genotypes results in pathogenesis. This standard
feature was documented in the rice-R. solani, potato-R. solani, pea-F. solani, M. truncatula-A.
euteiches, and apple-Pythium ultimum interactions. Interestingly, legumes are predominant
hosts of root rot pathogens. A shared factor among legumes might explain this susceptibil-
ity. A vital factor to consider is that legumes are the only known plant taxon that forms
a symbiotic relationship with Rhizobium spp. Symbiosis-related mechanisms might be a
gateway highjacked by root rot pathogens.

Emerging high-throughput phenotyping technologies will allow for efficient detection
of root rot resistant lines across the entire array of plant hosts. Combined with field-scale
phenotyping, high-throughput genotyping and genomics approaches are expected to help
in identifying genes involved in pathogen resistance or susceptibility. This information can
be utilized in breeding or genome editing approaches to develop resistant crops that can
be cultivated sustainably.
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