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Abstract: The current agriculture is facing various challenges to produce enough food to satisfy the
need of the human population consumption without having a negative impact on the environment,
human health and ecosystems. The exploitation of bioinoculants has been a crucial alternative
for green agriculture. Bioinoculants have two great benefits: to promote plant growth by making
essential nutrients available to crops and, to increase the tolerance to biotic and abiotic stresses by
inducing a long-lasting defense. Certain members of genus Trichoderma have been recognized as
biocontrol agents, biofertilizers and stress alleviators for the plants. The use of Trichoderma spp. has
also been extended to protect and stimulate growth of horticultural crops. Elucidating the plant
signaling events triggered by Trichoderma is of high importance in order to understand the molecular
basis involving plant protection against stresses. In this review, the signaling elements of the plants
from Trichoderma perception through late defensive responses is discussed. Enhanced understanding
how Trichoderma spp. activate defense will lead to improvement in the use of species of this genus to
increase crop production with the consequent benefits for human health and care for the environment.

Keywords: priming of defense; G proteins; calcium signaling; mitogen-activated protein kinase;
phytohormones; SA signaling; JA signaling; reactive oxygen species; antioxidant proteins; defense
genes

1. Introduction

Stress in plants can be defined as any external condition that limits the photosynthetic
rate and reduces the energy conversion ability of a plant to biomass, affecting its growth,
development or productivity [1,2]. Plant stress can be classified as abiotic or biotic. The
abiotic stress refers to any environmental factor that negatively affects the plant growth
and development. Abiotic stress (e.g., extreme temperatures, drought, salinity, radiation
and toxic metals) causes serious losses of major crop plants around the world [3]. On the
other hand, the presence of plant pathogenic living organisms, especially viruses, fungi,
bacteria, nematodes, and herbivores are the causes of plants biotic stress [3].

Plants attempt to adapt and resist the stresses by adjusting their metabolism, sig-
nal transduction, gene expression, etc.; however, the plant survival under these stress
conditions will depend on the intensity, frequency and exposure time [2].

Population growth as well as current climate change and the crop losses caused by
emergence of plant pathogenic microorganisms are challenges that require immediate
action to ensure food security and safety in coming years. It has been estimated that
agricultural food production needs to increase by about 70% by 2050 to feed an expected
world population of 9.1 billion of people [4].

Human food production must focus particularly on sustainable agriculture by the
means of ecological practices that maximize food productivity and minimize negative
consequences on the environment [5]. In recent years, bio-priming agents are receiving
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large attention as a promising approach to mitigate the environmental and disease threats
in agriculture [6–10].

Bio-priming has been recognized as a low-cost and eco-friendly technology that
promotes growth and induces stress tolerance to achieve desired crop yield [11]. Bio-
priming consists in the use of beneficial microorganisms [e.g., plant-growth-promoting
bacteria (PGPB), fungi, etc.] or materials of biological origin (e.g., humus, chitosan, etc.).
These materials can be used in the seeds or the whole plants to promote growth or to
improve stress responses. Among these microorganism are included fungi, especially
arbuscular mycorrhizal and Trichoderma spp. [12].

Trichoderma is mostly an asexual genus of filamentous fungi (the teleomorphic forms
are Hypocrea) that usually are among the most common saprophytic microorganisms living
in the rhizosphere [13]. Trichoderma genus contains 375 species that have been described
by molecular phylogenetic analysis based on DNA sequencing data [14]. The drastic
increase in the number of Trichoderma species has several explanations that are related to
the technologies and applications used for identification [14].

Although Trichoderma was isolated for the first time in 1794 from soil and decom-
posing organic matter [15], it was not until the early 20th century that some Trichoderma
species were found to have importance for biofuel industries and plant protection against
pathogens by the use of mycoparasitism and/or antibiosis mechanisms [14,16,17]. In the
years to follow, many strains of Trichoderma have been described as biocontrol agents [18].
Among Trichoderma species commercially available for agricultural use are T. harzianum,
T. virens, T. viride, T. asperellum and T. atroviride [19].

The mechanism by which Trichodema spp. function as biocontrol agents is complex,
and the mentioned biocontrol effect varies with the specie of Trichoderma and host plant
involved in the interaction [18]. Clearly, environmental conditions (e.g., temperature, pH,
salinity and nutrient availability) also influence the biocontrol mechanism [19].

Trichoderma spp. are considered as opportunistic and avirulent plant symbionts [20].
During interaction with host plants, Trichoderma spp. secrete several classes of chemical
molecules (e.g., proteins, peptides, oligosaccharides and antibiotics) [10,21]. Some of these
compounds may act as hormones that stimulate plant growth and development, or can
also act as elicitors, activating defense responses in the host plant [22].

The activation of defense induced by Trichoderma spp. not only reduces plant diseases.
It has also been proved that Trichoderma spp. application to the plant increases the tolerance
to abiotic stress, such as drought [23–25], low temperatures [24,26], salinity [27,28], and can
be used to reduce the presence of toxic metals [29,30]. This wide range of beneficial traits
to their hosts is due to bio-priming, and is attributed to the induction of long plant basal
resistance that improves the defensive capacity of the plants for subsequent stresses [31].
The application of bio-priming agents prepares the plant for a faster and more effectively
response against future stresses [32].

Due to the ability of Trichoderma spp. to rapidly produce spores and antibiotic com-
pounds, these fungi have been used for the massive production of commercial formulations
that can be stored by months maintaining the beneficial effect for the crop [33]. The most
widely used Trichoderma spp. products are formulated in a wettable powder or granules [19].
Ninety percent of various Trichoderma strains are applied to crops, within many horticulture
species (e.g., Poaceae, Solanaceae and Cucurbitaceae) specially for the control of plant
diseases due to the antagonistic characteristic against phytopathogens (see [34] for review).

The long-lasting dialogue established between plants and Trichoderma is one of the
major gaps in the understanding of how this relationship works. In this review, we will
focus on the plant signal elements underlying the priming function of Trichoderma spp. that
may trigger plant adaptation to stress conditions.

2. Defense Responses at Early Stages of Plant–Trichoderma Interaction

Little is known about the plant host mechanisms that connect the perception of Tri-
choderma root colonization to the downstream signaling pathways leading to activation of
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defense and developmental responses [35]. It is assumed that plant defense triggered by
Trichoderma spp. is initiated by the perception of microbial-associated molecular patterns
(MAMPs) by pattern recognition receptors (PPRs), which are localized on the surface of
plant cells [36]. This first phase defense induction is called MAMP-triggered immunity
(MTI) [37]. MTI activated by Trichoderma spp. includes defense responses such as oxidative
burst, callose deposition, Ca2+ and reactive oxygen species (ROS) signaling as well as the
induction of phytoalexins and other secondary metabolites because, at that point, the plant
does not recognize that it is a friendly attack [35,38,39].

2.1. Heterotrimeric G Proteins in Trichoderma Recognition

G proteins are membrane-associated, heterotrimeric, and composed of subunits α,
β and γ. When GDP is bound, the subunit α associates with the βγ dimer to form an
inactive heterotrimer that binds to a G-protein-coupled receptor (GPCR) [40]. When
a GPCR detects an extracellular signal, α subunit decreases the GDP affinity and the
leaving GDP is replaced with GTP. Once GTP is bound, the α subunit is activated and
dissociated both from the GPCR and from βγ dimer [40]. Following activation, both the
GTP-bound α subunit and the free βγ complex can bind to downstream effector molecules
and mediate a variety of responses in the target cell, including adaptations to environmental
and biotic stresses [41,42]. There is one report about the involvement of plant G-proteins
after inoculation with Trichoderma. Pea roots inoculated only with T. asperellum showed
a transcript accumulation of the Gα1 subunit of the heterotrimeric G protein [43]. This
suggests G-proteins play an important role in the Trichoderma recognition by the plant and
suggests that the Gα1 subunit (in its active form), could activate downstream signaling
elements. Among the roles of Gα1 signaling, activation of plant plasma membrane Ca2+

channels and ROS accumulation have also been widely reported [44–46] (Figure 1).

2.2. Calcium Mediated Signalling in Trichoderma Bio-Priming

Calcium is a second messenger by which plants modulate signaling pathways to
respond to a particular stress. The increase in intracellular calcium concentrations ([Ca2+]i)
is one of the earliest signaling events when plants are challenged with biotic and abiotic
stimulus [47,48]. Changes in [Ca2+]i are commonly found during interaction between plants
and beneficial microorganisms. This is the case for metabolites secreted by T. atroviride
which increase [Ca2+]i and defense responses in the first minutes after the treatment in
soybean cells [49]. Also, the elicitor HYTOL1 (a hydrophobin abundantly secreted by
T. longibrachiatum strain MK1 [50]) may be involved in adhesion of fungal hyphae to the
root surface [51], inducing a transient increase of cytosolic Ca2+ in Lotus japonicus cells [52].
These results indicate that the induction of intracellular Ca2+ changes represents an early
step during Trichoderma–plant interaction that primes defense mechanisms (Figure 1).

2.3. Early ROS Accumulation

One of the earliest responses during the plant defense strategy is a fast and transient
production of intracellular ROS [53]. Plasma membrane NADPH oxidases, known as
respiratory burst oxidase homologues (RBOHs), are one of the many sources of ROS
that have been implicated in several essential processes in plants [54]. Growing lines of
evidence from plants suggest the involvement of NADPH oxidase-generated oxidative
burst in extracellular signaling to regulate a wide range of physiological functions in
plants [55,56].

A networking between cytosolic concentrations of Ca2+ and RBOH-mediated ROS pro-
duction has been shown in several studies [57–59]. Plant–Trichoderma systems have also
demonstrated that these fungi or their metabolites can trigger transient increases in ROS and
calcium levels in the first minutes of interaction, activating enhanced immune defense [49,60].
Additionally, tight connections of NADPH oxidases and mitogen-activated protein kinases
(MAPKs) are recognized to regulate various biological processes, wherein NADPH oxidase-
originated oxidative burst can act upstream to activate the MAPKs cascade [61]. It has
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been demonstrated that association of T. viride Tv-1511 and peppermint plants produces
the activation of a MAPK cascade via NADPH oxidase [61]. All these findings suggest
that NADPH oxidase-dependent ROS production plays vital roles in the root colonization
(Figure 1).
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Figure 1. Mechanism of plant responses according to the time of interaction with Trichoderma. The
model is divided into three stages. The earlier stage comprises the first hours of interaction, wherein
the plant is avoiding fungal root colonization due to SA phytohormone and consequently the callose
deposition. This first stage is initiated by the recognition of MAMPs secreted by Trichoderma, which
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can trigger early defense responses mediated by Ca2+ and reactive oxygen species and by a rapid
but transient activation of MAPK cascades through G heterotrimeric proteins. In the second stage,
Trichoderma effectors are recognized by R-proteins to promote JA signaling by sustained MAPK
activation, and to suppress SA signaling. Consequently, it is established a beneficial interaction. In
the later stage, a second peak in the amount of SA is observed, which may induce antioxidative
enzyme activities to reduce the oxidative damage to biomolecules and cells.

2.4. Salicylic Acid Restricts Trichoderma Invasion of Vascular System

The interactions between Trichoderma spp. and plant roots involve recognition, attach-
ment, penetration, colonization and nutrient transfer [62]. It is well known that Trichoderma
spp. grow on the outer layer of the roots of the plants [63,64].

During root colonization of Trichoderma spp., salicylic acid (SA) seems to be involved in
preventing this fungus from entering the vascular system of the roots as well as in avoiding
detrimental effects on plant growth and development of the host plants [65]. SA plays a
key role in plant cell wall reinforcement (via callose synthesis) responsible for the limitation
of Trichoderma colonization to the outer layers of roots [65]. Endogenous increase in SA
levels has been reported in tomato plants inoculated with T. virens and T. harzianum T22
at 24 and 48 hpi, respectively [66,67]. The temporary induction of SA confirms a possible
role in avoiding excessive Trichoderma penetration within the roots [65] and underlines the
importance of SA in the first steps of the Trichoderma–plant interaction (Figure 1). It has
also been shown that T. atroviride and T. cremeum induce changes in the composition of
wheat seedlings roots [68]. These species promote lignin deposition and rearrangements of
pectins after 14 days of incubation with Trichoderma spp., suggesting that modifications of
wheat seedlings roots can be used as a tool against to pathogens [68].

3. Induction of Systemic Plant Defense by Trichoderma spp. Plays Key Role in the
Crosstalk between Biotic and Abiotic Stress Responses

After MTI, Trichoderma spp. seem to activate a second layer of defense. In this stage,
effectors secreted by fungi species prevent plant recognition and activate the plant systemic
resistance to biotic and abiotic stress [36]. The second line of plant defense induction is
called effector-triggered immunity (ETI), which is activated by plant resistance protein (R)
and it is frequently associated with hypersensitive response (HR) [37]. Despite ETI and
PTI involving a similar set of downstream defense responses, including calcium-mediated
signaling, activation of MAPK cascades, production of ROS, transcriptional reprogramming,
and biosynthesis of antimicrobial compounds [69–72], the responses during ETI have a
longer duration and higher magnitude [73].

Induced resistance is the term used for the induced state of resistance in plants trig-
gered by a biological or chemical inducer. This protects nonexposed plant parts from
stresses [74]. Systemic acquired resistance (SAR) and induced systemic resistance (ISR)
are two types of induced resistance wherein plant defenses are preconditioned by prior
infection or treatment that results in resistance against subsequent challenge by a pathogen
or parasite [75]. Plants, in response to virulent, avirulent and nonpathogenic microbes,
elicit SAR. For the activation of SAR, the molecule SA and the accumulation of PR pro-
teins are required. In contrast, ISR is triggered by the infection of pathogens, response to
insects, herbivores, or upon root colonization by beneficial microbes in the rhizosphere
(such as Pseudomonas spp., Bacillus spp. and Trichoderma spp.). Typically ISR is regulated by
jasmonic acid and ethylene (JA/ET) [75,76], in some particular cases, ISR can requiere SA
accumulation [77].

The first evidence of TISR was published in 1997 by Bigirimana et al. [78], who
demonstrated that soil treated with T. harzianum made the leaves of bean plants resistant
to diseases that are caused by the fungal pathogens Botrytis cinerea and Colletotrichum
lindemuthianum, even though T. harzianum was present only on the roots and not on the
foliage. Similar results have been reported for a wide range of host plants with different
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strains and species of Trichoderma and various classes of plant pathogen including fungi,
bacteria, viruses and nematodes [39,78–80].

3.1. Trichoderma spp. Induce a Prolonged Activation of Plant MAPK Cascades

Mitogen-activated protein kinase (MAPK) cascades are well conserved signaling
proteins in all eukaryotes [81]. Each cascade is minimally constituted of three proteins that
are sequentially activated: a MAP kinase kinase kinase (MAPKKK or MAP3K), a MAP
kinase kinase (MAPKK or MAP2K) and a MAP kinase (MAPK or MPK) [81,82].

MAPKs are intracellular proteins that can be activated by various stimuli [81]. MAPKs
cascades transduce extracellular signals to cellular responses, including the biosynthesis
of phytohormones, ROS generation, changes in gene expression, among others [83]. Ac-
tivation of MAPK cascades is one of the earliest signaling events after plant sensing of
PAMPs/MAMPs [84–87]; however sustained activation of MAPK confers a robust innate
immunity [73,88]. Arabidopsis thaliana MPK3 and MPK6, as well as their orthologs in other
species, such as tobacco SA-induced protein kinase (SIPK) and wounding-induced protein
kinase (WIPK), are involved in plant responses to biotic and abiotic stresses [84,86,87,89,90].
Some studies have found the activation of MPKs associated with plant defense during
plant–Trichoderma interactions [35,91–95]. For instance, xylanase, an elicitor from the cell
walls of T. virens (TvX), induces the slow and prolonged activation of SIPK in tobacco [91].
Similarly, inoculation with T. atroviride (a specie known to promote root growth by pro-
ducing auxine-like compounds [94]) in Arabidopsis roots induces the MPK6 activation [95].
Since the modulation of MPK6 is also responsive to auxin-like compounds, it has been
suggested that T. atroviride alters root-system architecture modulating MPK6 and auxin
action [95]. In addition, the activation of an analog of Arabidopsis MPK6 in peppermint by
T. viridae is related with the modulation of essential oil metabolism at the transcriptional
level and for enzymatic activation [61]. Interestingly enough, menthol, which is the main
terpenoid of peppermint oil, exhibits potential abilities as plant defense potentiator in
agriculture and horticulture [92].

Besides activating MPKs through posttranslational modifications, bio-priming with
Trichoderma spp. induce expression of plant MPK genes. For example, the inoculation of
cucumber (Cucumis sativus) roots with T. asperellum leads to a long-term expression of a
Trichoderma-induced MPK (TIPK) gene, which is an ortholog of WIPK and MPK3 [93], while
the elicitor HYTOL1 also up-regulates the early and transient expression of MPK3 in L.
japonicus [52]. After inoculation in Arabidopsis, T. hamatum induces the expression of MPK3
after 48 h [96] and T. asperelloides of MPK11 at 24 h [35]. It is noteworthy that this last MPK
is also responsive to PAMPs/MAMPs [97,98].

It is known that sustained activation of MPK3/6 elicits a massive reprogramming
of the defense metabolome, with an accumulation of camalexin and indole glucosinolate
derivatives [99]. The activation of both MPKs is also accompanied by many defense-related
phytohormones such as SA, JA, and ET [99], suggesting that extended MPK activation
could be involved in the modulation of the robustness of the immune signaling during
plant–Trichoderma interactions (Figure 1).

3.2. Hormone Signalling Pathways Involved in Systemic Resistance induced by Trichoderma spp.

Plant hormones play a crucial role in the immune signaling networks in response to
pathogens and beneficial microbes [100]. Among the most relevant hormones related to the
modulation of defense responses are SA, JA, ET and abscisic acid (ABA), however auxin,
gibberellic acid (GA), cytokinin (CK), brassinosteroids and peptide hormones could also be
implicated in plant defense signaling pathways [101].

Several studies have shown that Trichoderma species induce the production of phy-
tohormones in the host plants such as JA, SA and ET. Since Trichoderma spp. can also
produce small amounts of phytohormones such as auxins, GA, SA and ABA [102–105], it
makes difficult to discern the origin of hormones detected in some plant–Trichoderma spp.
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interactions. The role of specific hormones during plant–Trichoderma interaction seems to
be dependent on the experimental condition and organisms involved [66,96,106].

3.2.1. Salicylic Acid

SA plays a key role in plant defense against biotrophic pathogens [107]. The accu-
mulated evidence shows that partial suppression of SA-dependent responses in plants is
necessary for the occurrence of the symbiotic association between beneficial microbes and
plants [108–112], including Trichoderma spp. [35,113,114]. In this regard, evidence shows a
down-regulation of PR-1, a useful marker for the SAR response, in the first hours of various
plant–Trichoderma spp. interactions [52,115].

SAR is a long lasting defense modulated by SA. Recently, it has been found that
systemic resistance in maize plants primed with T. atroviride at seedling stage is detected
until two months later with an increase of SA levels, suggesting SA is a key component of
a regulatory network controlling the immunity of silks during systemic resistance [116].
Similarly, Arabidopsis seedlings exposed to T. asperellum Ism T5 volatile for 9 days, stimulate
SA accumulation [117]. In recent years, experimental studies have found that applica-
tion of exogenous SA induces biotic and abiotic stress [118–122], possibly by modulat-
ing antioxidative enzyme activities, thereby potentially reducing the damaging levels of
ROS [120,123,124]. It is thus possible that alleviation of biotic or abiotic stress observed in
plant–Trichoderma systems would involve SA in later stages of the interactions (Figure 1).

3.2.2. Jasmonic Acid

JA is synthesized from the α-linolenic acid of chloroplast membranes by the octade-
canoid pathway. JA is a phytohormone involved in diverse physiological processes includ-
ing plant growth and development [125], and also actively participates in the mediation
of plant responses and defenses against herbivore attack, pathogen infection and abiotic
stresses, including ozone, ultraviolet radiation, high temperatures, and freezing [125–128].

Multiple reports have confirmed that Trichoderma spp. can increase the levels of JA
in host plants. For instance, during the interaction between tomato plants with T. virens,
an increase in endogenous JA levels at 24 hpi has been observed [67]. Similarly to the
content of SA, JA significantly increase in T. longibrachiatum H9-inoculated cucumber plants
at 96 hpi [114], and in Arabidopsis co-cultivated with both T. virens and T. atroviride 8 days
after interaction [129], implying that SA and JA play important roles in regulating the plant
response and enhancing plant defense in plants (Figure 1).

3.3. Induction of Plant Defense Gene Expression in Response to Trichoderma spp.

Reprogramming of a cell in response to the perception of an external stimulus involves
complex changes in gene expression. The expression of genes appears to be regulated by
intracellular signal transduction pathways. For instance, the interaction of plants with
a variety of microorganisms results in changes in the level of SA, JA and ET, which are
positive regulators of transcription factors (WRKYs), defense genes (PRs), and receptors (R
genes) [130].

To link particular pathways with actual defense responses, some molecular tools,
such as qPCR, allow the use of the expression of several marker genes as indicators of the
activation of specific pathways [9]. Expression studies on defense/stress-related genes
suggested that Trichoderma-induced systemic resistance (TISR) might involve both SA- and
JA-related pathways.

Comparing plants treated with Trichoderma spp. with mock-treated controls, hundreds
of genes that are differentially expressed during ISR-prime have been identified [35,66,96]
(Tables 1–3). The products of the genes are related to defense responses, signal transduction,
systemic acquired resistance, antioxidant systems, programmed cell death, etc. [96]. It is
difficult to establish a specific time point when early defense responses end, but it has been
proposed that 48 hpi would indicate the moment of transition when the plant reprograms
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its transcriptional machinery mainly towards redox and defense processes, fully accepting
that Trichoderma is not an enemy [38,66].

3.3.1. WRKY Transcription Factors

WRKY is a family of transcription factors found exclusively in plants [131]. They bind
W-box and/or other cis-elements located in the promoter of their target genes [131]. Most
WRKY genes are responsive to pathogens, elicitors, and defense-related phytohormones
such as SA or JA, implying a major role for the WRKY gene family in plant immunity [132],
but also, the WRKY transcription factors play an important role in the alleviation of abiotic
stresses [131,133].

The WRKY proteins regulate the gene expression directly or indirectly by modulat-
ing the downstream target genes, by activating or repressing the other genes (encoding
transcription factors) or by self-regulating their own expression [131].

Molecular studies have revealed that Arabidopsis plants under interaction with
T. atroviride induces the expression of WRKY8, WRKY33, WRKY38, WRKY42 and WRKY60,
all of which are considered as positive regulators in JA pathway, while WRKY70 and
WRKY54, regulated by the SA pathway, could be activated at later stages of the interaction,
when the fungus is fully established in the plant roots [134]. Similarly, the treatment of L.
japonicus with hydrophobin HYTOL from T. longibrachiatum, or the inoculation of the com-
mon bean (Phaseolus vulgaris L.) with T. velutinum, lead to the expression of WRKY33, but
not PR-1 [52,115], suggesting that expression of WRKY33 induced by Trichoderma spp. neg-
atively regulates the SA pathway to evade the plant immunity and to establish a prolonged
mutualistic association (Table 1).

On the other hand, the expression of WRKY18, WRKY40 and WRKY60 transcription
factors genes in Arabidopsis inoculated with T. asperelloides is observed as early as 9 h. The
three WRKY show redundant function in negatively regulating PTI in Arabidopsis [135]. In
response to T. asperelloides, these transcription factors negatively regulate the induction of
transcript levels of SA marker genes FMO1, PAD3 and CYP71A13, but positively regulate
the expression of LOX2 and AOS related to the JA pathway through inhibition of expression
of the jasmonate ZIM domain (JAZ) repressors (Figure 1). Because FMO1 negatively
regulates root colonization, WRKY18 and WRKY40 could negatively regulate FMO1 to
allow a moderate level of colonization [35].

3.3.2. PR Proteins

Pathogenesis-related proteins (PRs) are a structurally diverse group of plant proteins
that are induced by various types of pathogens. They are widely distributed in host plants
in trace amounts, but are produced in much higher concentration following pathogen
attack or stress conditions [136]. PR proteins impede pathogen invasion but also helps in
growth and metabolism of the host plants. The PR proteins are grouped according to their
properties and functions, and include β-1,3-glucanases, endochitinases, proteinases, pro-
teinase inhibitors, peroxidases, RNases, inhibitors of pathogen hydrolases, and others [137].
Chitinases and β-1,3-glucanases are the major hydrolytic enzymes abundant in plants after
fungal pathogen infection [138]. An earlier report showed that cucumber roots induced the
activity of peroxidase, β-1,3-glucanase and chitinase, which are apparently of plant origin,
72 h post-inoculation with T. harzianum [13], suggesting that Trichoderma association could
reduce disease through activation of both enzymes by hydrolyzing the main constituents
of the structural barrier of pathogenic cell wall fungi.

Likewise, induction of PR gene expression is also essential for the development of
induced resistance and can require the molecules SA or JA/ET. In Arabidopsis PR-1 that
inhibits fungal growth, PR2 also called β-1,3-glucanase and PR-5 are considered to be
markers for SAR, while PR-3 (chitinase), PR-4 (chitinase) and PR-12 (plant defensin) are
used as markers for JA pathway. Transcriptomic analyses have shown the expression
of PR genes in response to Trichoderma spp. (Table 2). The rhizosphere colonization by
Trichoderma spp. can support the transcription of some defense-related genes for a relatively
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long period [139,140]. This effect is particularly strong for those inducible by SA (Table 2),
suggesting that the long-term response to Trichoderma in plants may involve SA signaling.

Table 1. Expression of WRKY genes up-regulated by Trichoderma species.

Signaling Pathways
Related Gene Host Plant (Full

Name in the Legend)
Trichoderma Specie or

Elicitor
Time after

Inoculation Reference

JA/abiotic stress WRKY33

A. thaliana
T. atroviride 96–144 h [134]

T. asperelloides T203 9–24 h [35]

L. japonicus Hydrophobin HYTOL
from T. longibrachiatum

2 h [52]

P. vulgaris T. velutinum T028 45 days [115]

S. lycopersicum T. erinaceum 24–48 h [141]

JA/ET

WRKY8 A. thaliana
T. atroviride 24–48 h [134]

T. asperelloides T203 24–48 h [35]

WRKY38

A. thaliana T. atroviride

96 h

[134]WRKY42 96–144 h

WRKY60 72–144 h

WRKY41

A. thaliana T. asperelloides T203

9–24 h

[35]

WRKY53 24 h

WRKY55 24 h

WRKY18 9–24 h

WRKY60 9–24 h

WRKY40 9–48 h

WRKY1 V. vinifera T. harzianum T39 4 days [142]

WRKY-C10 (WRKY
transcription factor 6) V. vinifera T. harzianum T39 4 days [142]

Negatively regulated
by JA/ET. Represses
plant basal defense

mechanisms

WRKY48 A. thaliana T. asperelloides T203 9–24 h [35]

SA

WRKY30

A. thaliana T. asperelloides T203

9 h

[35]

WRKY54 9 h

WRKY15 9–24 h

WRKY46 9–24 h

WRKY70 48 h

WRKY54
A. thaliana T. atroviride

144 h
[134]

WRKY70 * 144 h

Involved in plant
defense

WRKY37 S. lycopersicum T. erinaceum 24–48 h [141]

WRKY70 is an Arabidopsis gene that is upregulated by two different strains of Trichoderma: T. asperelloides and
T. atroviride. Arabidopsis thaliana, Lotus japonicus, Phaseolus vulgaris, Solanum lycopersicum, Vitis vinifera.
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Table 2. Induction of Pathogenesis Related (PR) genes expression by Trichoderma species.

Marker for Gene Protein Function Host Plant (Full
Name in the Legend) Trichoderma Specie Time after

Inoculation References

JA/ET

PR-3

Chitinase Class 1.
Hydrolytic enzymes that
disrupt mycelial cell wall

Antifungal properties

A. thaliana T. asperelloides T203 24 h [35]

O. sativa
T. harzianum; T.erinaceum;

T. atriviride; T. hebeiensis; T. parareesei;
T. longibrachiatum; T. resei

NR * [8]

S. lycopersicum T. erinaceum 24–48 h [141]

Acidic endochitinase
3 (Chit3) Chitinases V. vinifera T. harzianum T39 4 days [142]

PR-4 Basic Chitinases A. thaliana T. asperelloides T203 24–48 h [35]

PR-P2
It is a pathogenesis related

4 (PR4) gene S. lycopersicum T. atroviride; T. harzianum 2 months [139]

PDF1

Plant defensin. Membrane
permeabilizing functions.

A. thaliana T. asperelloides T203

24 h [35]

PDF1.2 24 h [35]

PDF1.2c 24 h [35]

PDF1.2 S. lycopersicum cv.
Oogata-fukuju

T. virens 4–24 h [67]

Defensin O. sativa
T. harzianum; T.erinaceum;

T. atriviride; T. hebeiensis; T. parareesei;
T. longibrachiatum; T. resei

NR * [8]

SA

PR-1
Antimicrobial function and

defense signal
amplification.

A. thaliana
T. virens; T. atroviride; 6–8 days [129]

T. hamatum T382 48–72 h [96]

S. lycopersicum T. atroviride; T. harzianum 2 months [139]

S. lycopersicum cv.
Oogata-fukuju T. virens 4–24 h [67]

PR-2
Beta-1,3-endoglucanase.
Hydrolytic enzymes that
disrupt mycelial cell wall

A. thaliana T. hamatum T382 48–72 h [96]

S. lycopersicum T. erinaceum 24–48 h [141]

β-1,4-glucanase
Hydrolytic enzyme that

disrupts mycelial cell wall C. sativus T. asperellum 48 h [143]

PR-5
Osmotins. Membrane

permeabilizing proteins.
A. thaliana

T. hamatum T382 48–72 h [96]

T. asperelloides T203 24 h [35]

S. lycopersicum T. hamatum 5 weeks [140]

OSM2 Trichoderma-induced
osmotin 2 V. vinifera T. harzianum T39 4 days [142]

* NR = Not reported. Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, Vitis vinifera, Cucumis sativus.

3.3.3. Other Defense Gene Markers

The expression of PR genes can be transitory, but strongly potentiates the expression
of defense-related proteins when plants are affected with biotic stress. Proteins encoded
by resistance genes (R) are found among them. The R proteins recognize effectors from
beneficial and pathogenic microorganisms to activate a stronger defense. The HR4 gene
that codifies an R protein is induced 96 h after of the Arabidopsis–T. atroviride interaction,
suggesting the fungus is activating the recognition system and promoting a beneficial
interaction establishment in the plant [130], however, little is known about R genes in
beneficial interactions.

Additionally, there is evidence of a link between the accumulation of the phytohor-
mones and changes in the expression of marker genes, which have been identified by
analysing their expression patterns after exogenous application of single or combined
phytohormone solutions [144]. The evidence has demonstrated that Trichoderma spp. can
simultaneously or separately induce ISR and SAR associated with the biosytnthesis of SA,
JA and ET according with the induction of the expression of specific resistance marker
genes, which are summarized in Table 3.
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Table 3. Expression of gene markers positively regulated by Trichoderma species.

Marker for Gene Protein Function
Host Plant

(Full Name in
the Legend)

Trichoderma
Specie

Time after
Inoculation Reference

JA/ET

Lox1

Lipoxygenase enzyme involved
in JA synthesis

C. sativus T. asperellum 24 h [61]

A. thaliana T. harzanium 72 h [65]

A. thaliana T. asperelloides
T203 24 h [35]

S. lycopersicum T. parareesei 6 days [145]

Lox2 A. thaliana T. virens,
T. atroviride 8 days [129]

Lox3 A. thaliana T. asperelloides
T203 24 h [35]

Lox4 A. thaliana T. asperelloides
T203 24 h [35]

LoxA S. lycopersicum. T. atroviride,
T. harzianum 2 months [139]

HPL Hydroperoxide lyase C. sativus T. asperellum 24–48 h [146]

hGS Homoglutathione synthetase
related with oxidative stress P. vulgaris T. velutinum

T028 45 days [115]

ET

CTR1 Ethylene signal-associated
serine/threonine protein kinase C. sativus T. asperellum 24 h [143]

ETR1

EIN2 Key component in ethylene
signaling A. thaliana T. asperelloides

T203
48 h [35]

EIN4

ERF-A2 Ethylene-responsive
transcription factor S. lycopersicum

T. parareesei,
T. asperellum,
T. harzianum

4 weeks [147]

CH5b Endochitinase precursor related
to ethylene signaling P. vulgaris T. velutinum

T028 45 days [115]

SA

PAL1 Phenylalanine and histidene
ammonia-lyase. Enzyme

involved in the production of
antimicrobial compounds

C. sativus T. asperellum 24 h [143,146]

A. thaliana T. asperelloides
T203 9–24 h [35]

O. sativa

T. harzianum,
T.erinaceum,
T. atriviride,
T. hebeiensis,
T. parareesei,

T. longibrachiatum,
T. resei

NR * [8]

PAL2 A. thaliana T. asperelloides
T203 24 h [35]

ICS1 Isochorismate synthase is
involved in SA biosynthesis A. thaliana T. harzanium 72 h [65]

Cals Callose synthase, involved in
callose biosynthesis A. thaliana T. harzanium 72 h [65]

* NR = Not reported. Cucumis sativus, Arabidopsis thaliana, Solanum lycopersicum, Phaseolus vulgaris, Oryza sativa.

3.4. Induction of Antioxidant Enzyme Activity Is Modulated by Trichoderma spp.

As noted before, one of the common responses under stress conditions is the generation
of ROS. Overproduction of ROS could result in damage to macromolecules such as lipids,
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proteins and DNA, via oxidation, and in severe cases, leads to cell death. So it is crucial to
overcome these effects either by enhancing the intrinsic antioxidant defense or by repairing
the damage [148].

Stress-induced ROS accumulation can be counteracted by plant antioxidative defense
that consist of enzymatic or nonenzymatic systems. Superoxide dismutase (SOD), ascorbate
peroxidase (APX), catalase (CAT), peroxidases (POD) and glutathione peroxidase (GPX) are
the main enzymatic scavengers of superoxide (O2

−) and hydrogen peroxide (H2O2) [149],
while glutathione (GSH) and ascorbic acid (ASA) are the major non-enzymatic antioxidants
that, among other vital functions, maintain cellular redox homeostasis [150]. Keeping
ASA and GSH in reduced form is critical for redox homeostasis and cellular vitality [151].
The activity of the enzymes that regenerate these molecules is correlated with resistance
to abiotic stresses. These enzymes include glutathione reductase (GR) (which regener-
ates oxidized GSH), monodehydroascorbate reductase (MDHAR) and dehydroascorbate
reductase (DHAR), which regenerate ASA from monodehydroascorbate (MDHA) and
dehydroascorbate (DHA) [149].

Recent literature has revealed that Trichoderma spp. reduce the negative effects of
plants stressed with biotic and abiotic stimuli through the modulation of the ROS by
inducing antioxidant enzymes [24,152,153]. For instance, in the presence of T. harzianum
T22, the ratios of reduced to oxidized forms of the molecules for ascorbate and glutathione,
and the activity of SOD, APX, MDHAR, DHAR and GR in tomato seedlings are higher
than non-inoculated plants. This indicates that T. harzianum T22 enhances systems of
ROS scavenging and redox maintenance [151]. Also, T. erinaceum bioprimed tomato plants
increase the activities of SOD and CAT compared to a control, and T. hamatum enhances the
activity of enzymes CAT, POD, APX, GR and SOD in Ocharenus baccatus [154]. Similarly,
the inoculation of maize and rice seeds as well as wheat seedlings with T. harzianum or
its metabolites extracts increases SOD and CAT antioxidant enzymes activity [155,156].
This demonstrates that the pre-treatment of biocontrol Trichoderma results in increased
activities of the antioxidant enzymatic pool [141].

Trichoderma strains also increase the activity of antioxidative defense through en-
hanced expression of genes encoding the component enzymes [148]. Transcriptional repro-
gramming of the oxidative stress response may also influence Trichoderma spp. bio-priming
to overcome oxidative damage in stressed plants. Some examples of overexpression of
antioxidant-related genes induced by Trichoderma spp. are summarized in Table 4.

Table 4. Induction of expression of plant antioxidant genes by Trichoderma species.

Gene Host Plant (Full
Name in the Legend) Trichoderma Specie or Elicitor Time after

Inoculation Reference

CAT C. sativus T. asperelloides T203 24 h [35]

CAT O. sativa T. harzianum; T.erinaceum; T. atriviride; T. hebeiensis;
T. parareesei; T. longibrachiatum; T. resei * NR [8]

CAT T. aestivum cv.’Yongliang 4 T. longibrachiatum T6 * NR [157]

GPX S. lycopersicum T. erinaceum 24–48 h [141]

POD T. aestivum cv.’Yongliang 4 T. longibrachiatum T6 * NR [157]

POD O. sativa T. harzianum; T.erinaceum; T. atriviride; T. hebeiensis;
T. parareesei; T. longibrachiatum; T. resei * NR [8]

SOD O. sativa T. harzianum; T.erinaceum; T. atriviride; T. hebeiensis;
T. parareesei; T. longibrachiatum; T. resei * NR [8]

SOD S. lycopersicum T. erinaceum 24–48 h [141]

SOD T. aestivum cv.’Yongliang 4 T. longibrachiatum T6 * NR [157]

SOD (Mn) C. sativus T. asperelloides T203 24 h [35]

SOD (Cu) C. sativus T. asperelloides T203 24 h [35]

* NR = Not reported. Cucumis sativus, Oryza sativa, Triticum aestivum, Solanum lycopersicum.
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SA has been widely recognized as a promoter of antioxidant defense, including CAT,
SOD, and APX, as well as non-enzymatic antioxidants, to alleviate oxidative stress in
plants [124,158–160], so the late increase of endogenous SA observed in bioprimed plants
with Trichoderma spp., might be responsible for the antioxidant enzymatic mechanism
pathway improving the performance of plants under stress conditions (Figure 1). Thus,
growing evidence suggests that application of strains of Trichoderma spp. may be an
ecological strategy to help plants to recover from biotic and abiotic stress-induced oxidative
damage to continue the metabolic and physiological activities in a better way.

3.5. Effects of Trichoderma on Chloroplasts

Chloroplasts are key organelles of the higher plants in which photosynthesis takes
place. The chloroplasts are also the major production site of defense molecules including
hormones (such as SA, JA, ABA) and secondary messengers like Ca2+ and ROS [161].

The effect of Trichoderma interaction on chloroplast has been poorly explored. Re-
cently, it was observed that T. asperellum and T. harzianum consortium at 108 CFU/mL
concentration increased the number and size of chloroplasts in spongy parenchyma of
Passiflora caerulea after 60 days [162]. These chloroplasts also showed a reduction of starch
grains, which could be related to starch degradation and the translocation of monosaccha-
rides from chloroplasts to the rest of the cell and/or to the phloem [162] (Figure 1).

Additionally, it has been proved that some Trichoderma strains enhance photosyn-
thetic capacity compared to uninoculated controls (see [163] for review) by increasing the
photosynthetic pigment content or the expression of genes regulating the biosynthesis
of chlorophyll, proteins of the light-harvesting complex, or components of the Calvin
cycle [164]. Chloroplasts are considered as sensors and regulators of plant responses to
biotic and abiotic stresses [165]. When plants are exposed to stress, they usually lose
their photosynthetic capability by an overproduction of ROS formed during excitation of
chlorophyll in photosynthesis, causing an oxidative stress in chloroplasts [166]. However,
it has been shown that plants inoculated with certain strains of Trichoderma and then
challenged by a stress overcome the reduction of photosynthetic capability [26,39,148,167].
This might be due to the protection against ROS levels described previously, but also to
the increase in the content of carotenoids detected in the interaction of some plants with
Trichoderma spp. [164,168–171], since carotenoid pigments act as antioxidants that quench
singlet oxygen and trap peroxyl radicals [172].

Since chloroplasts produce ROS during cellular stress and ROS act as promoters of
programmed cell death (PCD), Trichoderma spp. may be preventing cell death in plants
subsequently exposed to stress. Moscatiello et al. [52] demonstrated that despite the fact
that HYTOL induced the expression of defense genes, it did not affect cell viability and
ultrastructure of L. japonicus cells after treatment. However, other studies have reported
some markers of PCD (e.g., caspase 3-like caspase protease activity and by chromatin con-
densation) in soybean and tobacco cells treated with metabolite mixtures from T. atroviride
or xylanase, respectively [49,173].

4. Conclusions and Future Perspectives

The negative consequences of climate change on living organisms and the environ-
ment are already forcing us to search for alternative ways of reducing these catastrophic
events. Eco-friendly practices for food production have been highlighted to achieve sus-
tainability. In horticultural crops, plant biostimulants have been proposed as agronomic
tools to mitigate environmental/abiotic stress effects. However, since our knowledge
about the mechanism involved during plant–biostimulant interaction is currently lim-
ited, more research is needed to understand exactly what is taking place during interac-
tions. The elucidation of the mechanisms of action will allow us to develop new meth-
ods that involve beneficial microorganisms with better performance for the solution of
agricultural problems.
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Trichoderma spp. induce multiple beneficial effects on plants by reducing the sever-
ity of diseases, but also by alleviating abiotic stress-induced damage in plants. These
promising results are opening the door for sustainable agriculture to exploit the potential
of Trichoderma in a safe way for crop plants, agroecosystems, and humans.

Further research into the molecular bases of dialogue in plant–Trichoderma inter-
actions should predict the impact of certain species of this genus on crops or cultivars
performance to ensure their effective use.
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160. Torun, H.; Novák, O.; Mikulík, J.; Pěnčík, A.; Strnad, M.; Ayaz, F.A. Timing-dependent effects of salicylic acid treatment on
phytohormonal changes, ROS regulation, and antioxidant defense in salinized barley (Hordeum vulgare L.). Sci. Rep. 2020,
10, 13886. [CrossRef] [PubMed]

161. Serrano, I.; Audran, C.; Rivas, S. Chloroplasts at work during plant innate immunity. J. Exp. Bot. 2016, 67, 3845–3854. [CrossRef]
[PubMed]
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